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1. Introduction

It is not enough to put thumbscrews on nature.
One has to understand when she testifies.

Arthur Schopenhauer

A great part of the knowledge that we have about the inside of the earth comes from direct
and indirect observations. While the spectacular phenomena of volcanoes and earthquakes are
known for thousands of years, the internal structure of the earth has not been known until
the last century. New technologies like seismic measurements, gravimetry, ocean drilling and
new methods in geodesy have shown us dynamic processes in the earth which were not known
before.

Although these methods have revealed many internal structures of the earth, they could not
explain them. Some behavior can be extrapolated from the conditions at the earth’s surface,
but since we cannot look into the earth and directly verify our assumptions, we have to make
experiments. On a small scale this works very well; the behaviour of rocks and minerals is quite
well understood. But experiments on a larger scale are much more difficult — one cannot create
a mantle plume in a laboratory using the original environmental conditions, simply because
these structures are far too large and develop too slow to be created by mankind. So, an earth
scientist must not only control the experimental setup, but also the laws of nature — in other
words, he must use computer simulations.

Another aspect is the compactness of the earth body; for example, a meteorologist can simulate
a cyclone and compare his results with reality by taking measurements from an airplane flying
through a hurricane. A geoscientist cannot do that; he cannot use intermediary results, he
always has to simulate the whole interior up to the surface from where measurements are
available. That leads to enormous amounts of data. This is the reason why it took about
100 years from Wiechert’s first seismograph to simulations of wave propagation and mantle
convection — not only the numerical methods had to be developed, but also necessary high-
preformance computing hardware has not been available until these days (and still has to
come).

But being able to build a model with correct properties does not imply being able to understand
the results — let alone to be able to convey them in a comprehensible way for educational
purposes, to laymen as well as to the media. In most cases, a numerical simulation provides
only a heap of data, i.e. certain scalar or vector properties assigned to every grid point or grid
cell. Yet the overview is still missing — being able to see interrelations means being able to
handle the problem in an intuitive and descriptive way, to be able to look at it from different
perspectives. Humans need to see structures! Since datasets are often multidimensional (e.g.
vectors or tensors associated to every three-dimensional grid point), they have to be reduced
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so they can be represented in a three-dimensional space. Furthermore, it is much easier to
see whether something exists than to see how it changes its behavior — although there are
silicates from the earth’s surface down to the lower mantle which only vary by their chemical
composition and crystal lattice, we always think of sharp boundaries than of moreless smooth
transitions. Hence, visualization means reduction of complex objects to visible structures and
omission of properties that do not contribute to the aspect that should be shown.

Finally, intuition is also supported by interactivity. For computers, this requires the amount of
data to be drastically reduced. For the image displayed on the screen, the internal composition
of opaque objects does not matter; the hardware-accelerated 3D engines process only triangle
meshes. So the challenge is: Turn your data into polygonal surfaces!
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2. The Geowall

Although 3D projection systems have been existing for several years, their usage is still limited
to a narrow area of application. This is mostly due to their high costs — the necessity to process
big amounts of graphical data in real time together with non-standard input and output devices
(like datagloves and a stereographic display) requires a lot of specialized high-performance
hardware, which is expensive and in addition requires custom-made software.

But in the last years, off-the-shelf personal computers have become powerful enough to handle
larger 3D sceneries. At the same time, graphics cards with dedicated 3D processors became
available for PCs and have reached soon a complexity similar to the main processor, which
has multiplied the 3D performance of PCs in a few years. And also video projectors which
could provide fast frame rates in true color became available. With these ingredients — fast
3D accelerated PCs together with a projection device — immersive 3D projection has become
possible with cheap standard hardware and standardized programming APIs1. Hereupon, a
concept of a cheap alternative to a CAVE2 setup has been developed, consisting of a standard PC,
two projectors and polarizing glasses [Steinwand et al., 2002]. It was named Geowall because
it was ment for the immersive visualization especially of geoscientific data (see figure 2.1); the
first Geowall has been installed in the Electronic Visualization Laboratory at the University of
Chicago in the year 2001.

2.1. 3D Viewing

Three-dimensional viewing requires that the eyes see the object from slightly different points
of view. This can be simulated by sending different images to the eyes — either with little
screens or glasses with mirrors/prisms that show individual pictures to each eye, or by showing
both pictures on the same screen with filtering glasses. The latter method is suited for a bigger
audience because one single screen suffices for all people. Different filtering techniques are
possible:

• Shutter glasses: If the two pictures are shown alternatingly, the spectators have to wear
shutter glasses that are synchronized with the display. This technique is called “active
stereo” since the glasses are electronic devices which actively change their behavior; this
requires a screen with a refresh rate that is high enough to display both pictures in a
flicker-free way.

1API = Application Programming Interface
2CAVE = CAVE Automatic Virtual Environment, a room with up to six screens on the walls, the floor and

the ceiling
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• Color filters: If the two pictures have different colors, cheap glasses with simple color
filters are sufficient. Only monochromatic pictures are possible, but the screen type and
the refresh rate are irrelevant.

• Polarizing filters: This technique combines full color pictures with cheap passive glasses,
but requires a screen setup that can display pictures with polarized light (see section 2.2).
Geowalls use this method.

All these filters are not perfect; there is always a little bit from the picture from the other
eye to be seen. Normally this can be ignored, but if the pictures differ very much and if the
contrast in the scene is very high, these ghost images can be bothersome.

The strength of the 3D effect is determined by the distance of the object. The closer the object
comes, the more impressive is its 3D view — but also ghost images become noticeable, and
because the focal plane remains at the screen, viewing becomes exhausting. This means that it
can be necessary to change the virtual eye distance; it has to be reduced if details of the object
are viewed from a close (virtual) distance, and it can be enlarged to increase the 3D effect of
objects further away. See also section 4.1.3 how to accomplish this with the VTK3 toolkit.

Common to all 3D projection methods is that the spectators get only a 3D view of the scene,
but the picture itself is still flat. This demands for interactivity — if the spectator cannot
change his position relative to the object, the displayed object must be free to move. Hence,
static 3D picture viewers are not very useful; interactive software is necessary, or at least
precomputed animations.

2.2. Hardware

The following components are required for a Geowall:

• PC: There are no special requirements except a high enough performance, i.e. enough
RAM (more than 1 GB) and a fast processor. Any operating system can be used, but
most software is available for Linux and Windows.

• Graphics card: It must be a “dual head graphics card”, i.e. have connectors for two screens.
A fast 3D chipset is not mandatory, but absolutely desirable. For non-Windows systems,
a good driver support is essential, so most Linux-based Geowalls use nVidia graphics
cards. If the so-called “clone mode” (see section 2.3) should be used, a quad-buffered
graphics card is necessary; in our case, it is a nVidia Quadro FX 1400.

• Projectors: Since polarizing filters are used, the projectors must not emit polarized light
— which LCD projectors do. So only DLP4 projectors which are based on an array of tiny
mirrors can be used. Here, we are using NEC LT245 projectors.

3See section 3.1
4DLPTM= Digital Light Processing; the brightness of the pixels is controlled by pulse-width modulated

mirror tilting frequency
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• Polarizing filters: Either linear or circular polarized filters can be used; the latter are
more expensive, but offer the advantage that the spectators can tilt their heads without
losing the 3D effect. Filters made of glass are very expensive; in contrast, plastic film
filters are sensitive to the heat of the projectors, so they should be enclosed between thin
glass panels.

• Polarizing glasses for the audience; cheap cardboard glasses are sufficient. The filters
used in the glasses must match the filters at the projectors, so both have to be either
linear or circular polarized.

• Metallic screen: Reflection on most screens polarizes the light, so the 3D effect is lost.
To preserve the original polarization, the screen must have a metallic surface. Special
3D screens are quite expensive; but also other metal-coated fabric can be used5. Metal
plates (e.g. aluminum) can also be used, but the highlights from the projectors on the
surface are disturbing.

2.3. Screen Setup

The two images must be output on the two projectors. This can be achieved with two different
configurations of the graphics driver (the terms are the same as the nVidia driver uses):

• “RightOf”: This mode means that the two projectors or monitors are arranged side-by-side
so that there is a big virtual desktop that stretches across the two monitors. In this
case, the 3D software must display the two images also side-by-side. When the window
containing these images is enlarged to the full desktop size, each of the images is displayed
on one projector.
This technique has the advantage that it works with every dual-head graphics card, and
also the software does not need special libraries to draw the two images.

• “Clone”: In this mode, the two projectors show the same image. But using the GLX
library (which provides OpenGL functions under the X Window System), special 3D
commands create different views of the 3D object on the two screens.
This has the advantage that also the normal 2D elements are visible since they are
displayed on both projectors. But only the more expensive graphics cards with quad
buffering (i.e. double buffering, which allows a flicker-free picture on the screen while the
next picture is being created, for both screens) support this mode.
Because the use of OpenGL is widespread, there are several 3D applications available
using this graphics mode6; additionally, if OpenGL-based software uses other 3D modes
(e.g. red-blue), it is often easy to add this active stereo mode — for example for the game
Nexuiz only 22 lines of code are required7.

Under Linux, these modes are set in the file /etc/X11/XF86Config-4 or /etc/X11/xorg.conf,
respectively; see section 5.1.

5Here, the silver screen fabric from Vision24 has been used, see
http://www.vision24.de/ProfiScreen/screens/Meterware.htm.

6See http://www.reald.com/scientific/stereo_ready_software.asp
7See http://www.alientrap.org/forum/viewtopic.php?t=864.

http://www.vision24.de/ProfiScreen/screens/Meterware.htm
http://www.reald.com/scientific/stereo_ready_software.asp
http://www.alientrap.org/forum/viewtopic.php?t=864
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Figure 2.1: Geowall showing a 3D cross-section of the earth, overlaid with coast lines.
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3. VTK and Paraview

The commonality between science and art is in trying to see profoundly —
to develop strategies of seeing and showing.

Edward Tufte

In every complex electronic device, not only the hardware, but also the software determines its
capabilities. This applies also for the Geowall. The usual applications — stereo image viewers,
stereo movie players and VRML1 viewers — are rather mere playback devices. But this tool
can be much more powerful if the data can also be edited interactively. With the Visualization
Toolkit (VTK) and Paraview there is a very mighty and versatile set of open-source applications
which can be used on the Geowall.

3.1. The Visualization Toolkit (VTK)

VTK is a high-level library for data processing and visualization, providing sophisticated func-
tions like contouring, cutting, triangulation and mesh smoothing. Its strengths are particularly
modularity and portability — it is available both for Linux and Windows, can be used with
a variety of programming languages and offers not only isolated functions, but a complete
workflow starting from raw data until the rendered image, optionally fully interactive. VTK
can be used either as a classical library for C++ programs as well as with Java or scripting
languages2 like Tcl or Python — which gives a very high-level access to the processing functions,
with a few lines of a scripting language extensive data processing can be done (“software
leverage”). Because of its modular object-oriented layout, the code is reusable and layers in
the visualization process (like the rendering implementation) can easily be exchanged, for a
tailor-made trade-off between generality and efficiency. Despite its universal concept, its perfor-
mance is quite high by using techniques like OpenGL3 for the access to hardware-accelerated
rendering and multithreading and MPI4 for parallel processing.

1VRML = Virtual Reality Markup Language, a plain-text description language for three-dimensional
sceneries

2There is even a wrapper code generator which simplifies the development of interface code for new
programming languages; see [Schroeder et al., 1996].

3OpenGL: a platform-independent programming interface for 3D graphics
4MPI = Message Passing Interface, see section 4.2
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3.1.1. File Formats

VTK has several proprietary file formats which support different grid types (structured,
unstructured etc.) as well as different ways of storing the data (ASCII, raw binary, compressed
binary). These formats are documented in the manual [Kitware Inc., 2004] and also online
[Kitware, 2006].

Grid Types

There are several subformats for every type of grid; all of them use a right-handed cartesian
coordinate system.

• The most general grid is the unstructured-grid format where every grid point is given by
its coordinates and additionally the connectivity between the points; for every cell the
constituent grid points and its shape, like tetrahedral or cubic, are given.

• A polygonal grid is similar, but has 2D cells (polygons) instead of 3D cells (polyhedra).

• In a structured grid every grid point has six neighbors which are given by the point order,
so there is no explicit information about the connectivity needed.

• The cells of a rectilinear grid are cuboids, so only the intervals on the axes have to be
given instead of the point coordinates.

• A grid of structured points has cubic cells, so only the grid spacing has to be given, which
makes this format very RAM-friendly.

File Format Types

There are two families of file formats. The old VTK format uses plaintext headers between the
data sections which can be written in ASCII or binary; the filename extension is always *.vtk ,
independent from the grid type. The new XML-based5 file formats enclose the data sections in
XML tags; their filename extension depends on the grid type, e.g. *.vtu for unstructured grids
or *.vtp for polygonal grids.

