!-------------------------------------------------------------------------------------------------- !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Su Leen Wong, Max-Planck-Institut für Eisenforschung GmbH !> @author Nan Jia, Max-Planck-Institut für Eisenforschung GmbH !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine incoprorating dislocation and twinning physics !> @details to be done !-------------------------------------------------------------------------------------------------- module plastic_dislotwin use prec, only: & pReal, & pInt implicit none private integer(pInt), dimension(:,:), allocatable, target, public :: & plastic_dislotwin_sizePostResult !< size of each post result output character(len=64), dimension(:,:), allocatable, target, public :: & plastic_dislotwin_output !< name of each post result output real(pReal), parameter, private :: & kB = 1.38e-23_pReal !< Boltzmann constant in J/Kelvin enum, bind(c) enumerator :: undefined_ID, & edge_density_ID, & dipole_density_ID, & shear_rate_slip_ID, & accumulated_shear_slip_ID, & mfp_slip_ID, & resolved_stress_slip_ID, & threshold_stress_slip_ID, & edge_dipole_distance_ID, & stress_exponent_ID, & twin_fraction_ID, & shear_rate_twin_ID, & accumulated_shear_twin_ID, & mfp_twin_ID, & resolved_stress_twin_ID, & threshold_stress_twin_ID, & resolved_stress_shearband_ID, & shear_rate_shearband_ID, & stress_trans_fraction_ID, & strain_trans_fraction_ID end enum type,private :: tParameters integer(kind(undefined_ID)), dimension(:), allocatable, private :: & outputID !< ID of each post result output logical :: & isFCC !< twinning and transformation models are for fcc real(pReal) :: & mu, & nu, & CAtomicVolume, & !< atomic volume in Bugers vector unit D0, & !< prefactor for self-diffusion coefficient Qsd, & !< activation energy for dislocation climb GrainSize, & ! @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- subroutine plastic_dislotwin_init(fileUnit) #if defined(__GFORTRAN__) || __INTEL_COMPILER >= 1800 use, intrinsic :: iso_fortran_env, only: & compiler_version, & compiler_options #endif use prec, only: & dEq0, & dNeq0, & dNeq use debug, only: & debug_level,& debug_constitutive,& debug_levelBasic use math, only: & math_rotate_forward3333, & math_Mandel3333to66, & math_Voigt66to3333, & math_mul3x3, & math_expand,& PI use mesh, only: & mesh_maxNips, & mesh_NcpElems use IO, only: & IO_warning, & IO_error, & IO_timeStamp use material, only: & homogenization_maxNgrains, & phase_plasticity, & phase_plasticityInstance, & phase_Noutput, & PLASTICITY_DISLOTWIN_label, & PLASTICITY_DISLOTWIN_ID, & material_phase, & plasticState use config, only: & MATERIAL_partPhase, & config_phase use lattice use numerics,only: & numerics_integrator implicit none integer(pInt), intent(in) :: fileUnit integer(pInt) :: Ninstances,& f,j,i,k,l,m,n,o,p,q,r,s,p1, & offset_slip, index_myFamily, index_otherFamily, & startIndex, endIndex, outputSize integer(pInt) :: sizeState, sizeDotState, sizeDeltaState integer(pInt) :: NofMyPhase integer(kind(undefined_ID)) outputID real(pReal), dimension(3,3,3,3) :: & temp3333 real(pReal), allocatable, dimension(:) :: & invLambdaSlip0,& MeanFreePathSlip0,& MeanFreePathTrans0,& MeanFreePathTwin0,& tauSlipThreshold0,& TwinVolume0,& MartensiteVolume0 real(pReal), allocatable, dimension(:,:) :: temp1,temp2,temp3 character(len=65536) :: & tag = '' character(len=65536), dimension(:), allocatable :: outputs integer(pInt), dimension(0), parameter :: emptyInt = [integer(pInt)::] real(pReal), dimension(0), parameter :: emptyReal = [real(pReal)::] character(len=65536), dimension(0), parameter :: emptyString = [character(len=65536)::] type(tParameters) :: & prm type(tDislotwinState) :: & stt, & dst type(tDislotwinMicrostructure) :: & mse write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_DISLOTWIN_label//' init -+>>>' write(6,'(/,a)') ' A. Ma and F. Roters, Acta Materialia, 52(12):3603–3612, 2004' write(6,'(a)') ' https://doi.org/10.1016/j.actamat.2004.04.012' write(6,'(/,a)') ' F.Roters et al., Computational Materials Science, 39:91–95, 2007' write(6,'(a)') ' https://doi.org/10.1016/j.commatsci.2006.04.014' write(6,'(/,a)') ' Wong et al., Acta Materialia, 118:140–151, 2016' write(6,'(a,/)') ' https://doi.org/10.1016/j.actamat.2016.07.032' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" Ninstances = int(count(phase_plasticity == PLASTICITY_DISLOTWIN_ID),pInt) if (Ninstances == 0_pInt) return if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) & write(6,'(a16,1x,i5,/)') '# instances:',Ninstances allocate(plastic_dislotwin_sizePostResult(maxval(phase_Noutput),Ninstances),source=0_pInt) allocate(plastic_dislotwin_output(maxval(phase_Noutput),Ninstances)) plastic_dislotwin_output = '' allocate(param(Ninstances)) allocate(state(Ninstances)) allocate(dotState(Ninstances)) allocate(microstructure(Ninstances)) do p = 1_pInt, size(phase_plasticityInstance) if (phase_plasticity(p) /= PLASTICITY_DISLOTWIN_ID) cycle associate(prm => param(phase_plasticityInstance(p)), & dst => dotState(phase_plasticityInstance(p)), & stt => state(phase_plasticityInstance(p)), & mse => microstructure(phase_plasticityInstance(p))) ! This data is read in already in lattice prm%isFCC = merge(.true., .false., lattice_structure(p) == LATTICE_FCC_ID) prm%mu = lattice_mu(p) prm%nu = lattice_nu(p) prm%C66 = lattice_C66(1:6,1:6,p) prm%Nslip = config_phase(p)%getInts('nslip',defaultVal=emptyInt) if (size(prm%Nslip) > count(lattice_NslipSystem(:,p) > 0_pInt)) call IO_error(150_pInt,ext_msg='Nslip') if (any(lattice_NslipSystem(1:size(prm%Nslip),p)-prm%Nslip < 0_pInt)) call IO_error(150_pInt,ext_msg='Nslip') if (any(prm%Nslip < 0_pInt)) call IO_error(150_pInt,ext_msg='Nslip') prm%totalNslip = sum(prm%Nslip) if (prm%totalNslip > 0_pInt) then prm%rho0 = config_phase(p)%getFloats('rhoedge0') prm%rhoDip0 = config_phase(p)%getFloats('rhoedgedip0') prm%burgers_slip = config_phase(p)%getFloats('slipburgers') if (size(prm%burgers_slip) /= size(prm%Nslip)) call IO_error(150_pInt,ext_msg='slipburgers') prm%burgers_slip = math_expand(prm%burgers_slip,prm%Nslip) prm%Qedge = config_phase(p)%getFloats('qedge') prm%Qedge = math_expand(prm%Qedge,prm%Nslip) prm%v0 = config_phase(p)%getFloats('v0') prm%v0 = math_expand(prm%v0,prm%Nslip) prm%interaction_SlipSlip = spread(config_phase(p)%getFloats('interaction_slipslip'),2,1) prm%CEdgeDipMinDistance = config_phase(p)%getFloat('cedgedipmindistance') prm%CLambdaSlip = config_phase(p)%getFloats('clambdaslip') prm%CLambdaSlip= math_expand(prm%CLambdaSlip,prm%Nslip) prm%tau_peierls = config_phase(p)%getFloats('tau_peierls',defaultVal=[0.0_pReal]) prm%p = config_phase(p)%getFloats('p_slip') prm%q = config_phase(p)%getFloats('q_slip') endif prm%Ntwin = config_phase(p)%getInts('ntwin', defaultVal=emptyInt) if (size(prm%Ntwin) > count(lattice_NtwinSystem(:,p) > 0_pInt)) call IO_error(150_pInt,ext_msg='Ntwin') if (any(lattice_NtwinSystem(1:size(prm%Ntwin),p)-prm%Ntwin < 0_pInt)) call IO_error(150_pInt,ext_msg='Ntwin') if (any(prm%Ntwin < 0_pInt)) call IO_error(150_pInt,ext_msg='Ntwin') prm%totalNtwin = sum(prm%Ntwin) if (prm%totalNtwin > 0_pInt) then prm%burgers_twin = config_phase(p)%getFloats('twinburgers') prm%burgers_twin = math_expand(prm%burgers_twin,prm%Ntwin) prm%xc_twin = config_phase(p)%getFloat('xc_twin') prm%Cthresholdtwin = config_phase(p)%getFloat('cthresholdtwin', defaultVal=0.0_pReal) prm%Cmfptwin = config_phase(p)%getFloat('cmfptwin', defaultVal=0.0_pReal) ! ToDo: How to handle that??? prm%interaction_TwinTwin = spread(config_phase(p)%getFloats('interaction_twintwin'),2,1) if (.not. prm%isFCC) then prm%Ndot0_twin = config_phase(p)%getFloats('ndot0_twin') prm%Ndot0_twin = math_expand(prm%Ndot0_twin,prm%Ntwin) endif prm%twinsize = config_phase(p)%getFloats('twinsize') prm%twinsize= math_expand(prm%twinsize,prm%Ntwin) prm%r = config_phase(p)%getFloats('r_twin') prm%r = math_expand(prm%r,prm%Ntwin) prm%L0_twin = config_phase(p)%getFloat('l0_twin') endif prm%Ntrans = config_phase(p)%getInts('ntrans', defaultVal=emptyInt) prm%totalNtrans = sum(prm%Ntrans) !if (size > Nchunks_SlipFamilies + 1_pInt) call IO_error(150_pInt,ext_msg=extmsg) if (prm%totalNtrans > 0_pInt) then prm%burgers_trans = config_phase(p)%getFloats('transburgers') prm%burgers_trans = math_expand(prm%burgers_trans,prm%Ntrans) prm%Cthresholdtrans = config_phase(p)%getFloat('cthresholdtrans', defaultVal=0.0_pReal) ! ToDo: How to handle that??? prm%transStackHeight = config_phase(p)%getFloat('transstackheight', defaultVal=0.0_pReal) ! ToDo: How to handle that??? prm%Cmfptrans = config_phase(p)%getFloat('cmfptrans', defaultVal=0.0_pReal) ! ToDo: How to handle that??? prm%deltaG = config_phase(p)%getFloat('deltag') prm%xc_trans = config_phase(p)%getFloat('xc_trans', defaultVal=0.0_pReal) ! ToDo: How to handle that??? prm%L0_trans = config_phase(p)%getFloat('l0_trans') prm%interaction_TransTrans = spread(config_phase(p)%getFloats('interaction_transtrans'),2,1) if (lattice_structure(p) /= LATTICE_fcc_ID) then prm%Ndot0_trans = config_phase(p)%getFloats('ndot0_trans') prm%Ndot0_trans = math_expand(prm%Ndot0_trans,prm%Ntrans) endif prm%lamellarsizePerTransSystem = config_phase(p)%getFloats('lamellarsize') prm%lamellarsizePerTransSystem = math_expand(prm%lamellarsizePerTransSystem,prm%Ntrans) prm%s = config_phase(p)%getFloats('s_trans',defaultVal=[0.0_pReal]) endif if (sum(prm%Ntwin) > 0_pInt .or. sum(prm%Ntrans) > 0_pInt) then prm%SFE_0K = config_phase(p)%getFloat('sfe_0k') prm%dSFE_dT = config_phase(p)%getFloat('dsfe_dt') prm%VcrossSlip = config_phase(p)%getFloat('vcrossslip') endif if (prm%totalNslip > 0_pInt .and. prm%totalNtwin > 0_pInt) then prm%interaction_SlipTwin = spread(config_phase(p)%getFloats('interaction_sliptwin'),2,1) prm%interaction_TwinSlip = spread(config_phase(p)%getFloats('interaction_twinslip'),2,1) prm%p = math_expand(prm%p,prm%Nslip) prm%q = math_expand(prm%q,prm%Nslip) prm%tau_peierls = math_expand(prm%tau_peierls,prm%Nslip) endif if (prm%totalNslip > 0_pInt .and. prm%totalNtrans > 0_pInt) then prm%interaction_TransSlip = spread(config_phase(p)%getFloats('interaction_transslip'),2,1) prm%interaction_SlipTrans = spread(config_phase(p)%getFloats('interaction_sliptrans'),2,1) endif prm%aTolRho = config_phase(p)%getFloat('atol_rho', defaultVal=0.0_pReal) prm%aTolTwinFrac = config_phase(p)%getFloat('atol_twinfrac', defaultVal=0.0_pReal) prm%aTolTransFrac = config_phase(p)%getFloat('atol_transfrac', defaultVal=0.0_pReal) prm%CAtomicVolume = config_phase(p)%getFloat('catomicvolume') prm%GrainSize = config_phase(p)%getFloat('grainsize') prm%MaxTwinFraction = config_phase(p)%getFloat('maxtwinfraction') ! ToDo: only used in postResults prm%D0 = config_phase(p)%getFloat('d0') prm%Qsd = config_phase(p)%getFloat('qsd') prm%SolidSolutionStrength = config_phase(p)%getFloat('solidsolutionstrength') prm%dipoleFormationFactor= config_phase(p)%getFloat('dipoleformationfactor', defaultVal=1.0_pReal) ! ToDo: How to handle that??? prm%sbVelocity = config_phase(p)%getFloat('shearbandvelocity',defaultVal=0.0_pReal) if (prm%sbVelocity > 0.0_pReal) then prm%sbResistance = config_phase(p)%getFloat('shearbandresistance') prm%sbQedge = config_phase(p)%getFloat('qedgepersbsystem') prm%pShearBand = config_phase(p)%getFloat('p_shearband') prm%qShearBand = config_phase(p)%getFloat('q_shearband') endif outputs = config_phase(p)%getStrings('(output)', defaultVal=emptyString) allocate(prm%outputID(0)) do i= 1_pInt, size(outputs) outputID = undefined_ID select case(outputs(i)) case ('edge_density') outputID = edge_density_ID outputSize = prm%totalNslip case ('dipole_density') outputID = dipole_density_ID outputSize = prm%totalNslip case ('shear_rate_slip','shearrate_slip') outputID = shear_rate_slip_ID outputSize = prm%totalNslip case ('accumulated_shear_slip') outputID = accumulated_shear_slip_ID outputSize = prm%totalNslip case ('mfp_slip') outputID = mfp_slip_ID outputSize = prm%totalNslip case ('resolved_stress_slip') outputID = resolved_stress_slip_ID outputSize = prm%totalNslip case ('threshold_stress_slip') outputID= threshold_stress_slip_ID outputSize = prm%totalNslip case ('edge_dipole_distance') outputID = edge_dipole_distance_ID outputSize = prm%totalNslip case ('stress_exponent') outputID = stress_exponent_ID outputSize = prm%totalNslip case ('twin_fraction') outputID = twin_fraction_ID outputSize = prm%totalNtwin case ('shear_rate_twin','shearrate_twin') outputID = shear_rate_twin_ID outputSize = prm%totalNtwin case ('accumulated_shear_twin') outputID = accumulated_shear_twin_ID outputSize = prm%totalNtwin case ('mfp_twin') outputID = mfp_twin_ID outputSize = prm%totalNtwin case ('resolved_stress_twin') outputID = resolved_stress_twin_ID outputSize = prm%totalNtwin case ('threshold_stress_twin') outputID = threshold_stress_twin_ID outputSize = prm%totalNtwin case ('resolved_stress_shearband') outputID = resolved_stress_shearband_ID outputSize = 6_pInt case ('shear_rate_shearband','shearrate_shearband') outputID = shear_rate_shearband_ID outputSize = 6_pInt case ('stress_trans_fraction') outputID = stress_trans_fraction_ID outputSize = prm%totalNtrans case ('strain_trans_fraction') outputID = strain_trans_fraction_ID outputSize = prm%totalNtrans end select if (outputID /= undefined_ID) then plastic_dislotwin_output(i,phase_plasticityInstance(p)) = outputs(i) plastic_dislotwin_sizePostResult(i,phase_plasticityInstance(p)) = outputSize prm%outputID = [prm%outputID, outputID] endif enddo do f = 1_pInt,lattice_maxNslipFamily ! if (rhoEdge0(f,p) < 0.0_pReal) & ! call IO_error(211_pInt,el=p,ext_msg='rhoEdge0 ('//PLASTICITY_DISLOTWIN_label//')') ! if (rhoEdgeDip0(f,p) < 0.0_pReal) & ! call IO_error(211_pInt,el=p,ext_msg='rhoEdgeDip0 ('//PLASTICITY_DISLOTWIN_label//')') ! if (burgersPerSlipFamily(f,p) <= 0.0_pReal) & ! call IO_error(211_pInt,el=p,ext_msg='slipBurgers ('//PLASTICITY_DISLOTWIN_label//')') !if (v0PerSlipFamily(f,p) <= 0.0_pReal) & ! call IO_error(211_pInt,el=p,ext_msg='v0 ('//PLASTICITY_DISLOTWIN_label//')') !if (prm%tau_peierlsPerSlipFamily(f) < 0.0_pReal) & ! call IO_error(211_pInt,el=p,ext_msg='tau_peierls ('//PLASTICITY_DISLOTWIN_label//')') enddo do f = 1_pInt,lattice_maxNtwinFamily ! if (burgersPerTwinFamily(f,p) <= 0.0_pReal) & ! call IO_error(211_pInt,el=p,ext_msg='twinburgers ('//PLASTICITY_DISLOTWIN_label//')') !if (Ndot0PerTwinFamily(f,p) < 0.0_pReal) & ! call IO_error(211_pInt,el=p,ext_msg='ndot0_twin ('//PLASTICITY_DISLOTWIN_label//')') enddo if (prm%CAtomicVolume <= 0.0_pReal) & call IO_error(211_pInt,el=p,ext_msg='cAtomicVolume ('//PLASTICITY_DISLOTWIN_label//')') if (prm%D0 <= 0.0_pReal) & call IO_error(211_pInt,el=p,ext_msg='D0 ('//PLASTICITY_DISLOTWIN_label//')') if (prm%Qsd <= 0.0_pReal) & call IO_error(211_pInt,el=p,ext_msg='Qsd ('//PLASTICITY_DISLOTWIN_label//')') if (prm%totalNtwin > 0_pInt) then if (dEq0(prm%SFE_0K) .and. & dEq0(prm%dSFE_dT) .and. & lattice_structure(p) == LATTICE_fcc_ID) & call IO_error(211_pInt,el=p,ext_msg='SFE0K ('//PLASTICITY_DISLOTWIN_label//')') if (prm%aTolRho <= 0.0_pReal) & call IO_error(211_pInt,el=p,ext_msg='aTolRho ('//PLASTICITY_DISLOTWIN_label//')') if (prm%aTolTwinFrac <= 0.0_pReal) & call IO_error(211_pInt,el=p,ext_msg='aTolTwinFrac ('//PLASTICITY_DISLOTWIN_label//')') endif if (prm%totalNtrans > 0_pInt) then if (dEq0(prm%SFE_0K) .and. & dEq0(prm%dSFE_dT) .and. & lattice_structure(p) == LATTICE_fcc_ID) & call IO_error(211_pInt,el=p,ext_msg='SFE0K ('//PLASTICITY_DISLOTWIN_label//')') if (prm%aTolTransFrac <= 0.0_pReal) & call IO_error(211_pInt,el=p,ext_msg='aTolTransFrac ('//PLASTICITY_DISLOTWIN_label//')') endif !if (prm%sbResistance < 0.0_pReal) & ! call IO_error(211_pInt,el=p,ext_msg='sbResistance ('//PLASTICITY_DISLOTWIN_label//')') !if (prm%sbVelocity < 0.0_pReal) & ! call IO_error(211_pInt,el=p,ext_msg='sbVelocity ('//PLASTICITY_DISLOTWIN_label//')') !if (prm%sbVelocity > 0.0_pReal .and. & ! prm%pShearBand <= 0.0_pReal) & ! call IO_error(211_pInt,el=p,ext_msg='pShearBand ('//PLASTICITY_DISLOTWIN_label//')') if (dNeq0(prm%dipoleFormationFactor) .and. & dNeq(prm%dipoleFormationFactor, 1.0_pReal)) & call IO_error(211_pInt,el=p,ext_msg='dipoleFormationFactor ('//PLASTICITY_DISLOTWIN_label//')') if (prm%sbVelocity > 0.0_pReal .and. & prm%qShearBand <= 0.0_pReal) & call IO_error(211_pInt,el=p,ext_msg='qShearBand ('//PLASTICITY_DISLOTWIN_label//')') NofMyPhase=count(material_phase==p) !-------------------------------------------------------------------------------------------------- ! allocate state arrays sizeDotState = int(size(['rho ','rhoDip ','accshearslip']),pInt) * prm%totalNslip & + int(size(['twinFraction','accsheartwin']),pInt) * prm%totalNtwin & + int(size(['stressTransFraction','strainTransFraction']),pInt) * prm%totalNtrans sizeDeltaState = 0_pInt sizeState = sizeDotState + sizeDeltaState plasticState(p)%sizeState = sizeDotState plasticState(p)%sizeDotState = sizeDotState plasticState(p)%sizePostResults = sum(plastic_dislotwin_sizePostResult(:,phase_plasticityInstance(p))) plasticState(p)%nSlip = prm%totalNslip plasticState(p)%nTwin = prm%totalNtwin plasticState(p)%nTrans= prm%totalNtrans allocate(plasticState(p)%aTolState (sizeState), source=0.0_pReal) allocate(plasticState(p)%state0 (sizeState,NofMyPhase), source=0.0_pReal) allocate(plasticState(p)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal) allocate(plasticState(p)%subState0 (sizeState,NofMyPhase), source=0.0_pReal) allocate(plasticState(p)%state (sizeState,NofMyPhase), source=0.0_pReal) allocate(plasticState(p)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal) allocate(plasticState(p)%deltaState (sizeDeltaState,NofMyPhase), source=0.0_pReal) if (any(numerics_integrator == 1_pInt)) then allocate(plasticState(p)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal) allocate(plasticState(p)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal) endif if (any(numerics_integrator == 4_pInt)) & allocate(plasticState(p)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal) if (any(numerics_integrator == 5_pInt)) & allocate(plasticState(p)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal) ! ToDo: do later on offset_slip = 2_pInt*plasticState(p)%nslip plasticState(p)%slipRate => & plasticState(p)%dotState(offset_slip+1:offset_slip+plasticState(p)%nslip,1:NofMyPhase) plasticState(p)%accumulatedSlip => & plasticState(p)%state (offset_slip+1:offset_slip+plasticState(p)%nslip,1:NofMyPhase) ! ToDo: All these things are repeated for each constitutive law. Lattice can provide it as a 'sevice' ! See 44 branch allocate(temp1(prm%totalNslip,prm%totalNslip), source =0.0_pReal) allocate(temp2(prm%totalNslip,prm%totalNtwin), source =0.0_pReal) allocate(temp3(prm%totalNslip,prm%totalNtrans),source =0.0_pReal) allocate(prm%Schmid_slip(3,3,prm%totalNslip),source = 0.0_pReal) allocate(prm%forestProjectionEdge(prm%totalNslip,prm%totalNslip),source = 0.0_pReal) i = 0_pInt mySlipFamilies: do f = 1_pInt,size(prm%Nslip,1) index_myFamily = sum(prm%Nslip(1:f-1_pInt)) slipSystemsLoop: do j = 1_pInt,prm%Nslip(f) i = i + 1_pInt prm%Schmid_slip(1:3,1:3,i) = lattice_Sslip(1:3,1:3,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p) do o = 1_pInt, size(prm%Nslip,1) index_otherFamily = sum(prm%Nslip(1:o-1_pInt)) do k = 1_pInt,prm%Nslip(o) ! loop over (active) systems in other family (slip) prm%forestProjectionEdge(index_myFamily+j,index_otherFamily+k) = & abs(math_mul3x3(lattice_sn(:,sum(lattice_NslipSystem(1:f-1,p))+j,p), & lattice_st(:,sum(lattice_NslipSystem(1:o-1,p))+k,p))) temp1(index_myFamily+j,index_otherFamily+k) = & prm%interaction_SlipSlip(lattice_interactionSlipSlip( & sum(lattice_NslipSystem(1:f-1,p))+j, & sum(lattice_NslipSystem(1:o-1,p))+k, & p),1 ) enddo; enddo do o = 1_pInt,size(prm%Ntwin,1) index_otherFamily = sum(prm%Ntwin(1:o-1_pInt)) do k = 1_pInt,prm%Ntwin(o) ! loop over (active) systems in other family (twin) temp2(index_myFamily+j,index_otherFamily+k) = & prm%interaction_SlipTwin(lattice_interactionSlipTwin( & sum(lattice_NslipSystem(1:f-1_pInt,p))+j, & sum(lattice_NtwinSystem(1:o-1_pInt,p))+k, & p),1 ) enddo; enddo do o = 1_pInt,size(prm%Ntrans,1) index_otherFamily = sum(prm%Ntrans(1:o-1_pInt)) do k = 1_pInt,prm%Ntrans(o) ! loop over (active) systems in other family (trans) temp3(index_myFamily+j,index_otherFamily+k) = & prm%interaction_SlipTrans(lattice_interactionSlipTrans( & sum(lattice_NslipSystem(1:f-1_pInt,p))+j, & sum(lattice_NtransSystem(1:o-1_pInt,p))+k, & p),1 ) enddo; enddo enddo slipSystemsLoop enddo mySlipFamilies prm%interaction_SlipSlip = temp1; deallocate(temp1) prm%interaction_SlipTwin = temp2; deallocate(temp2) prm%interaction_SlipTrans = temp3; deallocate(temp3) allocate(temp1(prm%totalNtwin,prm%totalNslip), source =0.0_pReal) allocate(temp2(prm%totalNtwin,prm%totalNtwin), source =0.0_pReal) allocate(prm%C66_twin(6,6,prm%totalNtwin), source=0.0_pReal) allocate(prm%Schmid_twin(3,3,prm%totalNtwin),source = 0.0_pReal) if (lattice_structure(p) == LATTICE_fcc_ID) & allocate(prm%fcc_twinNucleationSlipPair(2,prm%totalNtwin),source = 0_pInt) allocate(prm%shear_twin(prm%totalNtwin),source = 0.0_pReal) i = 0_pInt twinFamiliesLoop: do f = 1_pInt, size(prm%Ntwin,1) index_myFamily = sum(prm%Ntwin(1:f-1_pInt)) ! index in truncated twin system list twinSystemsLoop: do j = 1_pInt,prm%Ntwin(f) i = i + 1_pInt prm%Schmid_twin(1:3,1:3,i) = lattice_Stwin(1:3,1:3,sum(lattice_NTwinsystem(1:f-1,p))+j,p) prm%shear_twin(i) = lattice_shearTwin(sum(lattice_Ntwinsystem(1:f-1,p))+j,p) if (lattice_structure(p) == LATTICE_fcc_ID) prm%fcc_twinNucleationSlipPair(1:2,i) = & lattice_fcc_twinNucleationSlipPair(1:2,sum(lattice_Ntwinsystem(1:f-1,p))+j) !* Rotate twin elasticity matrices temp3333 = 0.0_pReal index_otherFamily = sum(lattice_NtwinSystem(1:f-1_pInt,p)) ! index in full lattice twin list do l = 1_pInt,3_pInt; do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt; do o = 1_pInt,3_pInt do p1 = 1_pInt,3_pInt; do q = 1_pInt,3_pInt; do r = 1_pInt,3_pInt; do s = 1_pInt,3_pInt temp3333(l,m,n,o) = & temp3333(l,m,n,o) + & lattice_Qtwin(l,p1,index_otherFamily+j,p) * & lattice_Qtwin(m,q,index_otherFamily+j,p) * & lattice_Qtwin(n,r,index_otherFamily+j,p) * & lattice_Qtwin(o,s,index_otherFamily+j,p) * lattice_C3333(p1,q,r,s,p) enddo; enddo; enddo; enddo enddo; enddo; enddo; enddo prm%C66_twin(1:6,1:6,index_myFamily+j) = math_Mandel3333to66(temp3333) if (any(dNeq0(temp3333-math_rotate_forward3333(lattice_trans_C3333(1:3,1:3,1:3,1:3,p),& lattice_Qtwin(1:3,1:3,index_otherFamily+j,p))))) print*, 'mist' !