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SHORT COMMUNICATIONS

NUMERICAL INTEGRATION DURING FOURIER
INTEGRAL ANALYSIS

R. W. I. BRACHMAN AND I. D. MOORE*

Geotechnical Research Centre, The University of Western Ontario, London, Ontario, N6A 5B9 Canada

SUMMARY

Numerical integration required during Fourier integral analysis is discussed. For the case of a long
and prismatic elastic medium subject to three-dimensional loads applied at the surface (e.g. live load
response of buried structures), the complexity of inverse integrals depends on the relative magnitude of
the load width and the distance from the load in the longitudinal direction, as well as the longitudinal
spacing of the loads. The inverse integrand of the applied surface loading is more di$cult to evaluate
compared to those for stresses and displacements. Selection of integration schemes based on successful
inversion of the applied load provides accurate solutions of stress and displacement throughout the elastic
body. The use of superposition when considering complex loading cases is bene"cial. Copyright ( 1999
John Wiley & Sons, Ltd.

KEY WORDS: Fourier integrals; numerical integration; three-dimensional analysis

1. INTRODUCTION

Various researchers are employing Fourier integral methods in the analysis of the three-dimen-
sional elastic response of long prismatic soil structures (e.g. References 1}4). These procedures use
Fourier integrals to transform the response in the longitudinal direction of the prismatic structure
into harmonic form. Solutions are then assembled from harmonics through evaluation of the
inverse integrals. This note describes the nature of these integrals and how Gaussian integration
can be used in their calculation. Speci"c examples feature rectangular pressure distributions in the
longitudinal direction.

2. FOURIER INTEGRALS

The description, theory and implementation of the three-dimensional semi-analytic "nite element
technique is as discussed by Moore and Brachman.2 The Fourier integral approach removes the
dependence upon the longitudinal spatial co-ordinate (i.e. z) in lieu of a transform variable, a. The
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Fourier cosine integral of any function f (m) is de"ned as

F
c
(a)"P

=

0

f (m) cos(am) dm (1)

where F
c
(a) is the Fourier cosine integral of f(m), a the transform variable, and m the variable being

transformed.
For example, vertical applied loads f

y
(z), displacements u

y
(z) and stresses s

y
(z) can be trans-

formed by
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Harmonic "nite element analysis can then be performed with a two-dimensional mesh (de-
scretized in the x}y plane) to solve for the transformed displacements ;(a) and stresses S(a) for
speci"c values of a. Inverse integrals convert the harmonic response back to the Cartesian
coordinate system. Inversions of the Fourier integrals to obtain the vertical applied load,
displacement and stress quantities as a function of z are given by
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The integrands of equations (5)}(7) are functions of the transform variable a which can be
evaluated for any particular z value of interest.

Elastic solutions for three-dimensional problems with long prismatic geometry can therefore be
obtained using a two-dimensional "nite element mesh and Fourier integrals. The successful
application of the Fourier integral approach is contingent on the evaluation of these inverse
Fourier integrals.

3. VARIATION OF APPLIED LOADING

Figure 1(a) illustrates the longitudinal variation of applied loading considered by Moore and
Brachman.2 It consists of two uniform patches of pressure of width w separated by a distance 2z

4
acting on the ground surface. Vehicle loading of buried structures was simulated with w equal to
the tire width and 2z

4
as the axel length. Similar surface pressure distributions were considered by

Fernando et al.4 in their solution of a similar problem. A single patch of pressure of width 2w
centred at z"0 is modelled when z

4
equals zero.
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Figure 1. Inverse Fourier integrals for vertical applied loads. Generalized load function (a). Inverse integral for z
4
"0

with: w"152 mm (b) and w"76 mm (c)

More complex loading functions can also arise. Brachman et al.5 have described how the
Fourier integral technique can be used to assess the elastic ground response to load from a rigid
rectangular footing. Here, the contact pressure under the footing was sub-divided into a series of
uniformly loaded patches. Fourier integral analysis was used to assemble a #exibility relationship
between patch pressures and displacements that was used to solve for the contact pressure. This
analysis featured narrow patches of pressure characterized by the load variation of Figure 1(a),
with z