The following file format types are available:

• VTK ASCII: Between the section headers the data is written in ASCII; different number
formats are allowed (e.g. 202.3 or 2.023E+2), the separators can be spaces, tabs or line
breaks.

• VTK binary: Similar to the ASCII format, but after the section headers only the raw
binary data is allowed — no spaces, no additional line breaks etc. The data types are
the usual 32-bit data types (big endian) known from C programs, e.g. float is a 32-bit
floating point number, and int is a 32-bit integer variable.

5XML = Extensible Markup Language
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• XML ASCII: Here, the section headers are replaced by XML tags. But also further minor
changes are possible; e.g. each line in the CELLS section of a VTK unstructured grid file is
prepended by the number of values that follow, whereas in the XML format there is an
extra data array which contains the offsets. If a cell definition in the VTK format looks
like
8 0 9 3 12 1 10 4 13,
its XML counterpart is
0 9 3 12 1 10 4 13

with an offsets array like
8 16 24 32 40 ...

• XML binary inline: Since XML actually does not allow certain special characters (as they
may appear in binary data), the data should be base64-encoded6. The length of the data
is prepended, so a pseudocode to write base64-encoded data would look like this:
int32 = length( data );

output = base64-encode( int32 )+ base64-encode( data );

• XML binary appended: The data can also be written as a coherent chunk at the end of
the file; the section headers then contain byte offset values into the data section.

• XML binary compressed inline/appended: The binary data can also be compressed.
Because processors are several magnitudes faster than disk I/O, reading and writing can
thus be accelerated since the amount of data is reduced with negligible processing time.
Like in the uncompressed case, a header is prepended, consisting of four 32-bit variables;
the first two of them seem to have fixed values. A pseudocode would look like this:
int32[1] = 1;

int32[2] = 32768;

int32[3] = length(data);

zdata = zlib-deflate( data );

int32[4] = length( zdata );

output = base64-encode( int32 )+ base64-encode( zdata );

• XML parallel: This file is just a wrapper that lists all the files that belong to this dataset.
If e.g. a dataset has been split up into 10 unstructured grid files, this wrapper file has
the extension *.pvtu and lists the filenames of the 10 *.vtu files. With this file format, a
bunch of data files can be loaded at once, and if the software is run on multiple computers,
each process can read its data independently from the others at the same time.

Although the user is encouraged to use VTK’s library functions to write the data files, this
is not really necessary because especially the old legacy VTK file formats are simple enough
to be written by any application. ASCII has the advantage that it is platform-independent
(no problems with sizes of the variables and endianness), whereas binary files load much faster
because their content can be copied directly into the RAM without any parsing.

6base64: a code that maps three 8 bit binary data values on four 6 bit numbers which can be represented
by normal ASCII characters, without spaces and special characters; this is used when binary data must be
embedded in plaintext files, especially in emails and together with markup languages like XML
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Listing 3.1: Example for an ASCII VTK file describing a cube. From top to bottom: the 27 vectors
of the coordinate points, the 8 cube-shaped cells (in each line there is the number of the cell points
(= 8) and then the indices of the corresponding point coordinates), the 8 cell types (type 11 = cubic),
and then the datasets — first 8 vectors for each cell, then 27 scalars for each grid point

1 # vtk DataFile Version 3.0
2 Demo: Cube
3 ASCII
4 DATASET UNSTRUCTURED_GRID
5 POINTS 27 float
6 0 0 0
7 0 0 1
8 0 0 2
9 0 1 0

10 0 1 1
11 0 1 2
12 0 2 0
13 0 2 1
14 0 2 2
15 1 0 0
16 1 0 1
17 1 0 2
18 1 1 0
19 1 1 1
20 1 1 2
21 1 2 0
22 1 2 1
23 1 2 2
24 2 0 0
25 2 0 1
26 2 0 2
27 2 1 0
28 2 1 1
29 2 1 2
30 2 2 0
31 2 2 1
32 2 2 2
33

34 CELLS 8 72
35 8 0 9 3 12 1 10 4 13
36 8 1 10 4 13 2 11 5 14
37 8 3 12 6 15 4 13 7 16
38 8 4 13 7 16 5 14 8 17
39 8 9 18 12 21 10 19 13 22
40 8 10 19 13 22 11 20 14 23
41 8 12 21 15 24 13 22 16 25
42 8 13 22 16 25 14 23 17 26
43

44 CELL_TYPES 8
45 11
46 11
47 11
48 11
49 11
50 11
51 11
52 11
53
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54 CELL_DATA 8
55 VECTORS mycellvectors float
56 0 -2 -1
57 0 -2 1
58 0 2 -1
59 -1 2 1
60 2 -1 -2
61 1 -2 1
62 2 2 -1
63 2 2 1
64

65 POINT_DATA 27
66 SCALARS mypointscalars float
67 LOOKUP_TABLE mytable
68 -0.4 -0.4 -0.4 -0.4 -1 -0.4 -0.4 -0.4 -0.4
69 0.4 1 0.4 1 0.4 1 0.4 1 0.4
70 0.4 0.4 0.4 0.4 1 0.4 0.4 0.4 0.4
71

72 LOOKUP_TABLE mytable 4
73 6.7397900e-02 7.3764400e-02 9.5253700e-01 1.0000000e+00
74 7.9526300e-02 8.7038400e-02 9.3611300e-01 1.0000000e+00
75 9.3329400e-02 1.0214500e-01 9.2136300e-01 1.0000000e+00
76 1.0893600e-01 1.1922600e-01 9.0841600e-01 1.0000000e+00

If binary data should be written, the tools from Seismic Unix [Stockwell and Cohen, 2002] can
be helpful; e.g. swapbytes (to convert from little endian to big endian) or ftnstrip (to remove
the extra bytes from Fortran’s UNFORMATTED file type).

Converting Between File Formats

In practice, it is the easiest to stick to a simple legacy file format (which is easier to write) and
convert it to a XML-based format (which is needed in parallel formats) using a VTK script
like this:

Listing 3.2: Converting an ASCII VTK file to a compressed binary XML VTU file

1 #!/usr/bin/env tclsh
2

3 package require vtk
4

5 vtkUnstructuredGridReader reader
6 reader SetFileName [lindex $argv 0]
7

8 vtkZLibDataCompressor compressor
9

10 vtkXMLUnstructuredGridWriter writer
11 writer SetInput [reader GetOutput]
12 writer SetFileName [lindex $argv 1]
13 writer SetDataModeToAppended
14 writer SetCompressor compressor
15 writer EncodeAppendedDataOn
16 writer Write
17

18 exit
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3.1.2. The Visualization Pipeline

VTK is a data-flow driven system; the basic concept is a user-defined pipeline which describes
the data flow from the input files to the screen. The program sequence results from the desired
data flow, so the user does not have to worry about the program logic — if there are several
parallel data pipelines, then the processing is automatically parallelized (similar to a Unix shell
script or a LabView program). Since VTK is strictly object-oriented, every processing step is
represented by a self-contained object which takes its input from the previous element in the
pipeline and passes its output to the next one. In Tcl, this looks like that:

pipelineObject SetInput [previousObject GetOutput]

At the end of the pipeline there is a data source or a data sink, respectively. A data
source is usually a reader object (e.g. vtkUnstructuredGridReader) that reads in the file with
the given name, and a data sink can be a writer object which outputs the data to a file
(e.g. vtkXMLPolyDataWriter). The display on the screen is controlled by several objects: A
vtkRenderWindow object provides the screen space where one or more vtkRenderer objects can
draw their images; vtkLight and vtkCamera control the illumination and view parameters, and a
vtkActor object represents one item on the screen — together with vtkProperty (which defines
its surface properties) and vtkMapper (which represents the geometric shape of the object). The
latter is usually the data sink of a processing pipeline and maps properties of the dataset (like
data arrays) to visible features like colors by using e.g. lookup tables. Between the source and
the writer or mapper there can be an arbitrary number of filters that modify the data.

A visualization pipeline is not necessarily linear. Several data objects can be displayed at
the same time, which can originate from the same data source or the same filtering object.
Likewise, there are filters that combine several inputs into one single pipeline. Even loops are
possible (i.e. a filter takes its output as input), but are evaluated only once (except forced by
an explicit update command). The data flow is always from source to sink, in combination with
a lazy evaluation algorithm: Only if a data sink requests an update, the data in the pipeline
is recomputed. Starting from the sink, the update requests are handed on to the previous
elements in the pipeline until the necessary source data is available; the newly computed data
travels then downstream through the pipeline until the requesting sink is reached.

3.1.3. Processing Optimizations

The pipeline concept gains its flexibility especially at the cost of RAM efficiency — normally,
every element in the pipeline has its own copy of the data. If there is a lack of memory, the
pipeline can be shortened by saving intermediate steps into new files and unloading the files
with the previous processing steps. Also the order of the pipeline elements plays a decisive
role; filters with a strong reduction of the amount of data should come first. For example, if a
cross-section of an isosurface should be generated, it is favorable to create the isosurface at
first, because in the second step only a small amount of data has to be cut through.

Also the processing can be tuned. With the option ImmediateModeRendering (also available
on the Paraview GUI, menu item “View”/“3D View Properties”), the creation of OpenGL
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display lists, which require an additional copy of the data, can be disabled. For VTK, there
are furthermore the options ReleaseDataFlagOn or GlobalReleaseDataFlagOn which force the
filters in the pipeline to discard their intermediate results after communicating them to the
next filter.

Finally, polygonal objects can be optimized by converting them to triangles (vtkTriangleFilter)
and then to triangle strips (vtkStripper), which are more efficient to render.

3.2. Paraview

Paraview is a graphical visualization software based on the VTK. That means, the underlying
algorithms, the file formats and the rendering capabilities are identical. However, Paraview is
not just a GUI for the VTK, like MayaVi. The basic idea is that a maximum of performance can
be achieved if every available hardware can be used and always the best available platform can
be chosen — without need for expensive tailor-made computers. With a maximum of portability
and scalability the software can be fitted to almost every available hardware configuration.
Unlike other programs like OpenDX or SCIRun, there is not a “central executive”, but almost
everything in Paraview can be parallelized — on shared-memory machines with pthreads or
sprocs, on distributed memory architectures with MPI.

The following cases of parallelization can be distinguished [Ahrens et al., 2000]:

• Task parallelism means that independent processing pipelines can work at the same time.

• Pipeline parallelism means that different steps of one processing pipeline can work at
different processing stages of the same dataset. This is favorable especially if the different
processing steps require different resources (input/output or CPU time).

• Data parallelism means that the data is partitioned, and several identical processing
pipelines work at different pieces of the dataset. A load-balancing algorithmus breaks
the dataset in similar pieces; each module in the pipeline is told by the following module
which output it has to generate and thus determines what input it requires. Since all
processes do the same task on different data, they all need the same types of resources,
but can run quite independently (⇒ few communication necessary), so they should run
on different machines.

Especially data parallelism makes only sense if the processing pipelines use different computers;
therefore, an additional communication layer was necessary. The VTK modules have been
equipped with the ability to write their data into strings that are passed on by client server
streaming modules. By adding information about the data type and byte ordering, these stream-
ing modules offer a cross-platform way of communication between Paraview components.

For every copy of a VTK module that is running on a remote machine, the client maintains a
proxy object that stores its state. These proxies (vtkSMProxy and its subclasses) are coordinated
by the server manager. This additional abstraction layer allows also a client-server architecture
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with a separation between data and their graphical representation, or accordingly CPU intensive
data processing and GPU7 intensive rendering.

This flexibility has the drawback that VTK commands cannot be issued directly, but only via
Server Manager objects, if available:

[[$Application GetMainWindow] GetCurrentPVSource] GetPVColorMap]
SetScalarRange 0 0.5 ]

The mapping between VTK objects and server manager objects is done via XML configuration
files, as well as their entries in the user interface:

Listing 3.3: Mapping between VTK filter objects and server manager objects (taken from Server-
s/ServerManager/Resources/filters.xml)

670 <SourceProxy name="ExtractEdges" class="vtkExtractEdges">
671 <InputProperty
672 name="Input"
673 command="SetInput">
674 <ProxyGroupDomain name="groups">
675 <Group name="sources"/>
676 <Group name="filters"/>
677 </ProxyGroupDomain>
678 <DataTypeDomain name="input_type">
679 <DataType value="vtkDataSet"/>
680 </DataTypeDomain>
681 </InputProperty>
682 <!-- End ExtractEdges -->
683 </SourceProxy>

Listing 3.4: Configuration of the user interface (taken from GUI/Client/Resources/Filters.xml)

644 <Module name="ExtractEdges"
645 menu_name="Extract Edges"
646 root_name="ExtractEdges"
647 module_type="Filter"
648 long_help="Extract edges of 2-d and 3-d cells as lines."
649 short_help="Covert data to wireframe.">
650 <Filter class="vtkExtractEdges">
651 <Input name="Input"
652 class="vtkDataSet"/>
653 </Filter>
654 <InputMenu trace_name="Input" label="Input" property="Input"
655 help="Set the input to this filter."
656 input_name="Input"/>
657 <Documentation>
658 The Extract Edges filter produces a wireframe version of the input data set by

extracting all the edges of the data set’s cells as lines. The Input menu
allows the user to select the data set to which this filter will be applied.
This filter operates on any type of data set and produces polygonal output.