* Interaction matrices do o = 1_pInt,size(prm%Nslip,1) index_otherFamily = sum(prm%Nslip(1:o-1_pInt)) do k = 1_pInt,prm%Nslip(o) ! loop over (active) systems in other family (slip) temp1(index_myFamily+j,index_otherFamily+k) = & prm%interaction_TwinSlip(lattice_interactionTwinSlip( & sum(lattice_NtwinSystem(1:f-1_pInt,p))+j, & sum(lattice_NslipSystem(1:o-1_pInt,p))+k, & p),1 ) enddo; enddo do o = 1_pInt,size(prm%Ntwin,1) index_otherFamily = sum(prm%Ntwin(1:o-1_pInt)) do k = 1_pInt,prm%Ntwin(o) ! loop over (active) systems in other family (twin) temp2(index_myFamily+j,index_otherFamily+k) = & prm%interaction_TwinTwin(lattice_interactionTwinTwin( & sum(lattice_NtwinSystem(1:f-1_pInt,p))+j, & sum(lattice_NtwinSystem(1:o-1_pInt,p))+k, & p),1 ) enddo; enddo enddo twinSystemsLoop enddo twinFamiliesLoop prm%interaction_TwinSlip = temp1; deallocate(temp1) prm%interaction_TwinTwin = temp2; deallocate(temp2) allocate(temp1(prm%totalNtrans,prm%totalNslip), source =0.0_pReal) allocate(temp2(prm%totalNtrans,prm%totalNtrans), source =0.0_pReal) allocate(prm%C66_trans(6,6,prm%totalNtrans) ,source=0.0_pReal) allocate(prm%Schmid_trans(3,3,prm%totalNtrans),source = 0.0_pReal) i = 0_pInt transFamiliesLoop: do f = 1_pInt,size(prm%Ntrans,1) index_myFamily = sum(prm%Ntrans(1:f-1_pInt)) ! index in truncated trans system list transSystemsLoop: do j = 1_pInt,prm%Ntrans(f) i = i + 1_pInt prm%Schmid_trans(1:3,1:3,i) = lattice_Strans(1:3,1:3,sum(lattice_Ntranssystem(1:f-1,p))+j,p) index_otherFamily = sum(lattice_NtransSystem(1:f-1_pInt,p)) ! index in full lattice trans list temp3333 = 0.0_pReal do l = 1_pInt,3_pInt; do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt; do o = 1_pInt,3_pInt do p1 = 1_pInt,3_pInt; do q = 1_pInt,3_pInt; do r = 1_pInt,3_pInt; do s = 1_pInt,3_pInt temp3333(l,m,n,o) = & temp3333(l,m,n,o) + & lattice_Qtrans(l,p1,index_otherFamily+j,p) * & lattice_Qtrans(m,q,index_otherFamily+j,p) * & lattice_Qtrans(n,r,index_otherFamily+j,p) * & lattice_Qtrans(o,s,index_otherFamily+j,p)* lattice_trans_C3333(p1,q,r,s,p) enddo; enddo; enddo; enddo enddo; enddo; enddo; enddo prm%C66_trans(1:6,1:6,index_myFamily+j) = math_Mandel3333to66(temp3333) if (any(dNeq0(temp3333-math_rotate_forward3333(lattice_trans_C3333(1:3,1:3,1:3,1:3,p),& lattice_Qtrans(1:3,1:3,index_otherFamily+j,p))))) print*, 'mist' !* Interaction matrices do o = 1_pInt,size(prm%Nslip,1) index_otherFamily = sum(prm%Nslip(1:o-1_pInt)) do k = 1_pInt,prm%Nslip(o) ! loop over (active) systems in other family (slip) temp1(index_myFamily+j,index_otherFamily+k) = & prm%interaction_TransSlip(lattice_interactionTransSlip( & sum(lattice_NtransSystem(1:f-1_pInt,p))+j, & sum(lattice_NslipSystem(1:o-1_pInt,p))+k, & p) ,1 ) enddo; enddo do o = 1_pInt,size(prm%Ntrans,1) index_otherFamily = sum(prm%Ntrans(1:o-1_pInt)) do k = 1_pInt,prm%Ntrans(o) ! loop over (active) systems in other family (trans) temp2(index_myFamily+j,index_otherFamily+k) = & prm%interaction_TransTrans(lattice_interactionTransTrans( & sum(lattice_NtransSystem(1:f-1_pInt,p))+j, & sum(lattice_NtransSystem(1:o-1_pInt,p))+k, & p),1 ) enddo; enddo !* Projection matrices for shear from slip systems to fault-band (twin) systems for strain-induced martensite nucleation ! select case(trans_lattice_structure(p)) ! case (LATTICE_bcc_ID) ! do o = 1_pInt,sum(prm%Ntrans,1) ! index_otherFamily = sum(prm%Nslip(1:o-1_pInt)) ! do k = 1_pInt,prm%Nslip(o) ! loop over (active) systems in other family (trans) ! temp3(index_myFamily+j,index_otherFamily+k) = & ! lattice_projectionTrans( sum(lattice_NtransSystem(1:f-1,p))+j, & ! sum(lattice_NslipSystem(1:o-1,p))+k, p) ! enddo; enddo ! end select enddo transSystemsLoop enddo transFamiliesLoop prm%interaction_TransSlip = temp1; deallocate(temp1) prm%interaction_TransTrans = temp2; deallocate(temp2) startIndex=1_pInt endIndex=prm%totalNslip stt%rhoEdge=>plasticState(p)%state(startIndex:endIndex,:) dst%rhoEdge=>plasticState(p)%dotState(startIndex:endIndex,:) plasticState(p)%state0(startIndex:endIndex,:) = & spread(math_expand(prm%rho0,prm%Nslip),2,NofMyPhase) plasticState(p)%aTolState(startIndex:endIndex) = prm%aTolRho startIndex=endIndex+1 endIndex=endIndex+prm%totalNslip stt%rhoEdgeDip=>plasticState(p)%state(startIndex:endIndex,:) dst%rhoEdgeDip=>plasticState(p)%dotState(startIndex:endIndex,:) plasticState(p)%state0(startIndex:endIndex,:) = & spread(math_expand(prm%rhoDip0,prm%Nslip),2,NofMyPhase) plasticState(p)%aTolState(startIndex:endIndex) = prm%aTolRho startIndex=endIndex+1 endIndex=endIndex+prm%totalNslip stt%accshear_slip=>plasticState(p)%state(startIndex:endIndex,:) dst%accshear_slip=>plasticState(p)%dotState(startIndex:endIndex,:) plasticState(p)%aTolState(startIndex:endIndex) = 1.0e6_pReal startIndex=endIndex+1 endIndex=endIndex+prm%totalNtwin stt%twinFraction=>plasticState(p)%state(startIndex:endIndex,:) dst%twinFraction=>plasticState(p)%dotState(startIndex:endIndex,:) plasticState(p)%aTolState(startIndex:endIndex) = prm%aTolTwinFrac startIndex=endIndex+1 endIndex=endIndex+prm%totalNtwin stt%accshear_twin=>plasticState(p)%state(startIndex:endIndex,:) dst%accshear_twin=>plasticState(p)%dotState(startIndex:endIndex,:) plasticState(p)%aTolState(startIndex:endIndex) = 1.0e6_pReal startIndex=endIndex+1 endIndex=endIndex+prm%totalNtrans stt%stressTransFraction=>plasticState(p)%state(startIndex:endIndex,:) dst%stressTransFraction=>plasticState(p)%dotState(startIndex:endIndex,:) plasticState(p)%aTolState(startIndex:endIndex) = prm%aTolTransFrac startIndex=endIndex+1 endIndex=endIndex+prm%totalNtrans stt%strainTransFraction=>plasticState(p)%state(startIndex:endIndex,:) dst%strainTransFraction=>plasticState(p)%dotState(startIndex:endIndex,:) plasticState(p)%aTolState(startIndex:endIndex) = prm%aTolTransFrac invLambdaSlip0 = spread(0.0_pReal,1,prm%totalNslip) ! calculation required? Seems to be the same as in microstructure forall (i = 1_pInt:prm%totalNslip) & invLambdaSlip0(i) = sqrt(dot_product(math_expand(prm%rho0,prm%Nslip)+ & math_expand(prm%rhoDip0,prm%Nslip),prm%forestProjectionEdge(1:prm%totalNslip,i)))/ & prm%CLambdaSlip(i) mse%invLambdaSlip = spread(math_expand(invLambdaSlip0,prm%Nslip),2, NofMyPhase) allocate(mse%invLambdaSlipTwin(prm%totalNslip,NofMyPhase),source=0.0_pReal) allocate(mse%invLambdaTwin(prm%totalNtwin,NofMyPhase),source=0.0_pReal) allocate(mse%invLambdaSlipTrans(prm%totalNtrans,NofMyPhase),source=0.0_pReal) allocate(mse%invLambdaTrans(prm%totalNtrans,NofMyPhase),source=0.0_pReal) MeanFreePathSlip0 = prm%GrainSize/(1.0_pReal+invLambdaSlip0*prm%GrainSize) mse%mfp_slip = spread(math_expand(MeanFreePathSlip0,prm%Nslip),2, NofMyPhase) MeanFreePathTwin0 = spread(prm%GrainSize,1,prm%totalNtwin) mse%mfp_twin = spread(math_expand(MeanFreePathTwin0,prm%Ntwin),2, NofMyPhase) MeanFreePathTrans0 = spread(prm%GrainSize,1,prm%totalNtrans) mse%mfp_trans = spread(math_expand(MeanFreePathTrans0,prm%Ntrans),2, NofMyPhase) tauSlipThreshold0 = spread(0.0_pReal,1,prm%totalNslip) forall (i = 1_pInt:prm%totalNslip) tauSlipThreshold0(i) = & prm%mu*prm%burgers_slip(i) * sqrt(dot_product(math_expand(prm%rho0 + prm%rhoDip0,prm%Nslip),& prm%interaction_SlipSlip(i,1:prm%totalNslip))) mse%threshold_stress_slip = spread(math_expand(tauSlipThreshold0,prm%Nslip),2, NofMyPhase) allocate(mse%threshold_stress_twin(prm%totalNtwin,NofMyPhase), source=0.0_pReal) allocate(mse%threshold_stress_trans(prm%totalNtrans,NofMyPhase),source=0.0_pReal) TwinVolume0= spread(0.0_pReal,1,prm%totalNtwin) forall (i = 1_pInt:prm%totalNtwin) TwinVolume0(i) = & (PI/4.0_pReal)*prm%twinsize(i)*MeanFreePathTwin0(i)**2.0_pReal mse%twinVolume = & spread(math_expand(TwinVolume0,prm%Ntwin),2, NofMyPhase) MartensiteVolume0= spread(0.0_pReal,1,prm%totalNtrans) forall (i = 1_pInt:prm%totalNtrans) MartensiteVolume0(i) = & (PI/4.0_pReal)*prm%lamellarsizePerTransSystem(i)*MeanFreePathTrans0(i)**2.0_pReal mse%martensiteVolume = & spread(math_expand(MartensiteVolume0,prm%Ntrans),2, NofMyPhase) dst%whole => plasticState(p)%dotState allocate(mse%tau_r_twin(prm%totalNtwin,NofMyPhase), source=0.0_pReal) allocate(mse%tau_r_trans(prm%totalNtrans,NofMyPhase), source=0.0_pReal) end associate enddo end subroutine plastic_dislotwin_init !-------------------------------------------------------------------------------------------------- !> @brief returns the homogenized elasticity matrix !-------------------------------------------------------------------------------------------------- function plastic_dislotwin_homogenizedC(ipc,ip,el) use material, only: & material_phase, & phase_plasticityInstance, & phasememberAt implicit none real(pReal), dimension(6,6) :: & plastic_dislotwin_homogenizedC integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type(tParameters) :: prm type(tDislotwinState) :: stt integer(pInt) :: i, & of real(pReal) :: sumf_twin, sumf_trans !* Shortened notation of = phasememberAt(ipc,ip,el) associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))),& stt => state(phase_plasticityInstance(material_phase(ipc,ip,el)))) sumf_twin = sum(stt%twinFraction(1_pInt:prm%totalNtwin,of)) sumf_trans = sum(stt%stressTransFraction(1_pInt:prm%totalNtrans,of)) + & sum(stt%strainTransFraction(1_pInt:prm%totalNtrans,of)) plastic_dislotwin_homogenizedC = (1.0_pReal-sumf_twin-sumf_trans)*prm%C66 do i=1_pInt,prm%totalNtwin plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC & + stt%twinFraction(i,of)*prm%C66_twin(1:6,1:6,i) enddo do i=1_pInt,prm%totalNtrans plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC & +(stt%stressTransFraction(i,of)+stt%strainTransFraction(i,of))*& prm%C66_trans(1:6,1:6,i) enddo end associate end function plastic_dislotwin_homogenizedC !-------------------------------------------------------------------------------------------------- !> @brief calculates derived quantities from state !-------------------------------------------------------------------------------------------------- subroutine plastic_dislotwin_microstructure(temperature,ipc,ip,el) use math, only: & PI use material, only: & material_phase, & phase_plasticityInstance, & phasememberAt implicit none integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element real(pReal), intent(in) :: & temperature !< temperature at IP integer(pInt) :: & i, & of real(pReal) :: & sumf_twin,sfe,sumf_trans real(pReal), dimension(:), allocatable :: & x0, & fOverStacksize, & ftransOverLamellarSize type(tParameters) :: prm !< parameters of present instance type(tDislotwinState) :: stt !< state of present instance type(tDislotwinMicrostructure) :: mse of = phasememberAt(ipc,ip,el) associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))),& stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))),& mse => microstructure(phase_plasticityInstance(material_phase(ipc,ip,el)))) sumf_twin = sum(stt%twinFraction(1:prm%totalNtwin,of)) sumf_trans = sum(stt%stressTransFraction(1:prm%totalNtrans,of)) & + sum(stt%strainTransFraction(1:prm%totalNtrans,of)) sfe = prm%SFE_0K + prm%dSFE_dT * Temperature !* rescaled volume fraction for topology fOverStacksize = stt%twinFraction(1_pInt:prm%totalNtwin,of)/prm%twinsize !ToDo: This is per system ftransOverLamellarSize = sumf_trans/prm%lamellarsizePerTransSystem !ToDo: But this not ... !* 1/mean free distance between 2 forest dislocations seen by a moving dislocation forall (i = 1_pInt:prm%totalNslip) & mse%invLambdaSlip(i,of) = & sqrt(dot_product((stt%rhoEdge(1_pInt:prm%totalNslip,of)+stt%rhoEdgeDip(1_pInt:prm%totalNslip,of)),& prm%forestProjectionEdge(1:prm%totalNslip,i)))/prm%CLambdaSlip(i) !* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation !$OMP CRITICAL (evilmatmul) if (prm%totalNtwin > 0_pInt .and. prm%totalNslip > 0_pInt) & mse%invLambdaSlipTwin(1_pInt:prm%totalNslip,of) = & matmul(prm%interaction_SlipTwin,fOverStacksize)/(1.0_pReal-sumf_twin) !* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin !ToDo: needed? if (prm%totalNtwin > 0_pInt) & mse%invLambdaTwin(1_pInt:prm%totalNtwin,of) = & matmul(prm%interaction_TwinTwin,fOverStacksize)/(1.0_pReal-sumf_twin) !* 1/mean free distance between 2 martensite lamellar from different systems seen by a moving dislocation if (prm%totalNtrans > 0_pInt .and. prm%totalNslip > 0_pInt) & mse%invLambdaSlipTrans(1_pInt:prm%totalNslip,of) = & matmul(prm%interaction_SlipTrans,ftransOverLamellarSize)/(1.0_pReal-sumf_trans) !* 1/mean free distance between 2 martensite stacks from different systems seen by a growing martensite (1/lambda_trans) !ToDo: needed? if (prm%totalNtrans > 0_pInt) & mse%invLambdaTrans(1_pInt:prm%totalNtrans,of) = & matmul(prm%interaction_TransTrans,ftransOverLamellarSize)/(1.0_pReal-sumf_trans) !$OMP END CRITICAL (evilmatmul) !* mean free path between 2 obstacles seen by a moving dislocation do i = 1_pInt,prm%totalNslip if ((prm%totalNtwin > 0_pInt) .or. (prm%totalNtrans > 0_pInt)) then ! ToDo: This is too simplified mse%mfp_slip(i,of) = & prm%GrainSize/(1.0_pReal+prm%GrainSize*& (mse%invLambdaSlip(i,of) + mse%invLambdaSlipTwin(i,of) + mse%invLambdaSlipTrans(i,of))) else mse%mfp_slip(i,of) = & prm%GrainSize/& (1.0_pReal+prm%GrainSize*(mse%invLambdaSlip(i,of))) !!!!!! correct? endif enddo !* mean free path between 2 obstacles seen by a growing twin/martensite mse%mfp_twin(:,of) = prm%Cmfptwin*prm%GrainSize/ (1.0_pReal+prm%GrainSize*mse%invLambdaTwin(:,of)) mse%mfp_trans(:,of) = prm%Cmfptrans*prm%GrainSize/(1.0_pReal+prm%GrainSize*mse%invLambdaTrans(:,of)) !* threshold stress for dislocation motion forall (i = 1_pInt:prm%totalNslip) mse%threshold_stress_slip(i,of) = & prm%mu*prm%burgers_slip(i)*& sqrt(dot_product(stt%rhoEdge(1_pInt:prm%totalNslip,of)+stt%rhoEdgeDip(1_pInt:prm%totalNslip,of),& prm%interaction_SlipSlip(i,1:prm%totalNslip))) !* threshold stress for growing twin/martensite mse%threshold_stress_twin(:,of) = prm%Cthresholdtwin* & (sfe/(3.0_pReal*prm%burgers_twin)+ 3.0_pReal*prm%burgers_twin*prm%mu/ & (prm%L0_twin*prm%burgers_slip)) ! slip burgers here correct? mse%threshold_stress_trans(:,of) = prm%Cthresholdtrans* & (sfe/(3.0_pReal*prm%burgers_trans) + 3.0_pReal*prm%burgers_trans*prm%mu/& (prm%L0_trans*prm%burgers_slip) + prm%transStackHeight*prm%deltaG/ (3.0_pReal*prm%burgers_trans) ) ! final volume after growth mse%twinVolume(:,of) = (PI/4.0_pReal)*prm%twinsize*mse%mfp_twin(:,of)**2.0_pReal mse%martensiteVolume(:,of) = (PI/4.0_pReal)*prm%lamellarsizePerTransSystem*mse%mfp_trans(:,of)**2.0_pReal !