4
equal to zero and for several patch half-widths (i.e., w). The following sections are based on

the solution requirements of Brachman et al.,5 but are largely generic so that similar principles
apply to most such Fourier integral applications.
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4. TRANSFORMED LOADING FUNCTION

Of the transformed quantities, only the load variation in the longitudinal direction f
y
(z) is known

at the outset of the analysis. The Fourier cosine integral of the general load function f
y
(z) depicted

in Figure 1(a) is given by

F
yc
(a)"

1

a
[sin(z

4
a#wa)!sin(z

4
a)] (8)

The inversion of the Fourier integral to obtain the original load function would involve
performing the integral of equation (5). For a single patch of pressure (i.e. z

s
"0) this integral is

equal to

f
y
(z)"

2

n P
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sin(wa) cos(za)

a
da"

2

n P
=

0

g (a) da (9)

Figure 1 presents plots of the inverse integrand g(a) of equation (9) for two cases with load
half-widths (w) equal to 152 and 76 mm (Figs. 1(b) and 1(c), respectively). In the limit, as
a approaches zero, the integrand g(a) equals w; as a becomes very large (i.e.PR), g(a)
approaches zero. Between these limits, the amplitude of g(a) is inversely proportional to a. The
latter two points are advantageous as the integral in equation (9) can be truncated at some
su$ciently large value to facilitate numerical integration.

The zeros of the inverse integrand of equation (9) are functions of both w and z, and are
controlled by the sin(wa) and cos(za) components. Zeros are located at a"pn/w (p"1, 2, 3, . . .)
for z"0. Decreasing w results in an increase in the period of g(a). For non-zero z, additional roots
arise from the cos(za) component and are located a"(2p!1)n/2z (p"1, 2, 3, . . . ), as shown by
the z"2740 mm curves. The additional complexity of the integrand for larger z values is
signi"cant as greater numerical e!ort is required to invert the transform.

5. TRANSFORMED DISPLACEMENTS AND STRESSES

Transformed displacements;(a) and stresses S(a) are initially unknown and thus prohibit a direct
examination of the inverse integrands as previously performed for the applied load. A simple test
case involving a uniformly loaded patch was therefore analyzed to calculate the transformed
displacements and stressed for various harmonic values. Results are shown for the case of
a square patch of pressure (z

4
"0) of dimensions 2w]2w (w"152 mm) acting on an elastic

surface (E"50 MPa, l"0)3). The two-dimensional (x}y) "nite element mesh used for the
analysis consisted of 52 six-noded triangles (Figure 2).

5.1. Transformed stresses

Figure 3(a) shown the stress integrand S
yc
(a) cos(az) for the vertical stress s

y
, at point A near

the surface. This plot is very similar to the integrand g(a) of the applied load previously shown
in Figure 1(b). As expected the vertical stress near the surface is close to the applied surface
traction. There is a 30 per cent decrease in amplitude of the function in Figure 3(a) relative to
that in Figure 1(b) resulting from slight attenuation with depth. As previously, noted, the
integrand becomes more complex for larger values of z, indicated by the z"2740 mm curve in
Figure 3(a).
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Figure 2. Two-dimensional "nite element mesh used for test case

Figure 3. Inverse Fourier integrals for: (a) vertical stress at point A; (b) vertical stress at point B; (c) vertical displacement
at point A; and (d) vertical displacement at point B (all with w"152 mm, z

4
"0)
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Figure 3(b) shows the function to be inverted to obtain the vertical stress at point B (0)9 m
below the surface). Signi"cant attenuation with depth occurs in comparison with point A. The
magnitude of the stress integrand at point B is roughly one-"fth of that for point A, when a equals
zero. More importantly, the magnitude of the stress integrand at point B is essentially zero for
a larger than 10. This is in sharp contrast to the periodic function for point A that extends to large
values of a.