659 </Documentation>
660 </Module>

7GPU = Graphics Processing Unit, a highly parallelized graphics processor on the graphics card
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3.3. Extensions

There are several interesting third-party tools and extensions for the use with VTK available; the
following extensions have not been tested; for the sake of completeness, they are mentioned.

• Matlab can also use VTK by compiling VTK programs with the mex compiler. An
example is given at [Szczerba, 2006]. With the tool vtkAutomex the creation of such C++
programs can be automated [Ghosh, 2004]. There are even wrappers that make VTK
accessible from Matlab scripts; the package is called Octaviz [Octaviz].

• GRASS, an open-source GIS system, has some scripts included which can export raster
and vector maps into the VTK format [GRASS, 2006].

• vtkCSCSNetCDF is a reader for netCDF files that can be compiled into Paraview
[Biddiscombe, 2006].

• vtkGeography is a series of VTK classes that provide mainly functions for reading and
writing GIS file formats [Flanagin, 2005].

• vtkRIBExporter exports a VTK scene for rendering with a RenderMan compatible renderer
[Lorensen, 2000].

• vtkFVR is a series of VTK classes for virtual reality environments which use the FreeVR
library [Sites, 2003].

• vtkActorToPF renders using the SGI Performer library [Rajlich, 2006].

• GL2PS is a library which peeks into the OpenGL feedback buffer and translates its
content into Postscript or other vector formats [Geuzaine, 2006].
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4. Building Paraview with Support for
MPI and Geowall

In theory, there is no difference between theory and practice.
But, in practice, there is.

Jan L. A. van de Snepscheut

Although there are ready-made binary packages of Paraview for several operating systems,
one has to compile it from source code to use features like MPI, Mesa offscreen rendering and
support for true color stereographic viewing.

Note: The mentioned modifications and configuration options refer to Paraview version 2.4.4.

4.1. Adding True Color Stereo Support

The underlying VTK framework does have support for stereographic output, i.e. stereographic
views can be generated from spatial objects and these views can be output for different stereo
viewing systems. The default setting is the red-blue stereo mode, and since the Paraview GUI1

does not offer to change this, the source code must be modified to allow one of the other stereo
modes.

4.1.1. Activating GLX Stereo Mode

VTK supports the stereo functions of the GLX library which uses the Clone mode (see section 2.3)
of a quad buffered dual-head graphics card. This mode is called VTK_STEREO_CRYSTAL_EYES since
it was meant for CrystalEyes R© LCD shutter glasses. To activate this mode, the initialization of
the stereo mode must be changed. This is done in the file VTK/Rendering/vtkRenderWindow.cxx
in the function vtkRenderWindow::vtkRenderWindow():

49 this->StereoType = VTK_STEREO_CRYSTAL_EYES;

1GUI = Graphical User Interface
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4.1.2. Adding a Side-by-Side Stereo Mode

If the graphics card does not support quad buffering, the side-by-side stereo mode (see section
2.3) can be used. This mode is not natively supported by VTK, but it requires only minor
additions to the source code (contributed by Thomas Hansen).

Listing 4.1: Modifications to VTK/Rendering/vtkRenderWindow.h

57 #define VTK_STEREO_ANAGLYPH 7
58 #define VTK_STEREO_SVEN 8

228 void SetStereoTypeToAnaglyph()
229 {this->SetStereoType(VTK_STEREO_ANAGLYPH);};
230 void SetStereoTypeToSVEN()
231 {this->SetStereoType(VTK_STEREO_SVEN);};

528 case VTK_STEREO_ANAGLYPH:
529 return (char *)"Anaglyph";
530 case VTK_STEREO_SVEN:
531 return (char *)"SVENDisplay";
532 default:

The actual stereo view is generated in the function
vtkRenderWindow::StereoRenderComplete(void).
As one can see, a new input buffer is created and filled from the two stereo buffers. Only every
other pixel is copied, so both stereo frames fit into the new frame:

Listing 4.2: Modifications to VTK/Rendering/vtkRenderWindow.cxx

764 case VTK_STEREO_INTERLACED:
765 this->StereoStatus = 1;
766 break;
767 case VTK_STEREO_SVEN:
768 this->StereoStatus = 1;
769 }

784 case VTK_STEREO_INTERLACED:
785 this->StereoStatus = 0;
786 break;
787 case VTK_STEREO_SVEN:
788 this->StereoStatus = 0;
789 }

805 (this->StereoType == VTK_STEREO_DRESDEN) ||
806 (this->StereoType == VTK_STEREO_ANAGLYPH) ||
807 (this->StereoType == VTK_STEREO_SVEN))
808 {
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1087

1088 // SVEN STEREO //////////////////////////////////////////////////////////////////
1089 // <thomas.hansen@wartburg.edu> /////////////////////////////////////////////////
1090 //
1091 case VTK_STEREO_SVEN:
1092 {
1093 unsigned char *buff;
1094 unsigned char *p1, *p2, *p3;
1095 unsigned char* result;
1096 int *size;
1097 int halfLength; //hlaf thelength, each eye gets half of teh window
1098 int x,y;
1099 int res;
1100

1101 // get the size
1102 size = this->GetSize();
1103 halfLength = size[0]/2;
1104

1105 // get the data
1106 buff = this->GetPixelData(0,0,size[0]-1,size[1]-1,!this->DoubleBuffer);
1107 p1 = this->StereoBuffer;
1108 p2 = buff;
1109

1110 // allocate the result
1111 result = new unsigned char [size[0]*size[1]*3];
1112 if (!result)
1113 {
1114 vtkErrorMacro(<<"Couldn’t allocate memory for SVEN stereo.");
1115 return;
1116 }
1117 p3 = result;
1118

1119

1120 // now put the two images next to each other
1121 for (y = 0; y < size[1]; y ++)
1122 {
1123 //Needed in case there is an odd number of pixel columns.
1124 //Teh skipped line prevents some very odd results
1125 if(size[0]%2!=0){
1126 *p3++ = 0;
1127 *p3++ = 0;
1128 *p3++ = 0; p1 += 3; p2 += 3;
1129 }
1130

1131 //left eye on the left half
1132 p1 += halfLength/2 * 3;
1133 for (x = 0; x < halfLength; x++)
1134 {
1135 *p3++ = *p1++;
1136 *p3++ = *p1++;
1137 *p3++ = *p1++;
1138 }
1139 p1 += (halfLength - halfLength/2) *3;
1140

1141 //righ eye on the right half
1142 p2 += halfLength/2 * 3;
1143 for (x = 0; x < halfLength; x++)
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1144 {
1145 *p3++ = *p2++;
1146 *p3++ = *p2++;
1147 *p3++ = *p2++;
1148 }
1149 p2 += (halfLength - halfLength/2) *3;
1150 }
1151

1152 this->ResultFrame = result;
1153 delete [] this->StereoBuffer;
1154 this->StereoBuffer = NULL;
1155 delete [] buff;
1156 }
1157 break;
1158 // SVEN STEREO //////////////////////////////////////////////////////////////////
1159 }

4.1.3. Changing the Virtual Eye Angle

VTK seems to use the “toe-in” stereo mode [Bourke, 2002] where the two cameras do not look
asymmetrically at the same virtual plane, but on two different planes which are perpendicular
to the cameras (which results in vertical parallax at the corners). The virtual eye distance
can then be expressed by the angle between the view axes. By default, this virtual eye angle
in VTK is set to 2◦. This is a reasonable value for a general 3D view of the object, but too
much if one zooms in to see some details enlarged. The exaggerated 3D effect can be weakened
by changing the variable EyeAngle in the function vtkCamera::vtkCamera, for example to 0.5
instead of 2.0:

Listing 4.3: Setting a smaller view angle in VTK/Rendering/vtkCamera.cxx

63 this->EyeAngle = 0.5;
64 this->Stereo = 0;
65 this->LeftEye = 1;

4.2. MPI Support

MPI stands for Message Passing Interface, which is an API for parallelized programs running on
distributed-memory machines. This interface offers communication routines for data exchange
between the program instances; but since it defines only the interface, not the implementation,
the startup script that is used must match the MPI library used by the program.

Multiprocessing does make sense for visualization tasks — mainly not because of the computing
power (in real-time applications data has to be transmitted frequently, so the network bandwidth
likely becomes a bottleneck), but because of the memory requirements; so Paraview and
also the underlying VTK are prepared to use MPI. However, since there are many different
implementations available, the binaries are shipped without MPI support. For using it, Paraview
has to be compiled from source code.
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There are several free MPI implementations like MPICH (tested version: 1.2.7), MPICH2
(tested version: 1.0.3) and LAM-MPI (tested version: 7.1.1). The latter did not work together
with Paraview 2.4.4.

4.2.1. MPICH

Compiling MPICH works flawlessly:

$ ./configure
$ make
# make install

However, it has been recommended to increase the maximum packet size in the source code
(from 228 = 256 MB to 230 = 1 GB):

Listing 4.4: Increasing the maximum packet size in mpid/ch p4/p4/include/p4 sr.h

24 #define P4_MAX_MSGLEN (1<<30) /* Used in free_p4_msg as sanity check
25 increase as desired */

4.2.2. MPICH2

MPICH2 sounds like the successor of MPICH which it indeed claims to be, but the source
code has been rewritten from scratch. One difference is that MPICH2 uses a process manager
called mpd which must be loaded before running mpiexec. Compiling and installing MPICH2
is similar to MPICH; however, linking the library against a C++ program (like Paraview)
fails because of a duplicate definition of the SEEK_XXX constants. This can be avoided with the
compiler flag-DMPICH_IGNORE_CXX_SEEK (to be set in Cmake) [Gropp et al.].

4.3. Offscreen Rendering

Remote rendering processes can either open X windows to draw their images, or they can
use “offscreen rendering” — which means that an image is rendered without displaying it in a
window; only few OpenGL drivers are capable of this. One exception is the Mesa library, a free
OpenGL implementation. Since it does not use any hardware acceleration, providing offscreen
rendering is hassle-free.

It is even possible to use both a hardware-accelerated OpenGL driver (for visible rendering)
and the Mesa library (for offscreen rendering) in the same program. To be able to use both
implementations of OpenGL, the libraries must not have the same function names. This can be
achieved with a so-called “mangled Mesa library”; the Mesa library does have an option which
changes all function names such that they do not interfere with a second OpenGL library. It
can be done like this:
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$ tar xfvj MesaLib-6.5.tar.bz2
$ cd MesaLib-6.5
$ vi configs/default

CFLAGS = -DUSE_MGL_NAMESPACE -O
CXXFLAGS = -DUSE_MGL_NAMESPACE -O
GL_LIB = MGL
GLU_LIB = MGLU
GLUT_LIB = Mglut
GLW_LIB = MGLw
OSMESA_LIB = MOSMesa

$ make linux-x86-static

Paraview offers configuration options to be compiled with a mangled Mesa library — but my
attempts of compiling it have not been successful. However, one can create two versions which
differ in the OpenGL library they use. Since there are computers without graphics hardware
(like cluster nodes), a Paraview version using the (unmodified) Mesa library (instead of a
graphics driver) must be available anyway.

4.4. Compiling

Paraview does not use the widespread GNU autoconf /automake mechanism, but uses CMake
which offers an interactive text user interface (ccmake). It is suggested to execute the build
process in a separate directory which allows to build several versions independently from the
same source code directory.

Listing 4.5: Unpacking and compiling Paraview

$ tar xfvz paraview-2.4.4.tar.gz
$ mkdir paraview-2.4.4-build
$ cd paraview-2.4.4-build
$ ccmake ../paraview-2.4.4
$ make

ccmake offers a plethora of configuration options for Paraview. Although ccmake can detect
most pathnames automatically, it is strongly recommended to verify them, since there are often
several versions of libraries and include files available on one system (e.g. the correct include
files for the nVidia graphics card are not in /usr/include, but in /usr/share/nvidia/include).
And I do recommend using static libraries because I have experienced incompatibilities with
the installed MPICH shared library, and on some machines (esp. the cluster nodes) certain
libraries were not available at all.