* equilibrium separation of partial dislocations (twin) x0 = prm%mu*prm%burgers_twin**2.0_pReal/(sfe*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) mse%tau_r_twin(:,of) = prm%mu*prm%burgers_twin/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%xc_twin)+cos(pi/3.0_pReal)/x0) !* equilibrium separation of partial dislocations (trans) x0 = prm%mu*prm%burgers_trans**2.0_pReal/(sfe*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) mse%tau_r_trans(:,of) = prm%mu*prm%burgers_trans/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%xc_trans)+cos(pi/3.0_pReal)/x0) end associate end subroutine plastic_dislotwin_microstructure !-------------------------------------------------------------------------------------------------- !> @brief calculates plastic velocity gradient and its tangent !-------------------------------------------------------------------------------------------------- subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature,ipc,ip,el) use prec, only: & tol_math_check, & dNeq0 use math, only: & math_Plain3333to99, & math_Mandel6to33, & math_Mandel33to6, & math_eigenValuesVectorsSym, & math_tensorproduct33, & math_symmetric33, & math_mul33xx33, & math_mul33x3 use material, only: & material_phase, & phase_plasticityInstance, & phasememberAt implicit none integer(pInt), intent(in) :: ipc,ip,el real(pReal), intent(in) :: Temperature real(pReal), dimension(6), intent(in) :: Tstar_v real(pReal), dimension(3,3), intent(out) :: Lp real(pReal), dimension(9,9), intent(out) :: dLp_dTstar99 integer(pInt) :: of,i,k,l,m,n,s1,s2 real(pReal) :: sumf_twin,sumf_trans,StressRatio_p,StressRatio_pminus1,& StressRatio_r,BoltzmannRatio,Ndot0_twin,stressRatio, & Ndot0_trans,StressRatio_s, & dgdot_dtau, & tau real(pReal), dimension(3,3,3,3) :: dLp_dS real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNslip) :: & gdot_slip real(pReal):: gdot_sb,gdot_twin,gdot_trans real(pReal), dimension(3,3) :: eigVectors, Schmid_shearBand real(pReal), dimension(3) :: eigValues, sb_s, sb_m logical :: error real(pReal), dimension(3,6), parameter :: & sb_sComposition = & reshape(real([& 1, 0, 1, & 1, 0,-1, & 1, 1, 0, & 1,-1, 0, & 0, 1, 1, & 0, 1,-1 & ],pReal),[ 3,6]), & sb_mComposition = & reshape(real([& 1, 0,-1, & 1, 0,+1, & 1,-1, 0, & 1, 1, 0, & 0, 1,-1, & 0, 1, 1 & ],pReal),[ 3,6]) real(pReal), dimension(3,3) :: & S !< Second-Piola Kirchhoff stress type(tParameters) :: prm !< parameters of present instance type(tDislotwinState) :: ste !< state of present instance of = phasememberAt(ipc,ip,el) associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))),& stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))), & mse => microstructure(phase_plasticityInstance(material_phase(ipc,ip,el)))) sumf_twin = sum(stt%twinFraction(1:prm%totalNtwin,of)) sumf_trans = sum(stt%stressTransFraction(1:prm%totalNtrans,of)) & + sum(stt%strainTransFraction(1:prm%totalNtrans,of)) Lp = 0.0_pReal dLp_dS = 0.0_pReal S = math_Mandel6to33(Tstar_v) slipContribution: do i = 1_pInt, prm%totalNslip tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,i)) significantSlipStress: if((abs(tau)-mse%threshold_stress_slip(i,of)) > tol_math_check) then stressRatio = ((abs(tau)- mse%threshold_stress_slip(i,of))/& (prm%SolidSolutionStrength+prm%tau_peierls(i))) StressRatio_p = stressRatio** prm%p(i) StressRatio_pminus1 = stressRatio**(prm%p(i)-1.0_pReal) ! ToDo: no very helpful BoltzmannRatio = prm%Qedge(i)/(kB*Temperature) gdot_slip(i) = stt%rhoEdge(i,of)*prm%burgers_slip(i)* prm%v0(i) & * sign(exp(-BoltzmannRatio*(1-StressRatio_p)** prm%q(i)), tau) dgdot_dtau = abs(gdot_slip(i))*BoltzmannRatio*prm%p(i) * prm%q(i) & / (prm%SolidSolutionStrength+prm%tau_peierls(i)) & * StressRatio_pminus1*(1-StressRatio_p)**(prm%q(i)-1.0_pReal) Lp = Lp + gdot_slip(i)*prm%Schmid_slip(1:3,1:3,i) forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) & + dgdot_dtau * prm%Schmid_slip(k,l,i) * prm%Schmid_slip(m,n,i) else significantSlipStress gdot_slip(i) = 0.0_pReal endif significantSlipStress enddo slipContribution !ToDo: Why do this before shear banding? Lp = Lp * (1.0_pReal - sumf_twin - sumf_trans) dLp_dS = dLp_dS * (1.0_pReal - sumf_twin - sumf_trans) shearBandingContribution: if(dNeq0(prm%sbVelocity)) then BoltzmannRatio = prm%sbQedge/(kB*Temperature) call math_eigenValuesVectorsSym(S,eigValues,eigVectors,error) do i = 1_pInt,6_pInt sb_s = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_sComposition(1:3,i)) sb_m = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_mComposition(1:3,i)) Schmid_shearBand = math_tensorproduct33(sb_s,sb_m) tau = math_mul33xx33(S,Schmid_shearBand) significantShearBandStress: if (abs(tau) > tol_math_check) then StressRatio_p = (abs(tau)/prm%sbResistance)**prm%pShearBand StressRatio_pminus1 = (abs(tau)/prm%sbResistance)**(prm%pShearBand-1.0_pReal) gdot_sb = sign(prm%sbVelocity*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**prm%qShearBand), tau) dgdot_dtau = ((abs(gdot_sb)*BoltzmannRatio* prm%pShearBand*prm%qShearBand)/ prm%sbResistance) & * StressRatio_pminus1*(1_pInt-StressRatio_p)**(prm%qShearBand-1.0_pReal) Lp = Lp + gdot_sb * Schmid_shearBand forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) & + dgdot_dtau * Schmid_shearBand(k,l) * Schmid_shearBand(m,n) endif significantShearBandStress enddo endif shearBandingContribution twinContibution: do i = 1_pInt, prm%totalNtwin tau = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,i)) significantTwinStress: if (tau > tol_math_check) then StressRatio_r = (mse%threshold_stress_twin(i,of)/tau)**prm%r(i) isFCCtwin: if (prm%isFCC) then s1=prm%fcc_twinNucleationSlipPair(1,i) s2=prm%fcc_twinNucleationSlipPair(2,i) if (tau < mse%tau_r_twin(i,of)) then Ndot0_twin=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+& !!!!! correct? abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/& (prm%L0_twin*prm%burgers_slip(i))*& (1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*& (mse%tau_r_twin(i,of)-tau))) else Ndot0_twin=0.0_pReal end if else isFCCtwin Ndot0_twin=prm%Ndot0_twin(i) endif isFCCtwin gdot_twin = (1.0_pReal-sumf_twin-sumf_trans)* prm%shear_twin(i) * mse%twinVolume(i,of) & * Ndot0_twin*exp(-StressRatio_r) dgdot_dtau = ((gdot_twin*prm%r(i))/tau)*StressRatio_r Lp = Lp + gdot_twin*prm%Schmid_twin(1:3,1:3,i) forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) & + dgdot_dtau* prm%Schmid_twin(k,l,i)*prm%Schmid_twin(m,n,i) endif significantTwinStress enddo twinContibution transConstribution: do i = 1_pInt, prm%totalNtrans tau = math_mul33xx33(S,prm%Schmid_trans(1:3,1:3,i)) significantTransStress: if (tau > tol_math_check) then StressRatio_s = (mse%threshold_stress_trans(i,of)/tau)**prm%s(i) isFCCtrans: if (prm%isFCC) then s1=prm%fcc_twinNucleationSlipPair(1,i) s2=prm%fcc_twinNucleationSlipPair(2,i) if (tau < mse%tau_r_trans(i,of)) then Ndot0_trans=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+& !!!!! correct? abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/& (prm%L0_trans*prm%burgers_slip(i))*& (1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*(mse%tau_r_trans(i,of)-tau))) else Ndot0_trans=0.0_pReal end if else isFCCtrans Ndot0_trans=prm%Ndot0_trans(i) endif isFCCtrans gdot_trans = (1.0_pReal-sumf_twin-sumf_trans)* mse%martensiteVolume(i,of) & * Ndot0_trans*exp(-StressRatio_s) dgdot_dtau = ((gdot_trans*prm%s(i))/tau)*StressRatio_s Lp = Lp + gdot_trans*prm%Schmid_trans(1:3,1:3,i) forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) & + dgdot_dtau * prm%Schmid_trans(k,l,i)* prm%Schmid_trans(m,n,i) endif significantTransStress enddo transConstribution end associate dLp_dTstar99 = math_Plain3333to99(dLp_dS) end subroutine plastic_dislotwin_LpAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief calculates the rate of change of microstructure !