#!/usr/bin/env python2 # -*- coding: UTF-8 no BOM -*- import os,sys,string import numpy as np import damask from optparse import OptionParser scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptID = ' '.join([scriptName,damask.version]) # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog [options] datafile[s]', description = """ Calculates the standard deviation of data in blocks of size 'packing' thus reducing the former resolution to resolution/packing. """, version = scriptID) parser.add_option('-c','--coordinates', dest='pos', type='string',\ help='column heading for coordinates [%default]') parser.add_option('-p','--packing', dest='packing', type='int', nargs=3, \ help='dimension of packed group %default') parser.add_option('-s','--shift', dest='shift', type='int', nargs=3, \ help='shift vector of packing stencil %default') parser.add_option('-r','--resolution', dest='resolution', type='int', nargs=3, \ help='resolution in x,y,z [autodetect]') parser.add_option('-d','--dimension', dest='dimension', type='float', nargs=3, \ help='dimension in x,y,z [autodetect]') parser.set_defaults(coords = 'pos') parser.set_defaults(packing = [2,2,2]) parser.set_defaults(shift = [0,0,0]) parser.set_defaults(resolution = [0,0,0]) parser.set_defaults(dimension = [0.0,0.0,0.0]) (options,filenames) = parser.parse_args() if len(options.packing) < 3: parser.error('packing needs three parameters...') if len(options.shift) < 3: parser.error('shift needs three parameters...') options.packing = np.array(options.packing) options.shift = np.array(options.shift) prefix = 'stddevDown%ix%ix%i_'%(options.packing[0],options.packing[1],options.packing[2]) if np.any(options.shift != 0): prefix += 'shift%+i%+i%+i_'%(options.shift[0],options.shift[1],options.shift[2]) # ------------------------------------------ setup file handles --------------------------------------- files = [] if filenames == []: files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout}) else: for name in filenames: name = os.path.relpath(name) if os.path.exists(name): files.append({'name':name, 'input':open(name), 'output':open(os.path.join(os.path.dirname(name),prefix+os.path.basename(name)),'w')}) # ------------------------------------------ loop over input files --------------------------------------- for file in files: if file['name'] != 'STDIN': print file['name'], table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table table.head_read() # read ASCII header info table.info_append(string.replace('$Id$','\n','\\n') + \ '\t' + ' '.join(sys.argv[1:])) # --------------- figure out size and grid --------------------------------------------------------- try: locationCol = table.labels.index('1_%s'%options.pos) # columns containing location data except ValueError: try: locationCol = table.labels.index('%s.x'%options.pos) # columns containing location data (legacy naming scheme) except ValueError: file['croak'].write('no coordinate data (1_%s/%s.x) found...\n'%(options.pos,options.pos)) continue if (any(options.resolution)==0 or any(options.dimension)==0.0): grid = [{},{},{}] while table.data_read(): # read next data line of ASCII table for j in xrange(3): grid[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z resolution = np.array([len(grid[0]),\ len(grid[1]),\ len(grid[2]),],'i') # resolution is number of distinct coordinates found dimension = resolution/np.maximum(np.ones(3,'d'),resolution-1.0)* \ np.array([max(map(float,grid[0].keys()))-min(map(float,grid[0].keys())),\ max(map(float,grid[1].keys()))-min(map(float,grid[1].keys())),\ max(map(float,grid[2].keys()))-min(map(float,grid[2].keys())),\ ],'d') # dimension from bounding box, corrected for cell-centeredness else: resolution = np.array(options.resolution,'i') dimension = np.array(options.dimension,'d') if resolution[2] == 1: options.packing[2] = 1 options.shift[2] = 0 dimension[2] = min(dimension[:2]/resolution[:2]) # z spacing equal to smaller of x or y spacing packing = np.array(options.packing,'i') shift = np.array(options.shift,'i') downSized = np.maximum(np.ones(3,'i'),resolution//packing) outSize = np.ceil(np.array(resolution,'d')/np.array(packing,'d')) print '\t%s @ %s --> %s'%(dimension,resolution,downSized) # ------------------------------------------ assemble header --------------------------------------- table.head_write() # ------------------------------------------ process data --------------------------------------- dataavg = np.zeros(outSize.tolist()+[len(table.labels)]) datavar = np.zeros(outSize.tolist()+[len(table.labels)]) p = np.zeros(3,'i') table.data_rewind() for p[2] in xrange(resolution[2]): for p[1] in xrange(resolution[1]): for p[0] in xrange(resolution[0]): d = ((p-shift)%resolution)//packing table.data_read() dataavg[d[0],d[1],d[2],:] += np.array(table.data_asFloat(),'d') # convert to np array dataavg /= packing.prod() table.data_rewind() for p[2] in xrange(resolution[2]): for p[1] in xrange(resolution[1]): for p[0] in xrange(resolution[0]): d = ((p-shift)%resolution)//packing table.data_read() datavar[d[0],d[1],d[2],:] += (np.array(table.data_asFloat(),'d') - dataavg[d[0],d[1],d[2],:])**2 datavar = np.sqrt(datavar/packing.prod()) posOffset = (shift+[0.5,0.5,0.5])*dimension/resolution elementSize = dimension/resolution*packing for c in xrange(downSized[2]): for b in xrange(downSized[1]): for a in xrange(downSized[0]): datavar[a,b,c,locationCol:locationCol+3] = posOffset + [a,b,c]*elementSize table.data = datavar[a,b,c,:].tolist() table.data_write() # output processed line # ------------------------------------------ output result --------------------------------------- table.output_flush() # just in case of buffered ASCII table # ------------------------------------------ close file handles --------------------------------------- for file in files: table.input_close() # close input ASCII table if file['name'] != 'STDIN': table.output_close() # close output ASCII table