The following settings have proved to be useful:

Listing 4.6: ccmake options

# general
VTK_USE_64BIT_IDS
PARAVIEW_WRAP_PYTHON
PARAVIEW_EXPERIMENTAL_USER
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# when MPI is desired
VTK_USE_MPI
VTK_MAX_NUMPROCS 130
MPI_INCLUDE_PATH /home/username/local/src/mpich-1.2.7/lib/libmpich.a
MPI_LIBRARY /home/username/local/src/mpich-1.2.7/include
MPI_EXTRA_LIBRARY /home/username/local/src/mpich-1.2.7/lib/libmpich.a

After pressing c for “configure” and then g for “generate”, the source code is copied to the
destination directory and suitable makefiles are created:

1 $ make
2 $ make install
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5. Running Paraview in 3D and with Large
Datasets

The problem with troubleshooting is that the trouble shoots back.
anonymous

5.1. Setting the Stereo Mode

In general, the Paraview GUI (paraview or pvclient, respectively) is launched in stereo mode
with the following command line option:

$ paraview --stereo &

As described above, the stereo mode cannot be chosen at runtime, contrary to other VTK
based applications like MayaVi. And since there does not seem to be a possibility to do it via
Tcl scripting at the built-in command line, the only solution is to compile several versions with
different stereo modes, if needed.

The default red-blue stereo mode runs on every computer and does not require any special
setting. The true color stereo modes (see section 2.2), in contrary, require a dual-head graphics
card and the following settings:

Listing 5.1: Settings in /etc/X11/XF86Config-4

80 Section "Device"
81 Identifier "nVidia Corporation NV41GL [Quadro FX 1400]"
82 Driver "nvidia"
83 Option "NvAGP" "2"
84 Option "NoLogo" "true"
85 Option "TwinView" "true"
86 Option "SecondMonitorHorizSync" "10-100"
87 Option "SecondMonitorVertRefresh" "50-120"
88 Option "MetaModes" "1024x768,1024x768"
89

90 # Rightof Mode
91 # Option "TwinViewOrientation" "RightOf"
92

93 # Clone Mode
94 Option "TwinViewOrientation" "Clone"
95

96 Option "Stereo" "4"
97 EndSection
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5.2. MPI Usage

Numerical simulations use MPI because of the computing power, whereas for visualization tasks
the memory is the main problem, since the coordinate grid and the connectivity information are
not generated sequentially, but have to be kept in memory together with the data. One way to
handle large datasets is spreading them over several computers using MPI-enabled Paraview.

MPI programs compiled with the MPICH library are started with the command mpirun:

$ mpirun -machinefile machines.txt -np 32 paraview

The number of processes is given by the parameter-np . If there are at least this many entries
in the machinefile, every process has its own machine. If not, then there are several processes
per computer.

MPICH2 uses a slightly different approach; the process management is now separated from the
interprocess communication, thus giving more flexibility and scalability, but a process manager
(called mpd) has to be started on every node [Gropp et al.].

$ mpdboot --file=machinefile.txt # starts mpd on all nodes
$ mpiexec -n 32 paraview
$ mpdallexit # after the execution, remove all instances of mpd

Because SSH1 is used to exchange data, it is reasonable to generate public/private keys to
avoid having to type the password for each process. This can be done the following way:

user@local_machine$ ssh-keygen # without passphrase
user@local_machine$ scp identity.pub user@remote_machine:
user@remote_machine$ mkdir .ssh
user@remote_machine$ cat identity.pub >> .ssh/authorized_keys
user@remote_machine$ chmod 600 .ssh/authorized_keys
user@remote_machine$ rm -f identity.pub

Note: Not only the SSH public key, but also the program binaries (including all necessary
libraries!) and the data files have to be available on each MPI node, either via a shared file
system or copied to every node.

In a composite rendering setup there is an additional difficulty. When an image is computed,
it has to be displayed in a window; for this, the server nodes have to be configured such
that the rendering software can open X windows, or that X connections are possible over
the network. The usual answer to the latter is something like xhost + on the client which
should allow X connections from the server nodes, but host-based authentication is generally
considered harmful (hence modern Linux distributions prevent all unencrypted X connections
with startx -nolisten tcp); a better approach is the usage of xauth. Also X forwarding
via ssh is possible, yet quite slow. I can be accomplished with the following settings in
$HOME/.ssh/config:

HOST *
ForwardX11 yes

1SSH = Secure SHell
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5.3. Client-Server Mode

One outstanding feature of Paraview is its client-server architecture. That means, there is not
necessarily one monolithic program doing all the processing tasks, but it can be distributed
over several machines. The three components in the client-server model are:

• the data server: stores the raw data and executes the filtering algorithms

• the render server: takes the polygonal surfaces and renders an image

• the client: displays the image and provides the user interface

This has the advantage that for each task specialized machines can be used. For the raw data,
machines with a lot of RAM and fast processors are needed, but do not need any graphics
hardware. Because the amount of surface data is usually much smaller than the original dataset
[Cedilnik et al., 2006], less render servers than data servers are needed — but they should be
equipped with dedicated graphics hardware since even consumer-grade graphics cards are by a
factor 10–20 faster than pure software rendering. Finally, the client needs a display, and this
can be a tiled display or even a complex CAVE setup (with the Paraview GUI running on a
remote monitor).

However, these subtasks can also be arbitrarily combined — the stand-alone Paraview application
(paraview) is a combination of these three components, the server (pvserver) can act both
as a data server and a render server, and the client (pvclient) can also do the rendering (by
deactivating the switch “Composite” in the menu item “3D View Properties”). Furthermore,
each of these three components can also be used in parallel with MPI.

As an example, let’s consider a large dataset that is made up of 32 independent parts. Because
of memory issues, it cannot be loaded on a single machine. The client is an ordinary PC, and a
computing cluster acts as a data server:

Listing 5.2: Example: client-server operation on a cluster and a workstation

user@clusterhead$ mpirun -machinefile machinefile.txt -np 32 paraview64/bin/
pvserver --use-offscreen-rendering

user@workstation$ paraview32/bin/pvclient -sh=clusterhead &

In this case, even two different Paraview versions (made from the same source code version!)
can be used. The cluster nodes use 64-bit processors and have no graphics card, so a 64-bit
version of Paraview with MPI and Mesa library is used. In contrary, the workstation has a
32-bit processor and a 3D-accelerated graphics card, so it uses an appropriate pvclient version
which does also the rendering. Since it is not MPI-enabled, the level-of-detail feature is available
which allows smooth handling with reduced resolution. If necessary, one could also switch to
server-side rendering by activating the switch “Composite”. In this case, it can be reasonable
to use separated render servers because the rendering process consumes some memory which
would not be available for the data.

If a cluster is used, there is an additional difficulty. Because the cluster nodes usually form
an isolated subnet which can only be reached from outside via the cluster head, there is only
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one network connection possible, from the data server (represented by the cluster head as the
first data server machine) to the single client. Server-side rendering on the cluster as well as
multiple rendering clients or render servers outside the cluster is not possible, because multiple
network connections between the render servers/client(s) outside and the data or also render
servers inside the cluster would be necessary. So only a single client is possible (either outside
the cluster or on the clusterhead with X forwarding to a machine outside) which does the
rendering and hence is the bottleneck of this configuration; in the last resort the machine which
finally displays the data has to be included into the cluster network.

5.4. Offscreen Rendering

Remote rendering processes open X windows to draw their images. If a process cannot open an
X window, it refuses to run. The remedy for this problem is offscreen rendering (see section
4.3), which is activated with the option--use-offscreen-rendering . Especially if client-side
rendering is used because no network connection between the render servers and the client
can be established (see above), this option needs to be activated because otherwise the server
processes cannot even get started (even if no server-side rendering is actually used).

5.5. Simplification of the Data

The full amount of data is not always needed. Because only the outer surface is visible, it is
sufficient to save only the surface; if it is not necessary to edit the dataset afterwards, the
rest can be omitted. By skipping one dimension, complex datasets which normally require a
cluster to be loaded, can be shown with full resolution (at the surface) on a single machine,
and animations run fluently.

But also surfaces can be simplified. The following example (figures 5.1 and 5.2) depicts two
different ways to do this: In the first image, every other gridpoint has been omitted, which
reduces the data to a fourth. In the second image, Paraview’s “Triangulate” filter has been
applied, which doubles the number of polygons by cutting them into triangles; afterwards, the
“Decimate” filter has been applied to reduce the polygons to 12% of their original number,
which results in approximately the same memory size as the first image (and even a slightly
smaller file size) — but more visible details, since the adaptive algorithm spends more points
at regions with high curvature. Furthermore, using the “Triangle Strips” filter, the number of
cells (and accordingly the memory consumption and filesize) can be reduced by half.

5.6. Tools for Parallel Processing

If there is no dedicated visualization cluster available, other PCs in the network have to be
used. Because they are used by many people for different tasks, it is important to know which
machines have enough free resources. The following script queries all computers listed in a given
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Figure 5.1: Different ways of data reduction at the surface grid of Mt. Hochstaufen

(a) Every other grid point has been omitted (b) Adaptive triangular grid, 88% of the
original triangles have been omitted

file for their resources (CPU speed, CPU load, total memory and memory usage) and displays
them in a table, ordered by CPU load and memory usage. A machinefile can be generated
automatically from the first machines listed in the table.

Listing 5.3: getmachinestatus.pl

1 #!/usr/bin/perl
2

3 my $procs = 0; # current number of parallel processes
4 my $hostname = ""; # the current hostname
5 my $hostnames_file = ’hostnames.txt’; # file with all available hostnames
6 my @childpipes; # pipelines to all child processes
7

8 open( HOSTNAMES, "< $hostnames_file" ) || die "Error: cannot open hostnames file
$hostnames_file";

9 open( SORTPIPE, "| sort -k5,5n -k4,4nr -k3,3nr" ) || die "Error: cannot open
pipeline";

10

11 printf( STDERR "%-15s\t%8s\t%7s\t%7s\t%7s\t%-15s\n", "Hostname", "CPU(MHz)", "mem(
MB)", "memfree", "CPUload", "users" );

12

13 # with every line = every hostname
14 while( $hostname = <HOSTNAMES> )
15 {
16 chomp( $hostname );
17

18 # limit number of processes
19 #if( $procs == $maxprocs )
20 #{
21 # wait();
22 # $procs--;
23 #}
24

25 # fork process; child process has PID 0
26 #$pid = fork();
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27 $pid = open( $childpipes[ $procs ], "-|" ); # fork a child process and
create a reading pipeline to it

28

29 # child process
30 if( 0 == $pid )
31 {
32 $processor = ‘ssh -x $hostname ’grep "cpu MHz" /proc/cpuinfo’ |

uniq‘;
33 $processor =~ s/.*: *([.[:digit:]]+).*/\1/;
34 $processor += 0;
35

36 $totalmemory = ‘ssh -x $hostname ’grep "MemTotal" /proc/meminfo’‘;
37 $totalmemory =~ s/.*: *([.[:digit:]]+).*/\1/;
38 $totalmemory /= 1024; # MB instead of kB
39

40 $status = ‘ssh -x $hostname ’vmstat -S M 5 2’‘;
41 $status = (split( /\n/, $status ))[3];
42 $freemem = (split( /[[:space:]]+/, $status ))[4] + 0;
43 $cpuavg = (split( /[[:space:]]+/, $status ))[13] + 0;
44

45 $users = ‘ssh -x $hostname ’w -h’ | cut -d’ ’ -f1 | sort | uniq |
grep -v $ENV{USER}‘;

46 $users =~ s/\n/ /g;
47

48 printf( "%-15s\t%6d\t%6d\t%3d\t%3d\t%-15s\n", $hostname,
$processor, $totalmemory, ($freemem / $totalmemory * 100),
$cpuavg, $users );

49 }
50 # parent process
51 elsif( -1 != $pid )
52 {
53 $procs++;
54 }
55 }
56

57 if( 0 != $pid ) # only for the parent process
58 {
59 for( $i = 0; $i < $procs; $i++ )
60 {
61 $pipe = $childpipes[ $i ];
62

63 # receive the messages from all child processes and feed them into
the sort pipeline

64 while( <$pipe> )
65 {
66 printf( SORTPIPE $_ );
67 }
68 }
69

70 close( SORTPIPE );
71

72 # wait until all processes have terminated
73 do
74 {
75 wait();
76 } until( -1 == $? )
77 }
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Not only simulations and visualizations, but also some intermediate processing steps can benefit
from parallelization. For example, writing ASCII VTK files is easier to program than XML files,
especially if the data is stored in binary, compressed with the zlib and base64-encoded. But only
files in the XML format can be bundled as one parallel file. With, say, 128 data files, it takes
some time on a single PC to convert them into the XML VTU format — hence it makes sense
to distribute this task on several machines. This can be done with MPICH2; mpiexec starts
also non-MPI programs like shell scripts, which do not need interprocess communication. The
total number of processes and the MPI rank can be determined from the environment variables
PMI_SIZE and PMI_RANK or MPD_JSIZE and MPD_JRANK. However, MPICH2 is not necessary; it
can also be done using the following shell script:

Listing 5.4: execute-parallel.sh

1 #!/bin/sh
2

3 # some initializations
4 MACHINEFILE="machinefile.txt"
5 NUM_JOBS=128
6 COMMAND=$PWD/’pargrid+data2vtu.sh;’ # use always absolute paths; command line

must end with a semicolon
7

8 # internal variables
9 JOBS_PER_MACHINE=$(($NUM_JOBS / $NUM_MACHINES + 1))

10 NUM_MACHINES=‘wc -l < $MACHINEFILE‘
11

12 echo "Starting the jobs ..." > /dev/stderr
13

14 # start the jobs via SSH
15 for i in ‘seq 1 $NUM_MACHINES‘; do
16

17 # clear command list
18 COMMANDLIST=""
19

20 # calculate first and last job number on this machine
21 FIRSTJOB=$i
22 LASTJOB=$(($FIRSTJOB + $JOBS_PER_MACHINE * $NUM_MACHINES))
23 if [ $LASTJOB -gt $NUM_JOBS ] ; then LASTJOB=$NUM_JOBS ; fi;
24

25 # assemble the command list by repeating the command with the
corresponding job numbers

26 for j in ‘seq $FIRSTJOB $NUM_MACHINES $LASTJOB‘; do
27 COMMANDLIST="$COMMANDLIST export job=$j; $COMMAND"
28 done
29

30 # extract the current machine name from the machinefile and send the
command list to this computer

31 MACHINE=‘sed -n -e "s/:.*//; ${i}p" < $MACHINEFILE‘
32 ssh -x $MACHINE "export machine=$i; export workingdir=$PWD; $COMMANDLIST"

&
33 done
34

35 echo "All jobs are started." > /dev/stderr
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5.7. Putting It All Together: How to Process a Dataset

In this example, a dataset from a mantle convection simulation is processed.

First, the grid — if not available — has to be generated. This is done with a modified version
of TERRA’s parplt.f program:

/import/two-data/parplt-Code$ vi size.h
/import/two-data/parplt-Code$ make clean
/import/two-data/parplt-Code$ make parplt-parallel
/import/two-data/parplt-Code$ mpirun -np 128 -machinefile machines.LINUX ./parplt-

parallel.x
/import/two-data/parplt-Code$ for i in pargrid???; do gzip -c $i > ../GRIDS

/128-16/$i.gz; done

Next, the correct filenames and paths have to be entered into the conversion scripts; it is
important to use absolute paths:

/import/two-data/MPI-Tools$ vi pargrid+data2vtu.sh
/import/two-data/MPI-Tools$ vi execute-parallel.sh
/import/two-data/MPI-Tools$ ./execute-parallel.sh

Finally, the pvtu file has to be created:

/import/two-data/MPI-Tools$ vi create_pvtu.sh
/import/two-data/MPI-Tools$ ./create_pvtu.sh
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Figure 5.2: Different ways of data reduction; both images have been overlaid with the full-resolution
wireframe model. The first model resembles the original model but looks quite blurred, whereas the
second model has a much higher resolution at the edges

(a) Every other grid point has been omitted

(b) Adaptive triangular grid, 88% of the original triangles have been omitted
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6. Examples

What I cannot create, I do not understand.
Richard Feynman

6.1. Simulation of Mantle Convection

6.1.1. Introduction

TERRA is the code for the simulation of mantle convection that is used at the Geodynamics
group at the LMU. It is a parallelized finite element code for solving the Navier-Stokes equation
using the multigrid approach [Bunge and Baumgardner, 1995]. The simulation is done on a
PC cluster consisting of 128 AMD Opteron processors; a typical simulation setup spans over 84
million grid points which yields a spatial resolution of less than 75 km.

The spherical grid layers are approximated by icosahedra (made up of spherical triangles; see
figure 6.1); every two adjoining triangles form one diamond which is recursively quartered into
subdomains [Baumgardner and Fredrickson, 1985], so every process of the running program
owns one subdomain on every diamond or every other diamond (depending on the number of
subdomains, which must be a power of four, whereas the number of processors must be a power
of two). Every processor writes its output into an ASCII file, which results in approximately
4 GB of data per snapshot in the setup described above (64 subdomains per diamond with 322

grid points each, 128 radial layers).

A second program (parplt.f ) that uses the same configuration files as the actual TERRA
simulation code computes a grid, reads the simulation files in parallel, concatenates them and
outputs them together with some header information and the grid data as a VTK unstructured
grid file.

6.1.2. Taming the Data

Two sorts of output files are generated: High-resolution data files and downsampled files. The
latter are generated by omitting every other data point in each direction, thus giving roughly 10
million grid points or about 700 MB raw ASCII data. Because also the grid points have to be
written (three coordinates per point), the cell connectivity (six point indices per cell, 20 million
cells) and some other data, the ASCII file size exceeded 2 GB which seemed to be a problem
for the Fortran code that generates the VTK file (presumably a size limit for common blocks);
the output was truncated. With some tweaking in the output routines, the file size could be
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Figure 6.1: Icosahedral grid used by the TERRA code; the different colors denote the subdomains
used for the parallelization.

reduced to just below 2 GB, but it took still about 30 minutes to load the downsampled data
file — without being able to display it (on a single PC).

The next step was to switch the code to binary output. This required the BINARY file mode
which is proprietary to Intel Fortran compilers; portable code only permits the UNFORMATTED

(i.e. ASCII) and FORMATTED (i.e. binary, with a fixed record length) file type. Using this Intel
extension, the file size could be cut down to 800 MB, whereas also some cleaning in the code
was required — binary files do not forgive one single redundant byte. Loading the data file
with Paraview became also much faster, it took only a few minutes.

Listing 6.1: Example of binary and ASCII output with Fortran

193 if (BINARY_OUT == 1) then ! CM
194 open (nf, file=’pargrid’,form=’binary’,status=’unknown’, ! CM
195 & convert=’BIG_ENDIAN’) ! CM
196 else ! CM
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197 open (nf, file=’pargrid’,form=’formatted’,status=’unknown’)
198 end if ! CM

236 if (BINARY_OUT == 1) then ! CM
237 write(mystring,’(a5,i12,i12)’) ! CM
238 & ’CELLS’,icellnum,icellnum*(ipointspercell+1) ! CM
239 write(nf) trim(mystring), char(10) ! CM
240 else ! CM
241 write(nf,*)’CELLS’,icellnum,icellnum*(ipointspercell+1)
242 end if ! CM

Although the file size was now low enough and the file could be loaded much faster, it could
still not be displayed; at least, the newest Paraview version at that time (2.4.2) did not crash
instantaneously, but displayed a box outlining the dataset instead of its surface. Obviously
there was just enough memory to load the raw data, but not to process or display it.

The next attempt was to use the parallel capabilities of Paraview. For that, a MPI-enabled
version had to be compiled and to get started (see section 4.2). After that, the VTK file could
be loaded, when running Paraview on about 10 machines. (Sometimes, this did not work
either; the error messages are not very instructive, but the experience seems to indicate memory
problems. Although the PCs have more than enough memory to accomodate the raw file, the
rendering pipeline seems to consume a multiple of this amount.) Obviously, every involved
PC needs enough memory to store the whole data file; the rendering is distributed over all
machines, so the additional memory requirement per machine remains small.

After loading the file, the so-called “D3” filter (“distributed data decomposition”) can be called
which splits up the data file, so every participating computer holds one spatially separated
part of the grid. Then, the data can be saved as one of VTK’s parallel file types, made up of
single files with the subsets from the MPI nodes. Now, the original file can be unloaded; since
the parts of the newly created PVTU file are loaded in parallel from the machines in the MPI
cluster, memory is not a problem anymore — every machine holds now only a small part of the
original file.

Although the visualization of the downsampled grid with 10 million points is now possible, the
bottlenecks are obvious: The file has to fit into the memory of every single computer in the
MPI cluster, and writing files bigger than 2 GB also seemed to be a problem (whereas this
should be solvable; neither the hardware nor the OS have this restriction). Also, the handling
was not very fast. The solution is obvious: Instead of collecting the data into one big file which
brings the PCs to their limits, the grid and the data should be written into distributed files,
linked together by a PVTU master file. The data is already available in separate files for each
processor; the output program parplt.f had to be modified such that every process creates its
own subgrid and writes it into a separate file instead of writing one monolithic grid file. Since
the original data files are ASCII files, the grid has also been written in ASCII. Then, a simple
shell script concatenates the subgrids with their corresponding data sections and calles the
following Tcl script that converts the ASCII VTK files to binary VTU files — which can be
enclosed by a PVTU envelope. With Paraview running on multiple machines, this PVTU file
can be loaded at once, or if the cluster is not available, the constituent parts can be viewed
from a single PC. With this method, it was even possible to load the full resolution dataset
into Paraview.
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6.1.3. Temperature Distribution in the Earth’s Mantle

This simulation uses the TERRA code described above. The setup includes internal heating
(no heating from the CMB), viscosity increasing with depth [Bunge et al., 1997], and as a
boundary condition a surface temperature of 300 K.

The data has been loaded with a parallel running 64-bit MPI version of pvserver and displayed
with a non-MPI version of pvclient on a 32-bit machine. With one spherical clipping operation,
the uppermost layer (1 % of the radius) has been removed since the thermal boundary condition
defines equal surface temperature, so the convection structures form below. A second clipping
operation has removed one hemisphere, thus showing a cross-section (see figure 6.2). After
applying the filter “Extract Surface”, this image can be saved as a polygonal surface and then
also be loaded from a single PC.

Figure 6.2: This image shows the temperature in a convection simulation; the viscosity increases with
depth, hence the flow forms branches near the surface before sinking down [Bunge et al., 1996]. The
outer layer (1% of the radius) is removed because of the boundary condition. There is only internal
heating, thus there are no plumes originating at the CMB, whereas the surface is cooled externally, so
there are plume-like structures dipping down.
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6.1.4. Seismic Velocities in the Earth’s Mantle

Since the initial conditions for the earth’s mantle convection are not known, forward-modelling
can only provide the general development of plate tectonics, but not the current state. For the
simulation of the recent convection, the inverse problem can be solved; giving the current state
and the recent plate motions as boundary conditions, a simulation using the data assimilation
method computes the properties of a convection that leads to the current state. This has been
done with the program TERRA (mentioned above); see [Bunge et al., 2002].

The output file contains the seismic velocities in the mantle, with normalized mean velocities
in each radial layer. With only 1.3 million grid points, this file could be loaded on a single
PC. Two isosurfaces at velocity variations of −3 % resp. +2% then outline the subducting
slabs (= cold material with increased seismic velocity) and the mid-ocean ridges (= warm
material, low velocity zone) (see figure 6.3). Using the “Smooth” filter, the surfaces can be
smoothed, and saved as a polygonal file. Together with an overlaid topography file or with plate
boundaries, this gives quite impressive models of what structures can be expected underneath
plate boundaries and orogenes.

6.2. Seismic Wave Propagation

6.2.1. Introduction

The wave propagation code for this simulation uses a staggered-grid finite-difference scheme
on the elastic wave equations in a spherical section of the earth [Igel et al., 2002]. Andreas
Fichtner has parallelized this code and added support for anisotropy and attenuation. Two test
runs have been done, one with anisotropy only in z-direction, and one with a PREM model.
The volume is partitioned into 15 (PREM) resp. 18 pieces, each computed by one processor.

6.2.2. Visualization

First, the coordinate grids had to be created. The steps along the coordinate axes, given as
polar coordinates, were combined to triplets for every grid point and converted into cartesian
coordinates; this has been done with a shell script (similar to listing 6.2). Then, the corre-
sponding data was appended to every created VTK grid file and then converted into the VTU
format via Tcl script (see listing 3.2). Finally, a PVTU file links all the sections into a big file
(see figure 6.4).

6.3. Topography

The geosciences deal not only with abstract and self-contained simulations, but have often
to display features in the context of their surrounding. Maps are often essential parts of
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Figure 6.3: Seismic velocities in the earth’s mantle (computed from the simulated temperatures); red:
middle ocean ridges, where the seismic velocity is reduced more than 3 %; blue: subducting slabs, where
the seismic velocity is increased more than 2%.

visualizations; in these cases, external map data has to be converted to 3D structures, more
precisely: polygonal surfaces.