-------------------------------------------------------------------------------------------------- subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el) use prec, only: & tol_math_check, & dEq0 use math, only: & math_mul33xx33, & math_Mandel6to33, & pi use material, only: & material_phase, & phase_plasticityInstance, & plasticState, & phasememberAt implicit none real(pReal), dimension(6), intent(in):: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation real(pReal), intent(in) :: & temperature !< temperature at integration point integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element integer(pInt) :: i,s1,s2, & of real(pReal) :: sumf_twin,sumf_trans,StressRatio_p,BoltzmannRatio,& EdgeDipMinDistance,AtomicVolume,VacancyDiffusion,StressRatio_r,Ndot0_twin,stressRatio,& Ndot0_trans,StressRatio_s,EdgeDipDistance, ClimbVelocity,DotRhoEdgeDipClimb,DotRhoEdgeDipAnnihilation, & DotRhoDipFormation,DotRhoMultiplication,DotRhoEdgeEdgeAnnihilation, & tau real(pReal), dimension(plasticState(material_phase(ipc,ip,el))%Nslip) :: & gdot_slip real(pReal), dimension(3,3) :: & S !< Second-Piola Kirchhoff stress type(tParameters) :: prm type(tDislotwinState) :: stt, dst type(tDislotwinMicrostructure) :: mse !* Shortened notation of = phasememberAt(ipc,ip,el) S = math_Mandel6to33(Tstar_v) associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))), & stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))), & dst => dotstate(phase_plasticityInstance(material_phase(ipc,ip,el))), & mse => microstructure(phase_plasticityInstance(material_phase(ipc,ip,el)))) dst%whole(:,of) = 0.0_pReal sumf_twin = sum(stt%twinFraction(1_pInt:prm%totalNtwin,of)) sumf_trans = sum(stt%stressTransFraction(1_pInt:prm%totalNtrans,of)) + & sum(stt%strainTransFraction(1_pInt:prm%totalNtrans,of)) slipState: do i = 1_pInt, prm%totalNslip tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,i)) significantSlipStress1: if((abs(tau)-mse%threshold_stress_slip(i,of)) > tol_math_check) then stressRatio =((abs(tau)- mse%threshold_stress_slip(i,of))/& (prm%SolidSolutionStrength+prm%tau_peierls(i))) StressRatio_p = stressRatio** prm%p(i) BoltzmannRatio = prm%Qedge(i)/(kB*Temperature) gdot_slip(i) = stt%rhoEdge(i,of)*prm%burgers_slip(i)*prm%v0(i) & * sign(exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**prm%q(i)),tau) else significantSlipStress1 gdot_slip(i) = 0.0_pReal endif significantSlipStress1 DotRhoMultiplication = abs(gdot_slip(i))/(prm%burgers_slip(i)*mse%mfp_slip(i,of)) EdgeDipMinDistance = prm%CEdgeDipMinDistance*prm%burgers_slip(i) significantSlipStress2: if (dEq0(tau)) then DotRhoDipFormation = 0.0_pReal else significantSlipStress2 EdgeDipDistance = (3.0_pReal*prm%mu*prm%burgers_slip(i))/& (16.0_pReal*PI*abs(tau)) if (EdgeDipDistance>mse%mfp_slip(i,of)) EdgeDipDistance=mse%mfp_slip(i,of) if (EdgeDipDistance tol_math_check) then StressRatio_r = (mse%threshold_stress_twin(i,of)/tau)**prm%r(i) isFCCtwin: if (prm%isFCC) then s1=prm%fcc_twinNucleationSlipPair(1,i) s2=prm%fcc_twinNucleationSlipPair(2,i) if (tau < mse%tau_r_twin(i,of)) then Ndot0_twin=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+& abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/& (prm%L0_twin*prm%burgers_slip(i))*(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*& (mse%tau_r_twin(i,of)-tau))) else Ndot0_twin=0.0_pReal end if else isFCCtwin Ndot0_twin=prm%Ndot0_twin(i) endif isFCCtwin dst%twinFraction(i,of) = (1.0_pReal-sumf_twin-sumf_trans)*& mse%twinVolume(i,of)*Ndot0_twin*exp(-StressRatio_r) dst%accshear_twin(i,of) = dst%twinFraction(i,of) * prm%shear_twin(i) endif significantTwinStress enddo twinState transState: do i = 1_pInt, prm%totalNtrans tau = math_mul33xx33(S,prm%Schmid_trans(1:3,1:3,i)) significantTransStress: if (tau > tol_math_check) then StressRatio_s = (mse%threshold_stress_trans(i,of)/tau)**prm%s(i) isFCCtrans: if (prm%isFCC) then s1=prm%fcc_twinNucleationSlipPair(1,i) s2=prm%fcc_twinNucleationSlipPair(2,i) if (tau < mse%tau_r_trans(i,of)) then Ndot0_trans=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+& abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/& (prm%L0_trans*prm%burgers_slip(i))*(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*& (mse%tau_r_trans(i,of)-tau))) else Ndot0_trans=0.0_pReal end if else isFCCtrans Ndot0_trans=prm%Ndot0_trans(i) endif isFCCtrans dst%strainTransFraction(i,of) = (1.0_pReal-sumf_twin-sumf_trans)*& mse%martensiteVolume(i,of)*Ndot0_trans*exp(-StressRatio_s) !* Dotstate for accumulated shear due to transformation !dst%accshear_trans(i,of) = dst%strainTransFraction(i,of) * & ! lattice_sheartrans(index_myfamily+i,ph) endif significantTransStress enddo transState end associate end subroutine plastic_dislotwin_dotState !-------------------------------------------------------------------------------------------------- !> @brief calculates shear rates on slip systems !-------------------------------------------------------------------------------------------------- subroutine kinetics_slip(prm,stt,mse,of,S,temperature,gdot_slip,dgdot_dtau_slip) use prec, only: & tol_math_check, & dNeq0 use math, only: & math_mul33xx33 implicit none type(tParameters), intent(in) :: & prm type(tDislotwinState), intent(in) :: & stt integer(pInt), intent(in) :: & of type(tDislotwinMicrostructure) :: & mse real, dimension(prm%totalNslip), intent(out) :: & gdot_slip real, dimension(prm%totalNslip), optional, intent(out) :: & dgdot_dtau_slip real(pReal), dimension(3,3), intent(in) :: & S real(pReal), intent(in) :: & temperature real, dimension(prm%totalNslip) :: & tau_slip, & stressRatio, & StressRatio_p, & BoltzmannRatio integer(pInt) :: i do i = 1_pInt, prm%totalNslip tau_slip = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,i)) enddo where((abs(tau_slip)-mse%threshold_stress_slip(:,of)) > tol_math_check) stressRatio = ((abs(tau_slip)- mse%threshold_stress_slip(:,of))/& (prm%SolidSolutionStrength+prm%tau_peierls(:))) StressRatio_p = stressRatio** prm%p BoltzmannRatio = prm%Qedge/(kB*Temperature) gdot_slip = stt%rhoEdge(:,of)*prm%burgers_slip* prm%v0 & * sign(exp(-BoltzmannRatio*(1.0_pReal-StressRatio_p)** prm%q), tau_slip) dgdot_dtau_slip = abs(gdot_slip)*BoltzmannRatio*prm%p * prm%q & / (prm%SolidSolutionStrength+prm%tau_peierls) & * stressRatio**(prm%p-1.0_pReal)*(1.0_pReal-StressRatio_p)**(prm%q-1.0_pReal) else where gdot_slip = 0.0_pReal dgdot_dtau_slip = 0.0_pReal end where end subroutine !-------------------------------------------------------------------------------------------------- !> @brief return array of constitutive results !-------------------------------------------------------------------------------------------------- function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(postResults) use prec, only: & tol_math_check, & dEq0 use math, only: & PI, & math_mul33xx33, & math_Mandel6to33 use material, only: & material_phase, & plasticState, & phase_plasticityInstance,& phasememberAt implicit none real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation real(pReal), intent(in) :: & temperature !