5.2. Transformed displacements

The inverse Fourier integral for vertical displacement ;
yc
(a)cos(az) at point A is plotted in

Figure 3(c). This integrand is much simpler than that required to invert the transformed loads.
The magnitude of the displacement integrand decreases more rapidly for an increase in a than
does the load integral. The displacement integrand shown in Figure 3(c) is nearly zero for a larger
than 40.

The integrand for the transformed displacements also displays signi"cant attenuation with
depth when evaluated at location B (Figure 3(d)). The integrand of the transformed displacements
also becomes less complex with depth.

5.3. Implications for Fourier integral analysis

Two major conclusions may be drawn from the comparison of the integrands for evaluation of
stresses and displacements. First, the Fourier integral of the original load function is more
complex than other quantities like displacement since the surface load features a discontinuity.
Therefore, the numerical inversion of the transform of surface load is more di$cult than other
transform quantities. Second, the inversion of stress or displacement quantities at the surface is
more di$cult than the inversion of those quantities below the surface.

Therefore, the most di$cult integrand to integrate numerically would correspond to the
inversion of the transform of the original applied load at the surface. This is advantageous as the
load variation is known a priori. Provided that the numerical inversion is su$cient for this most
di$cult case, con"dence of an accurate solution can be assured for other quantities, both at the
surface and at other locations in the ground.

6. NUMERICAL INTEGRATION

Now that the nature of the Fourier integrals has been examined, a discussion of the numerical
technique used to perform the inverse integrals is presented. The integration of some function of
a between zero and in"nity can be performed numerically by "rst truncating the upper limit of the
integrand from in"nity to some "nite value, and second by evaluating the truncated integral piece
wise as a number of sub-integrals, ie.:

P
=

0

f (a) da+
N
+
i/1
P

*a i

*a (i~1)

f (a) da (10)

where N is the number of sub-integrals, and *a the width of sub-integral.
Each sub-integral was evaluated using ten point Gaussian integration. Trials were also

conducted with two point Gaussian integration which was found to be somewhat less e$cient.
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The accuracy of the integration is controlled by the number (N) and size (*a) of the subinteg-
rals. The selection of these parameters, which determine the upper limit of the integration
(*a]N) and the re"nement of each sub-integral, is dictated by the need for a solution to be both
accurate and e$cient.

6.1. Solution of test case}uniformly loaded patch

The trial case involving a uniformly loaded patch (2w]2w) was also analyzed to investigate the
e!ectiveness of the integration scheme and to verify that correct vertical displacements at the
surface were obtained even for large z values away from the load, as required by the particular
problem considered by Brachman et al.5

Since the test problem is symmetric along the lines x"0 and z"0, the vertical de#ec-
tions along these lines should be the same. This premise was used to test the inversion scheme
by comparing the vertical de#ections along the line z"0 to those obtained along
x"0.

Figure 4(a) plots the sets of vertical de#ection results for w of 152 mm. The solid curve
represents the de#ections obtained in the x}y plane (i.e. along z"0). The other sets are the
calculated de#ections in the y}z plane (i.e. along x"0) for two di!erent Gaussian quadrature
schemes. The prediction with N"5, *a"15 provides reasonable results up to z of 1)8 m, and
then di!ers from the solid curve. The de#ections here are essentially zero, however this di!erence
illustrates the e!ect of large z values on the success of the integration scheme. As previously
shown in Figure 3(c), the function to be integrated ;

yc
(a)cos(az) becomes more complicated

as z increases, consequently a "ner sub-integral width is required. Figure 4(a) shows that with
N"5 and *a"10, which involves integration with a smaller upper limit, but with greater
re"nement compared to N"5, *a"15, the correct displacements are obtained for z values
up to 3 m.