6.3.1. The Globe, Created From the ETOPO2 Dataset

The ETOPO2 dataset is a global elevation grid, compiled from a variety of sources, with a
resolution up to 2 arc minutes. It is available in various formats, including GMT grid file and
ASCII table.

In this example, the basis was a GMT grid file with a resolution of 5 arc minutes. To convert it
to a VTK file (see figure 6.5), the following steps were necessary:

• With the tool grd2xyz the grid file can be converted to an ASCII table.
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• Because the GMT version did not contain the poles, these data points had to be added
by hand — i.e. for latitudes of ±90◦ the coordinates of ±89◦ were copied and the heights
were changed to those of the north pole or south pole, respectively.

• Converting the grid to cartesian coordinates: This is done by a simple AWK script which
takes the longitude and latitude values and converts them to points lying on the unit
sphere. Additionally, the elevation values can be added to the earth radius to create a
spatial relief on the sphere; an exaggeration factor of 25 gives quite impressive (yet not
realistic) results.

• Create a VTK file: In the next step, the VTK header is printed, then the grid points are
appended. After that, the connectivity has to be created. The polygons are trapezoids,
made up of two adjacent points and the neighboring two points on the next latitude step.
Then the height data (i.e. the third column of the *.xyz file) is added. Because custom
color tables only seem to be possible for values between 0 and 1, the heights have to be
normalized to this range.

• Finally, the color table with 256 entries is added.

A shell script was created for the conversion:

Listing 6.2: Converting the ASCII table to VTK

1 #!/bin/sh
2

3 INPUTFILE=$1 # input: first filename given on commandline
4 RADIUS=6371000 # radius of earth in m
5 EXAGGERATE=25 # set to 0 for no topographical exaggeration; max. value ca. 50
6 SHIFT_Z=133 # shift altitude scalars by this amount (in m), so the color table

matches
7 #SHIFT_Z=0 # shift altitude scalars by this amount (in m), so the color table

matches
8 IS_SPHERE=1 # determines if the map is a sphere, i.e. that lon=360Â◦ should be

connected with lon=0Â◦

9 POLAR2CART=1 # convert polar coordinates to cartesian coordinates (use the
given earth radius)

10

11 LONSTEPS=‘cut -f1 < $INPUTFILE | sort | uniq | wc -l‘
12 LATSTEPS=‘cut -f2 < $INPUTFILE | sort | uniq | wc -l‘
13 NRPOINTS=‘wc -l < $INPUTFILE‘
14

15 # output vtk header
16 echo "# vtk DataFile Version 3.0"
17 echo "xyz2vtkpoly.sh"
18 echo "ASCII"
19 echo "DATASET POLYDATA"
20 echo "POINTS $NRPOINTS float"
21

22 # output grid points
23

24 if [ 1 -eq $POLAR2CART ]; then
25 # convert to cartesian coordinates
26 awk "BEGIN {\
27 PI = 3.14159265359;\
28 }\
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29 {\
30 R = (($RADIUS + \$3 * $EXAGGERATE) / $RADIUS);\
31 \
32 X = R * cos(\$1 / 180 * PI) * cos(\$2 / 180 * PI);\
33 Y = R * sin(\$1 / 180 * PI) * cos(\$2 / 180 * PI);\
34 Z = (R * sin(\$2 / 180 * PI));\
35 \
36 \$1 = X;\
37 \$2 = Y;\
38 \$3 = Z;\
39 \
40 print;\
41 }" < $INPUTFILE
42 else
43 awk "{ \$3 *= $EXAGGERATE; print; }" < $INPUTFILE
44 fi
45

46 # output polygons
47 if [ 1 -eq $IS_SPHERE ]; then
48 echo "POLYGONS $(($NRPOINTS - $LONSTEPS)) $((5 * ($NRPOINTS - $LONSTEPS)))

"
49 else
50 echo "POLYGONS $(($NRPOINTS - $LONSTEPS - $LATSTEPS + 1)) $((5 * (

$NRPOINTS - $LONSTEPS - $LATSTEPS + 1)))"
51 fi
52

53

54 #awk "BEGIN { for( i = 1; i < $NRPOINTS - $LONSTEPS; i++ ) printf( "’"’"4\t%d\t%d\
t%d\t%d\n"’"’", i, (i+$LONSTEPS), (i+$LONSTEPS+1), (i+1) ); }"

55 awk ’BEGIN {\
56 for( lat = 0; lat < ’$LATSTEPS’ - 1; lat++ )\
57 {\
58 for( lon = 0; lon < ’$LONSTEPS’ - 1; lon++ )\
59 {\
60 printf( "4\t%d\t%d\t%d\t%d\n", (lat * ’$LONSTEPS’ + lon),( (lat +

1) * ’$LONSTEPS’ + lon), ( (lat + 1) * ’$LONSTEPS’ + lon + 1),
(lat * ’$LONSTEPS’ + lon + 1) );\

61 }\
62 \
63 if( 1 == ’$IS_SPHERE’ )\
64 {\
65 printf( "4\t%d\t%d\t%d\t%d\n", (lat * ’$LONSTEPS’ + lon),( (lat +

1) * ’$LONSTEPS’ + lon), ( (lat + 1) * ’$LONSTEPS’), (lat * ’
$LONSTEPS’) );\

66 }\
67 }\
68 }’
69

70 # output height data
71 echo "POINT_DATA $NRPOINTS"
72 echo "SCALARS altitude float"
73 echo "LOOKUP_TABLE topo"
74 awk "{ \$3 += 9652 + $SHIFT_Z; \$3 /= (9652 + 6401); print \$3; }" < $INPUTFILE
75 #awk "{ \$3 -= 423; \$3 /= ((1860 - 423) / 0.390456612471); \$3 += 0.609543387529;

print \$3; }" < $INPUTFILE # Hochstaufen: min 423.6, max 1859.2
76 #awk "{ print \$3; }" < $INPUTFILE
77
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78 # output lookup table
79 cat <<EOF
80 LOOKUP_TABLE topo 256

6.4. Hochstaufen

6.4.1. Introduction

Hochstaufen is a mountain in Bavaria near Bad Reichenhall where earthquake swarms occur.
Thus, a dense network of seismometer stations has been installed around the mountain, and
several swarms could be recorded in the recent years. Fluids have been suspected to play a
role in the emergence of earthquake swarms for a long time, yet the proof has been difficult.
Contrary to other swarm quake areas, where volcanic activity is assumed to drive the fluids
into the rock, there is no volcanism around Hochstaufen — the fluids come from above, making
this mountain an ideal study area by installing seismometers and meteorological stations. In
2005, it could be shown for the first time that there is a strong correlation between heavy
precipitation and earthquake activity at Hochstaufen [Kraft et al., 2006b]; the data comes
mostly from the year 2002 where there has been torrential rain in March and August, each
followed by an earthquake swarm.

6.4.2. Visualization

1171 events have been recorded in that year, for 612 of them a hypocenter location could be
determined [Kraft et al., 2006a]. Since the exact mechanisms are still unknown, the spatial and
temporal distribution of the hypocenters can be informative. The basis for an 3D animation of
the swarm quakes is a list of all earthquakes (with coordinates given as latitude/longitude and
UTM, depth, date, day of the year and magnitude) and a topographic map given in the GMT
grid file format. The grid file has been converted with the GMT tool grd2xyz to an ASCII
table and then processed like described above. Since the coordinates were given in the UTM
coordinate system, no conversion to cartesian coordinates was necessary. The result is a VTK
file with a rectangular grid (see figure 5.1).

For the earthquakes, a two-stage process was necessary. First, the coordinates and magnitudes
of the earthquakes were written into a VTK file; any information about the point connectivity
has been omitted. This file has then been fed to the following Tcl script which calls VTK
functions to generate spheres at all gridpoints (see figure 6.6):

Listing 6.3: Creating glyphs at every grid point (the input and output filenames are given as command
line parameters)

1 #!/usr/bin/env vtk
2

3 # include VTK
4 package require vtk
5

6 # read a VTK polydata file
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7 vtkPolyDataReader reader
8 reader SetFileName [lindex $argv 0]
9

10 # create a sphere
11 vtkSphereSource sphere
12

13 vtkTransform transform
14 #transform Translate 0.5 0.0 0.0
15

16 # convert the sphere to polydata
17 vtkTransformPolyDataFilter transformfilter
18 transformfilter SetInput [sphere GetOutput]
19 transformfilter SetTransform transform
20

21 # create glyphs on every gridpoint; use the spheres as glyphs
22 vtkGlyph3D glyph
23 glyph SetInput [reader GetOutput]
24 glyph SetSource [transformfilter GetOutput]
25 glyph SetVectorModeToUseVector
26 glyph SetColorModeToColorByScalar
27 glyph SetScaleModeToScaleByVector
28 glyph SetScaleFactor 300
29

30 # write a binary VTK polydata file
31 vtkPolyDataWriter writer
32 writer SetInput [glyph GetOutput]
33 writer SetFileName [lindex $argv 1]
34 writer SetFileTypeToBinary
35 writer Write
36

37 exit

Not only the spatial distribution, also the temporal relocation of the hypocenters is of interest.
This can be shown with an animation. The described procedure was repeated for every frame
of the animation, in total 1000 frames. In every frame, only those quakes were included where
the day-of-the-year value was smaller than i/1000 · 365 (with i as the loop counter).

6.5. Magnetic Field Reversal

This example showing a magnetic field reversal has been provided by Roman Leonhardt.
Starting from paleomagnetic data, he has modeled the magnetic field on the core mantle
boundary and on the earth’s surface and cast the results in VTK files over 1000 timesteps.

6.5.1. Changing the Color Table

The main problem was Paraview’s default rainbow color scale. This gives the best optical
distinction between the data values, yet it is not appropriate for the magnetic field strength
since it suggests a continuous range of values without any symmetry. The two polarities should
rather be expressed by two different colors (usually red for normal and blue for inverse polarity),
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where the saturation indicates the field strength. To achive this, the data values have to be
normalized to the range [0 . . . 1] and the new color table has to be appended — in every file.
This has been done with the following awk script which simply uses a square root function to
generate a nonlinear color table:

Listing 6.4: Scaling the data values; the script looks for the beginning of the data section and scales
every value according to the maximum and minimum values that have been passed to the script; the
conversion stops at the next blank line.

1 #!/usr/bin/awk -f
2

3 BEGIN {
4 min = ENVIRON["min"];
5 max = ENVIRON["max"];
6

7 #RS = backup_RS;
8 RS = "\r\n"; # because original file has windows line breaks
9

10 do_scale = 0;
11 }
12

13 # skip lines until "LOOKUP_TABLE" appears
14 /^LOOKUP_TABLE/ {
15 do_scale = 1;
16 print "LOOKUP_TABLE france";
17 getline;
18 }
19

20 # after the next empty line: stop again
21 /^$/ {
22 do_scale = 0;
23 getline;
24 }
25

26 # scale the values
27 {
28 if(1 == do_scale)
29 {
30 $1 = ( ($1 - min) / (max - min) );
31 }
32

33 # remove windows line breaks; but faster is: tr -d ’\r’
34 #$0 = $0;
35

36 print;
37 }

The new color table is computed the following way:

Listing 6.5: Creating a nonlinear color scale, ranging from blue over white to red

1 #!/usr/bin/awk -f
2

3 BEGIN {
4 # see also: makecpt -Cpolar -N -Z -T0/1/0.01 | awk ’(NR > 3) { NF = 4; $1

= $2 / 255; $2 = $3 / 255; $3 = $4 / 255; $4 = 1; print }’
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5 steps = 100;
6

7 print "LOOKUP_TABLE france " (2 * steps);
8

9 for( i = steps; i > 0; i-- )
10 {
11 fraction = sqrt( i / steps );
12

13 $1 = (1 - fraction);
14 $2 = (1 - fraction);
15 $3 = 1;
16 $4 = 1;
17

18 print;
19 }
20

21 for( i = 0; i < steps; i++ )
22 {
23 fraction = sqrt( i / steps );
24

25 $1 = 1;
26 $2 = (1 - fraction);
27 $3 = (1 - fraction);
28 $4 = 1;
29

30 print;
31 }
32 }

6.5.2. Creating Colored Glyphs

Creating vector arrows from the vectorial surface data is easy; but in this step, the color table
gets lost. So it is not sufficient to create the arrows at runtime via the Paraview glyph filter,
but it has to be done non-interactively. With a Tcl script similar to listing 6.3 VTK files with
vector arrows can be generated; afterwards, the color table is added the same way as described
above. For the initial and final image see figure 6.7.