< temperature at integration point integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element real(pReal), dimension(plasticState(material_phase(ipc,ip,el))%sizePostResults) :: & postResults integer(pInt) :: & o,c,j,& s1,s2, & of real(pReal) :: sumf_twin,tau,StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0,StressRatio_r,Ndot0_twin,dgdot_dtauslip, & stressRatio real(preal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNslip) :: & gdot_slip real(pReal), dimension(3,3) :: & S !< Second-Piola Kirchhoff stress type(tParameters) :: prm type(tDislotwinState) :: stt type(tDislotwinMicrostructure) :: mse !* Shortened notation of = phasememberAt(ipc,ip,el) S = math_Mandel6to33(Tstar_v) associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))), & stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))), & mse => microstructure(phase_plasticityInstance(material_phase(ipc,ip,el)))) sumf_twin = sum(stt%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0 c = 0_pInt postResults = 0.0_pReal do o = 1_pInt,size(prm%outputID) select case(prm%outputID(o)) case (edge_density_ID) postResults(c+1_pInt:c+prm%totalNslip) = stt%rhoEdge(1_pInt:prm%totalNslip,of) c = c + prm%totalNslip case (dipole_density_ID) postResults(c+1_pInt:c+prm%totalNslip) = stt%rhoEdgeDip(1_pInt:prm%totalNslip,of) c = c + prm%totalNslip case (shear_rate_slip_ID) do j = 1_pInt, prm%totalNslip tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j)) if((abs(tau)-mse%threshold_stress_slip(j,of)) > tol_math_check) then stressRatio = ((abs(tau)-mse%threshold_stress_slip(j,of))/& (prm%SolidSolutionStrength+& prm%tau_peierls(j))) StressRatio_p = stressRatio** prm%p(j) StressRatio_pminus1 = stressRatio**(prm%p(j)-1.0_pReal) BoltzmannRatio = prm%Qedge(j)/(kB*Temperature) DotGamma0 = stt%rhoEdge(j,of)*prm%burgers_slip(j)* prm%v0(j) postResults(c+j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**& prm%q(j))*sign(1.0_pReal,tau) else postResults(c+j) = 0.0_pReal endif enddo c = c + prm%totalNslip case (accumulated_shear_slip_ID) postResults(c+1_pInt:c+prm%totalNslip) = stt%accshear_slip(1_pInt:prm%totalNslip,of) c = c + prm%totalNslip case (mfp_slip_ID) postResults(c+1_pInt:c+prm%totalNslip) = mse%mfp_slip(1_pInt:prm%totalNslip,of) c = c + prm%totalNslip case (resolved_stress_slip_ID) do j = 1_pInt, prm%totalNslip postResults(c+j) = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j)) enddo c = c + prm%totalNslip case (threshold_stress_slip_ID) postResults(c+1_pInt:c+prm%totalNslip) = mse%threshold_stress_slip(1_pInt:prm%totalNslip,of) c = c + prm%totalNslip case (edge_dipole_distance_ID) do j = 1_pInt, prm%totalNslip postResults(c+j) = (3.0_pReal*prm%mu*prm%burgers_slip(j)) & / (16.0_pReal*PI*abs(math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j)))) postResults(c+j)=min(postResults(c+j),mse%mfp_slip(j,of)) ! postResults(c+j)=max(postResults(c+j),& ! plasticState(ph)%state(4*ns+2*nt+2*nr+j, of)) enddo c = c + prm%totalNslip ! case (resolved_stress_shearband_ID) ! do j = 1_pInt,6_pInt ! loop over all shearband families ! postResults(c+j) = dot_product(Tstar_v,sbSv(1:6,j,ipc,ip,el)) ! enddo ! c = c + 6_pInt ! case (shear_rate_shearband_ID) ! do j = 1_pInt,6_pInt ! loop over all shearbands ! tau = dot_product(Tstar_v,sbSv(1:6,j,ipc,ip,el)) ! if (abs(tau) < tol_math_check) then ! StressRatio_p = 0.0_pReal ! StressRatio_pminus1 = 0.0_pReal ! else ! StressRatio_p = (abs(tau)/prm%sbResistance)**prm%pShearBand ! StressRatio_pminus1 = (abs(tau)/prm%sbResistance)**(prm%pShearBand-1.0_pReal) ! endif ! BoltzmannRatio = prm%sbQedge/(kB*Temperature) ! DotGamma0 = prm%sbVelocity ! postResults(c+j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**prm%qShearBand)*& ! sign(1.0_pReal,tau) ! enddo ! c = c + 6_pInt case (twin_fraction_ID) postResults(c+1_pInt:c+prm%totalNtwin) = stt%twinFraction(1_pInt:prm%totalNtwin,of) c = c + prm%totalNtwin case (shear_rate_twin_ID) do j = 1_pInt, prm%totalNslip tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j)) if((abs(tau)-mse%threshold_stress_slip(j,of)) > tol_math_check) then StressRatio_p = ((abs(tau)-mse%threshold_stress_slip(j,of))/& (prm%SolidSolutionStrength+& prm%tau_peierls(j)))& **prm%p(j) StressRatio_pminus1 = ((abs(tau)-mse%threshold_stress_slip(j,of))/& (prm%SolidSolutionStrength+& prm%tau_peierls(j)))& **(prm%p(j)-1.0_pReal) BoltzmannRatio = prm%Qedge(j)/(kB*Temperature) DotGamma0 = stt%rhoEdge(j,of)*prm%burgers_slip(j)* prm%v0(j) gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**& prm%q(j))*sign(1.0_pReal,tau) else gdot_slip(j) = 0.0_pReal endif enddo do j = 1_pInt, prm%totalNtwin tau = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j)) if ( tau > 0.0_pReal ) then isFCCtwin: if (prm%isFCC) then s1=prm%fcc_twinNucleationSlipPair(1,j) s2=prm%fcc_twinNucleationSlipPair(2,j) if (tau < mse%tau_r_twin(j,of)) then Ndot0_twin=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+& abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/& (prm%L0_twin* prm%burgers_slip(j))*& (1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)* (mse%tau_r_twin(j,of)-tau))) else Ndot0_twin=0.0_pReal end if else isFCCtwin Ndot0_twin=prm%Ndot0_twin(j) endif isFCCtwin StressRatio_r = (mse%threshold_stress_twin(j,of)/tau) **prm%r(j) postResults(c+j) = (prm%MaxTwinFraction-sumf_twin)*prm%shear_twin(j) & * mse%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r) endif enddo c = c + prm%totalNtwin case (accumulated_shear_twin_ID) postResults(c+1_pInt:c+prm%totalNtwin) = stt%accshear_twin(1_pInt:prm%totalNtwin,of) c = c + prm%totalNtwin case (mfp_twin_ID) postResults(c+1_pInt:c+prm%totalNtwin) = mse%mfp_twin(1_pInt:prm%totalNtwin,of) c = c + prm%totalNtwin case (resolved_stress_twin_ID) do j = 1_pInt, prm%totalNtwin postResults(c+j) = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j)) enddo c = c + prm%totalNtwin case (threshold_stress_twin_ID) postResults(c+1_pInt:c+prm%totalNtwin) = mse%threshold_stress_twin(1_pInt:prm%totalNtwin,of) c = c + prm%totalNtwin case (stress_exponent_ID) do j = 1_pInt, prm%totalNslip tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j)) if((abs(tau)-mse%threshold_stress_slip(j,of)) > tol_math_check) then StressRatio_p = ((abs(tau)-mse%threshold_stress_slip(j,of))/& (prm%SolidSolutionStrength+& prm%tau_peierls(j)))& **prm%p(j) StressRatio_pminus1 = ((abs(tau)-mse%threshold_stress_slip(j,of))/& (prm%SolidSolutionStrength+& prm%tau_peierls(j)))& **(prm%p(j)-1.0_pReal) BoltzmannRatio = prm%Qedge(j)/(kB*Temperature) DotGamma0 = stt%rhoEdge(j,of)*prm%burgers_slip(j)* prm%v0(j) gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**& prm%q(j))*sign(1.0_pReal,tau) dgdot_dtauslip = abs(gdot_slip(j))*BoltzmannRatio*prm%p(j) *prm%q(j)/& (prm%SolidSolutionStrength+ prm%tau_peierls(j))*& StressRatio_pminus1*(1-StressRatio_p)**(prm%q(j)-1.0_pReal) else gdot_slip(j) = 0.0_pReal dgdot_dtauslip = 0.0_pReal endif postResults(c+j) = merge(0.0_pReal,(tau/gdot_slip(j))*dgdot_dtauslip,dEq0(gdot_slip(j))) enddo c = c + prm%totalNslip case (stress_trans_fraction_ID) postResults(c+1_pInt:c+prm%totalNtrans) = stt%stressTransFraction(1_pInt:prm%totalNtrans,of) c = c + prm%totalNtrans case (strain_trans_fraction_ID) postResults(c+1_pInt:c+prm%totalNtrans) = stt%strainTransFraction(1_pInt:prm%totalNtrans,of) c = c + prm%totalNtrans end select enddo end associate end function plastic_dislotwin_postResults end module plastic_dislotwin