Figure 4(b) presents the calculated vertical de#ections for w of 76 mm. The solid curve again
shows the vertical de#ection along the line z"0, against which the values obtained along the
z-axis will be compared. Curve (ii) presents the de#ections obtained using the adopted inte-
gration scheme for w of 152 mm (i.e. N"5, *a"10). These results provide a reasonable estimate
of the vertical de#ections, however the value at the centre of the patch is slightly overestimated
and there is some slight oscillation of the predictions for the higher z values. Curve (iii)
shows the consequences of integrating to larger values of a with a coarse sub-integral size.
Poor results are obtained with N"5, *a"20, especially for z larger than 1)7 m. Ex-
tending the integration scheme to the same a value used for curve (iii) but with twice the
number of sub-integrals (i.e. N"10, *a"10) yields good results up to z of 3 m, shown by curve
(iv).

These trial cases con"rm that the numerical integration techniques may be successfully used to
invert Fourier integrals provided that enough Gaussian quadrature intervals, of small enough
size are employed.

7. ANALYSIS WITH MULTI-STEP LOADING

Analysis of multi-step loading (e.g. the two load patches of width w separated by distance 2z
4
, of

Figure 1(a)) is more arduous than that for a single patch of pressure. The Fourier cosine integral
for the generalized load distribution of Figure 1(a) was given previously in equation (8). The
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Figure 4. Vertical de#ections (u
y
) calculated at the surface using di!erent integration schemes for: (a) w"152 mm, and (b)

w"76 mm

corresponding equation to invert the transform is

f (z)"
2

p P
=

0

[sin(z
4
a#wa)!sin(z

4
a)] cos(za)

a
da (11)

The integrand of equation (11), g(a), is plotted in Figure 5 for cases of w"152, and 76 mm (with
z"0). Values are shown for both z

4
equal to zero and a large value of z

4
. The increased

complexity of the integrand for non-zero values of z
4
is illustrated in Figure 9. A greater number of

zeros result from the sin(z
4
a) components of equation (11) and the amplitude of g(a) is harmonic

for non-zero z
4
. For locations other than at z"0, g(a) may be even more complex. The additional

complexity introduced into the integrand by non-zero z
4
values means that greater computational

e!ort is needed to invert the transform.
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Figure 5. Inverse Fourier integrals for multi-step load variation showing e!ect of non-zero z
4
(calculated at z"0) for: (a)

w"152 mm, and (b) w"76 mm

The transform of the load function becomes increasingly complex for the case of large z
4

relative to w. When evaluating inverse integrals for large z
4

relative to w, it was found to be
considerable more e$cient to employ superposition to assemble the solution for the multi-step
load variation from two simpler solutions with z

4
equal to zero. For example, solution e$ciency

was improved by considering the response to a load with half-width (z
4
#w) minus the response

to a load with half-width (z
4
), rather than by direct evaluation of the load case shown in

Figure 1(a).

SUMMARY AND CONCLUSION

The nature of the inverse integrals and the numerical integration required to employ Fourier
integral analysis of three-dimensional problems has been described. These integrals may be
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complex functions for the generalized load function considered, particularly for evaluation at
non-zero longitudinal positions (zO0) and for patches separated by distance z

4
.

The Fourier integral of applied load is more complex and thus more di$cult to invert than
those for stresses and displacements. Since the applied load is known a priori, integration schemes
can be selected that provide accurate and e$cient inversion of the original load function. This
assures correct stresses and displacements throughout the elastic body. The complexity of Fourier
integrals of stress and displacement decreases signi"cantly with depth. Accuracy of Fourier
integral inversions therefore improves as depth increases below the applied loading.

The use of piece-wise Gaussian integration over a truncated region provides good results
provided that su$cient number and re"nement of sub-integrals is selected. For the case of
a simple loaded area, these choices depend on the relative magnitude of load width w and
maximum longitudinal co-ordinate (maximum z-value). For multi-step loads integration must be
re"ned to account for the additional complexity of the inverse integrals. For cases with loaded
areas separated by large distances (relative to the load width) the use of superposition involving
load components with less complex inverse integrals is bene"cial.
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