6.5.3. Saving Complex Sceneries

This example scenery is made of several files:

• the magnetic field strength at the core mantle boundary (radcomp binary *.vtk)

• the magnetic field vectors at the surface (survec glyph binary *.vtk)

• the continents, semi-transparent (continents 45min threshold 061.vtk ; derived from the
topographic map with a threshold filter of ≥ 0.61)

• the continent boundary lines (continent boundaries 45min cut sphere 1830.vtk ; derived
from the topographic map, cut with a sphere with radius 1.83)
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• longitude and latitude lines on the CMB (long lat cmb edges.vtk)

Paraview does not provide any means to save “project files” (containing the files to load), but
“state files” which are actually Tcl scripts which memorize every file, filter or parameter the
user has loaded or applied. However, filenames are stored with their complete pathname, so
these files are not portable. Changing the absolute filenames to relative pathnames did not
work; but dynamically adding the current absolute path is a solution. This can be done by
replacing the full path, e.g.
"/home/user/subdirectory/file.vtk"

by
[join [list $env(PWD)"/file.vtk"] ""]

.

6.6. Earthquakes in Subduction Zones

In this example, the isosurface from section 6.1.4 was re-used, which outlines very well the
subducting slab under the Andes. It was combined with the world map from section 6.3.1, cut
out and combined with beach balls indicating the hypocenter locations and fault planes (see
figure 6.8).

6.6.1. Creating Beach Balls

A beach ball is a sphere with a black-white color table. Its cartesian coordinates are calculated
from polar coordinates in two nested loops, with a stepwidth of 10◦ in latitude and longitude.
For longitudes between 90◦ and 180◦ and between 270◦ and 360◦ the color of the surface point
is set to white, otherwise to black. The polygon connectivity is written in two further nested
loops; every two adjacent points are connected with the two points on the next parallel to a
trapezoidal polygon.

6.6.2. Orientating Beach Balls at Hypocenters

The hypocenter locations are taken from the Harvard CMT search page [Harvard CMT, 2006];
using the script ndk2table.awk, the file is converted to a table with the location, magnitude, fault
plane orientation and time of each earthquake on one line. For this example, the output has
been constrained to magnitudes above 5.0, latitudes from the equator to −60◦ and longitudes
between −60◦ and −90◦.

The beach balls are created in the origin. Then the rotations around the fault plane coordinates
are carried out, using rotary matrices; first comes a rotation about the rake angle around the
x axis, then about the dip angle around the z axis, and finally about the strike angle, again
around the x axis.
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After that, the beach ball is rotated about its latitude value around the y axis and about its
longitude value around the z axis and translated to the earthquake location by adding the
corresponding coordinates.

The following script performs the described steps to create a beach ball for every earthquake in
the previously generated table.

Listing 6.6: make beachballs from file.awk ; input = filename given on the command line, output =
stdout

1 #!/usr/bin/awk -f
2

3 BEGIN {
4

5 # initializations
6 NUMBER = 0; # number of beach balls
7 STEPWIDTH = 10; # must be a divisor of 360 and 190 => 1, 2, 5, 10
8 BB_RADIUS = 0.01; # compare to earth radius
9 EARTH_RADIUS = 1;

10

11 # local variables and settings
12 #FS = ","; # input: separated by komma
13 OFS = "\t"; # output: separate fields with a tab
14 PI = atan2( 0, -1 );
15 LONSTEPS = int( 360 / STEPWIDTH );
16 LATSTEPS = int( 190 / STEPWIDTH );
17 NRPOINTS = LONSTEPS * LATSTEPS; # number of grid points per beach ball
18 CORR = -90;
19

20 FILENAME = ARGV[1]; # use input from first command line argument
21 ("wc -l < " FILENAME) | getline NUMBER; # get number of lines in input file
22

23 # output vtk header
24 print "# vtk DataFile Version 3.0";
25 print "make_beachballs_from_file.awk";
26 print "ASCII";
27 print "DATASET POLYDATA";
28 print "POINTS " (NRPOINTS * NUMBER) " float";
29

30 }
31

32 # for each beach ball:
33 # source: http://www.seismology.harvard.edu/CMTsearch.html
34 # table, created from ndk format
35 # fields: lat, lon, depth, magnitude, strike, dip, rake, unixtime
36 {
37 BB_LON = $2;
38 BB_LAT = $1;
39 DEPTH = ($3 / 6370);
40 MAGNITUDE_FACT = ($4 - 5.5); # typical: something like MAGNITUDE_FACT =

magnitude - 6
41

42 STRIKE = -$5;
43 DIP = -$6;
44 RAKE = $7;
45

46 NF = 3;
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47

48 # create gridpoints
49 for( lat = 90; lat >= -90; lat-=STEPWIDTH )
50 {
51 for( lon = 0; lon < 360; lon+=STEPWIDTH )
52 {
53 # location of each point = original location + rotation by

its position on earth
54 # add STEPWIDTH/2 because colors are interpolated *between

* points, i.e. it must lie exactly between two points
55 point_lon = lon + STEPWIDTH/2;
56 point_lat = lat;
57

58 # calculate cartesian coordinates
59 X = BB_RADIUS * MAGNITUDE_FACT * cos(point_lon * PI / 180)

* cos(point_lat * PI / 180);
60 Y = BB_RADIUS * MAGNITUDE_FACT * sin(point_lon * PI / 180)

* cos(point_lat * PI / 180);
61 Z = BB_RADIUS * MAGNITUDE_FACT * sin(point_lat * PI / 180)

;
62

63 # use correct position: rotate around x axis
64 X_ROT = X;
65 Y_ROT = Y * cos(CORR * PI / 180) - Z * sin(CORR * PI /

180);
66 Z_ROT = Y * sin(CORR * PI / 180) + Z * cos(CORR * PI /

180);
67

68 X = X_ROT; Y = Y_ROT; Z = Z_ROT;
69

70 # rotate: rake (rotate around x axis)
71 X_ROT = X;
72 Y_ROT = Y * cos(RAKE * PI / 180) - Z * sin(RAKE * PI /

180);
73 Z_ROT = Y * sin(RAKE * PI / 180) + Z * cos(RAKE * PI /

180);
74

75 X = X_ROT; Y = Y_ROT; Z = Z_ROT;
76

77 # rotate: dip (rotate around z axis)
78 X_ROT = X * cos(DIP * PI / 180) - Y * sin(DIP * PI / 180);
79 Y_ROT = X * sin(DIP * PI / 180) + Y * cos(DIP * PI / 180);
80 Z_ROT = Z;
81

82 X = X_ROT; Y = Y_ROT; Z = Z_ROT;
83

84 # rotate: strike (rotate around x axis)
85 X_ROT = X;
86 Y_ROT = Y * cos(STRIKE * PI / 180) - Z * sin(STRIKE * PI /

180);
87 Z_ROT = Y * sin(STRIKE * PI / 180) + Z * cos(STRIKE * PI /

180);
88

89 X = X_ROT; Y = Y_ROT; Z = Z_ROT;
90

91 # rotate according to latitude
92 X_ROT = X * cos(-BB_LAT * PI / 180) + Z * sin(-BB_LAT *
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PI / 180);
93 Y_ROT = Y;
94 Z_ROT = -X * sin(-BB_LAT * PI / 180) + Z * cos(-BB_LAT *

PI / 180);
95

96 X = X_ROT; Y = Y_ROT; Z = Z_ROT;
97

98 # rotate according to longitude
99 X_ROT = X * cos(BB_LON * PI / 180) - Y * sin(BB_LON * PI /

180);
100 Y_ROT = X * sin(BB_LON * PI / 180) + Y * cos(BB_LON * PI /

180);
101 Z_ROT = Z;
102

103 X = X_ROT; Y = Y_ROT; Z = Z_ROT;
104

105 # move origin: add cartesian coordinates of earth
106 X += (EARTH_RADIUS - DEPTH) * cos(BB_LON * PI / 180) * cos

(BB_LAT * PI / 180);
107 Y += (EARTH_RADIUS - DEPTH) * sin(BB_LON * PI / 180) * cos

(BB_LAT * PI / 180);
108 Z += (EARTH_RADIUS - DEPTH) * sin(BB_LAT * PI / 180);
109

110 $1 = X;
111 $2 = Y;
112 $3 = Z;
113

114 print;
115 }
116 }
117 }
118

119 # write the connectivity and the other remaining stuff
120 END {
121

122 # output polygons
123 print "POLYGONS " ((NRPOINTS - LONSTEPS) * NUMBER) " " (5 * (NRPOINTS - LONSTEPS)

* NUMBER );
124

125 for( i = 0; i < NUMBER; i++ )
126 {
127

128 for( lat = 0; lat < LATSTEPS - 1; lat++ )
129 {
130 for( lon = 0; lon < LONSTEPS - 1; lon++ )
131 {
132 $1 = 4;
133 $2 = (lat * LONSTEPS + lon + i * NRPOINTS);
134 $3 = ( (lat + 1) * LONSTEPS + lon + i * NRPOINTS);
135 $4 = ( (lat + 1) * LONSTEPS + lon + 1 + i * NRPOINTS);
136 $5 = (lat * LONSTEPS + lon + 1 + i * NRPOINTS);
137

138 print;
139 }
140

141 $1 = 4;
142 $2 = (lat * LONSTEPS + lon + i * NRPOINTS);
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143 $3 = ( (lat + 1) * LONSTEPS + lon + i * NRPOINTS);
144 $4 = ( (lat + 1) * LONSTEPS + i * NRPOINTS);
145 $5 = (lat * LONSTEPS + i * NRPOINTS);
146

147 print;
148 }
149

150 }
151

152 # output color data
153 print "POINT_DATA " (NRPOINTS * NUMBER);
154 print "SCALARS color float";
155 print "LOOKUP_TABLE colortbl";
156

157 for( i = 0; i < NUMBER; i++ )
158 {
159

160 for( lat = 90; lat >= -90; lat-=STEPWIDTH )
161 {
162 for( lon = 0; lon < 360; lon+=STEPWIDTH )
163 {
164 if( (1 == int( lon / 90)) || (3 == int( lon / 90)) )
165 {
166 print 1;
167 }
168 else
169 {
170 print 0;
171 }
172 }
173 }
174

175 }
176

177 # output color table (black and white)
178 print "LOOKUP_TABLE colortbl 2";
179 print "0.000000 0.000000 0.000000 1.000000";
180 print "1.000000 1.000000 1.000000 1.000000";
181

182 }
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(a) Anisotropic case, isosurfaces at a defor-

mation velocity of 10−9 ms−1

(b) Anisotropic case

(c) PREM

Figure 6.4: Seismic wave propagation in a spherical section of the earth; these graphics show the
velocity magnitude for a certain timestep.
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Figure 6.5: View of the earth, with heights 25 times exaggerated; note the deep sea trenches in the
center and the sea mounts on the right.
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Figure 6.6: Hochstaufen, seen from the north, with the earthquake events of the year 2002 (colored
balls) and seismometer stations (white balls). The heights are three times exaggerated.

(a) Original version with rainbow color table (b) Version with modified color table

Figure 6.7: Snapshot from the simulation of a magnetic field reversal; the original dipole field has
been replaced by a multipole field, and the new components gain strength at the cost of the original
field.
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Figure 6.8: View from Chile to the north along the coast towards Peru; the map is displayed semi-
transparent, below is to be seen the subducting slab and the beachballs indicating the hypocenters and
their fault planes.
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7. Conclusion and Outlook

Visualizing scientific data seems to be an easy task, at least at first glance. There is a plethora
of software available which can be used to create graphics out of arbitrary data, which means
there is an infinite number of degrees of freedom, yet also infinite degrees of failure.

So the question is not how to do it in general, but under certain — both restricting and
challenging — boundary conditions. For example, there is the newly installed Geowall; so 3D
visualizations are preferred, especially when they are interactive. But the available free Geowall
software (esp. Immersaview) was not very convincing: The handling was cumbersome, and real
interactivity was given only for very simple sceneries. Then someone asked: “Can you also cut
through the objects?” This was the point. Of course, I can. But there’s nothing below; VRML
deals only with surfaces. But these have to be generated before — I had simply taken them for
granted.

However, there are indeed programs that can process volumetric data in realtime and in-
teractively, notably Paraview. But for a long time, it was uncertain to me if this program
can be of any use for a Geowall; there were only vague rumors about a patch enabling a
Geowall-compatible stereo mode, not more. It turned out that Paraview and the underlying
VTK are very powerful and flexible, that they can be adapted to the Geowall, and using
MPI and Paraview’s client-server mode, they can handle datasets that are several magnitudes
bigger than everything that can be done with VRML. It could have been so easy — but these
programs do not run out of the box when used with these advanced features. Although there
are books available for Paraview and VTK, the documentation is still poor, compared to the
possibilities they offer. Time-consuming investigation was necessary much too often. A quite
steep learning curve in an area with so many different requirements and few simple recipes.

What comes next? In our hardware setup, Paraview was not finished when loaded with nearly
100 million grid points (which is about three magnitudes more than what’s possible with
VRML). And if, the cluster could be extended with more machines and the clients could be
equipped with more RAM and maybe better graphics cards (which could even be coupled in
pairs) — if rendering with multiple clients or server-side rendering works, there seems to be
no further bottleneck in range. Also the software has still much going for it. The small VTK
scripts presented here are just the beginning; a lot of automation is possible. And the next
major release of Paraview, promising many new features, is in sight, too. The tools — once
running — are good and still improving.

Whereas the steps from the data file to the screen become easier with the help of high-level
toolkits, the gap between raw data (i.e. what the simulation programs produce) and the input
for visualization software still exists. A kind of “glue software” would be helpful. I was quite
impressed by the software package Holodraw [Simkin, 2006] which offers a very elegant way
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to convert plain ASCII data files into the much more complicated VRML format. A similar
high-level preprocessing and scripting extension for the (much more complicated) VTK package
could be very useful.

Anything else? Yes. As mentioned, simple recipes are not sufficient for creating visualizations,
the problems are too different. A lot of experience is necessary in this broad topic, and thus
much more cooperation for sharing it.
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B. Instructions for the Example Datasets

As already mentioned, it is not feasible to write a general recipe how to convert arbitrary
datasets into three-dimensional VTK models. But I have provided several different examples
together with all datasets and tools that have been used; they may serve as an assistance for
processing similar input data or as an inspiration how to deal with both ASCII and binary
input data, how to write the cell connectivity and so on. All mentioned examples can be found
on the attached DVDs (in the directory Examples) as well as in the computer network at the
LMU geophysics section in the directory /import/holodeck-data/3D-Data/.

In every example directory there is a subdirectory Source which contains the original dataset,
and a subdirectory Tools which contains all scripts that have been used to convert the data
to a VTK file format. Here is a short description of the datasets and the tools that have been
used create the Paraview files.

B.1. Wave Propagation

Directory: Andreas_Fichtner (with two subdirectories containing two simulations)

Source Data:

• Point coordinates of the grid axes (xco0–xco17 for the x axis, yco0–yco17 for y axis
and zco0–zco17 for z axis); units: polar coordinates in radians (x and y axis), meters
(z axis).

• Data files: v_phi_block*, v_theta_block* and v_r_block*; units: deformation
velocities in m/s.

Conversion Steps:

• make_coordinates.sh: This script generates all combinations of coordinates and
writes them into files with the names xyz_0.dat–xyz_17.dat.

• xyz2vtkunstructured.sh: This script converts the polar coordinates to cartesian
coordinates and writes them into ASCII VTK files; the command line parameter indicates
the block number; e.g. “12” means that the file xyz_12.dat should be converted.

• calculate_vvect.sh: This script takes the VTK file with the given number and ap-
pends the data values – as vectors, as scalar values and the single components; additionally,
the file is converted to the binary VTU format using convert2vtu.tcl.
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B.2. Global Earthquake Distribution

Directory: Earthquakes_Global

Source Data:

• jan76_dec05.ndk: A file with all earthquakes from January 1976 until December 2005
(from http://www.globalcmt.org/CMTfiles.html).

Conversion Steps:

• ndk2table.awk: This script takes a *.ndk file and reformats it to a table with all
relevant fields (location, time, magnitude, source mechanism).

• make_beachballs_from_file.awk: This script takes a table (generated e.g. with
ndk2table.awk) and creates a beachball for each earthquake event in a VTK file. First,
all points of a beachball sphere in cartesian coordinates are calculated; then, the beachball
is rotated (strike, dip, rake) and shifted to its final position on the earth’s surface.

• create_time_series.sh: This script takes a table of earthquakes and calls in a
loop make_beachballs_from_file.awk, each time with an increasing number of
earthquakes from the list (starting with the uppermost). The result is a set of VTK files
which animate the emergence of the earthquakes.

B.3. ETOPO2

Directory: ETOPO2

Source Data:

• swg_9432.xyz: This file has three columns.

1. latitude (in degrees), in steps of two arc minutes

2. longitude (in degrees), in steps of two arc minutes

3. height (in m above sea level)

A problem is that some values appear twice since the longitude runs from −180◦ to +180◦.
This has to be considered during processing, if the source data should be used without
modifications.

Conversion Steps:

• extract_pieces.awk: Because the input data is too large for one single VTK file,
this script is used to split the ETOPO2 dataset into several pieces; the input is read from
stdin and the contiguous pieces are written into several output files (etopo_xxx.xyz).
By default, 162 pieces are created (latitudes are divided into 9 sections, longitues are
divided into 18 sections).

http://www.globalcmt.org/CMTfiles.html
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• xyz2vtkpoly.sh: This script takes one of the generated pieces (*.xyz ) (filename
given on the command line) and converts it into the vtk format (ASCII, polydata) (output
on stdout).

• convert2binary.tcl, convert2vtp.tcl: With these scripts, the ASCII VTK files
can be converted into the binary VTK format (=> smaller files) or XML VTP format.

• separate_land_sea.tcl: This script takes one VTU file and extracts the parts above
and below sea level. The input file name is the first command line parameter, the file
name for the land file is the second parameter, and the file name for the sea file is the
third parameter.

• make_land_sea.sh: A wrapper script which calls the previous script for all available
VTP files, creates the PVTP files and changes the variable name in the sea files from
“altitude” to “sea_altitude”.

• triangulate_decimate.tcl: This script takes one VTP file and reduces the number
of polygons. It applies the triangulate filter (trapezoids to triangles), the decimate filter
(reduces the number of polygons) and the stripper filter (triangles to triangle strips).

B.4. ETOPO5

Directory: Topo-new

Source Data:

• topo_5min.xyz: ETOPO dataset, created with GMT’s grd2xyz

Conversion Steps:

• downsample-xyz.sh: This script downsamples a *.xyz file by omitting grid points
in both latitude and longitude direction.

• xyz2vtkpoly.sh: This script takes a *.xyz file and converts it to a VTK polydata
file (converts polar to cartesian coordinates, calculates the connectivity).

B.5. Hochstaufen

Directory: Hochstaufen

Source Data:

• RH_topo_ev.xyz: ASCII file with a digital elevation model of the area around
Hochstaufen; 1st column = UTM easting, 2nd column = UTM northing, 3rd column =
height above sea level.
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• bay_gk.dat: list of the seismometer stations around Hochstaufen; 1st column = UTM
easting, 2nd column = UTM northing, 3rd column = height above sea level, 4th column
= station short name

• BULL2002_NLLCC_all.dat: earthquake events in the year 2002; the meaning of the
columns is described in the header

Conversion Steps:

• xyz2vtkpoly.sh: This script creates a VTK (ASCII) file from the grid data (UTM
coordinates) in the file given as the first command line parameter; the output is written
to stdout. The height exaggeration is set to 3.

• create_glyphs.tcl: This script reads a VTK file (given by the first command line
parameter) and creates a sphere at every grid point. The resulting VTK file (name:
second command line parameter) is then saved.

• hochstaufen_make_all.sh: This script generates all VTK files. First,
xyz2vtkpoly.sh is called to create a VTK file of the landscape. Then, the station
coordinates are written into a VTK file and processed with create_glyphs.tcl;
the result is a VTK file with spheres indicating the seismometer stations. Third, the
earthquakes are processed. In a loop, all the events (except those which could not be
well located) before a certain time are written into a VTK file and processed with
create_glyphs.tcl; the result is an animatable series of files where the spheres that
indicate the earthquakes appear accordingly to their occurrence.

B.6. Magnetic Field Reversal

Directory: Magnetic_Field_Reversal

Source Data:

• The provided data are already VTK files, but with the default color table.

Conversion Steps:

• change_colortable.awk: This script normalizes the data values in a VTK file; the
minimum and maximum values are conveyed via environment variables.

• create_lookup_table_france.awk: This script creates a VTK color table with a
nonlinear transition from blue via white to red.

• convert2binary.tcl: This script converts an ASCII VTK file into the binary VTK
format.

• create_glyphs.tcl: This script creates vector arrows according to the vector value
at every grid point of the input file. The filenames are given as command line parameters.
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• convert_cmb_files.sh: This script reads all radcomp_*.vtk files, determines
the minimum and maximum values of the field strength, and normalizes the data
values using change_colortable.awk. After that, a color table (created with
create_lookup_table_france.awk) is appended to the VTK file, and the file is
converted to binary (convert2binary.tcl).

• convert_surface_files.sh: This script is similar to convert_cmb_files.sh,
but since the surface files have additionally a vector field (magnetic field vectors), some ad-
ditional processing steps are necessary. First, the VTK file is converted to a set of vector ar-
rows using create_glyphs.tcl; after some modifications (done with sed), a new color
table is appended also to this file (created with create_lookup_table_france.awk),
and the resulting file is converted to the binary format (with convert2binary.tcl).

B.7. Plate Boundaries

Directory: Plate_Boundaries

Source Data:

• Plate_Boundary_Polygons_org.dat: GMT file with the plate boundary polygons
(see ftp://element.ess.ucla.edu/PB2002/)

Conversion Steps:

• gmtpolygon2vtk.awk: This script reads the GMT file, counts the number of polygons,
converts the polar coordinates into cartesian coordinates, and writes them into a VTK
file together with their connectivity.

• gmtpolygon2vtk_deep.awk: Similar to gmtpolygon2vtk.awk, but each point is
copied to a deeper layer in the earth, so the final result is not a polygonal line, but a
polygon made up of the two lines.

B.8. San Francisco Faults

Directory: San_Francisco_Faults

Source Data:

• Files of the faults around San Francisco in the tsurf format (*.ts_deg83 and
*.ts_km83 ).

Conversion Steps:

ftp://element.ess.ucla.edu/PB2002/
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• tsurf_deg2vtk.awk: This script takes *.ts_deg83 files and converts them into
VTK polydata files. Since the file concepts are similar, only the number of points and
polygons must be counted and the polar coordinates must be converted into cartesian
coordinates.

B.9. Seismic Profile

Directory: Seismic_Profile

Source Data:

• mod00.3d: This binary file contains the raw seismic velocities of a structured grid.

Conversion Steps:

• 3d2vtk.sh: This script writes the VTK header; the binary data is appended using the
tool swapbytes from the Seismic Unix package. Because a left-handed coordinate system
is used, the resulting file must be mirrored afterwards (can be done with Paraview).

B.10. South America Slab Earthquakes

Directory: South_America_Slab_Earthquakes

Source Data:

• jan76_dec05.ndk: A file with all earthquakes from January 1976 until December 2005
(from http://www.globalcmt.org/CMTfiles.html).

• map tiles from ETOPO2 (etopo_*_land.vtp, south_america.pvtp)

Conversion Steps:

• ndk2table.awk: This script takes a *.ndk file and reformats it to a table with all
relevant fields (location, time, magnitude, source mechanism). Only earthquakes with a
magnitude greater than 5.0 and a location around South America are processed.

• make_beachballs_from_file.awk: This script takes a table (generated e.g. with
ndk2table.awk) and creates a beachball for each earthquake event in a VTK file. First,
all points of a beachball sphere in cartesian coordinates are calculated; then, the beachball
is rotated (strike, dip, rake) and shifted to its final position on the earth’s surface.

http://www.globalcmt.org/CMTfiles.html
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B.11. Tecplot

Directory: Tecplot_Josep

Source Data:

• Mesaverde_noQ_O3-000001005.dat: file in Tecplot format (see ftp://ftp.
tecplot.com/pub/doc/tecplot/360/dataformat.pdf)

Conversion Steps:

• tecplot-FE3D2vtk.awk: This script converts a tecplot file to a VTK unstructured
grid file. Because the point coordinates are saved together with the associtated data
values in this file format, the data values are written to a temporary file and appended to
the VTK file after the output of the point coordinates and cells is finished.

ftp://ftp.tecplot.com/pub/doc/tecplot/360/dataformat.pdf
ftp://ftp.tecplot.com/pub/doc/tecplot/360/dataformat.pdf
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C. Contents of the Attached DVDs

/

Documentation...........technical documentation and mentioned scientific papers

Examples..................the mentioned example visualizations including source
data and processing scripts

MPI-tools................useful shell scripts for parallel processing

Software-32bit..........Tarballs of the mentioned software:
• Mesa (normal and mangled), compiled as static

libraries
• mpich with patched message size
• Paraview with stereo support (clone mode) and

modified eye angle, as a normal version, with MPI
and with MPI and Mesa

• VTK

Software-64bit..........Tarballs of 64-bit software:
• Mesa, compiled as static libraries
• mpich with patched message size
• Paraview with MPI and Mesa

TERRA......................TERRA code with all mentioned modifications for VTK
output

VTK-demofiles...........a simple VTK unstructured grid file in different file
formats
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