!-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine for phenomenological crystal plasticity formulation using a powerlaw !! fitting !-------------------------------------------------------------------------------------------------- module plastic_phenopowerlaw use prec, only: & pReal,& pInt implicit none private integer(pInt), dimension(:), allocatable, public, protected :: & plastic_phenopowerlaw_sizePostResults !< cumulative size of post results integer(pInt), dimension(:,:), allocatable, target, public :: & plastic_phenopowerlaw_sizePostResult !< size of each post result output character(len=64), dimension(:,:), allocatable, target, public :: & plastic_phenopowerlaw_output !< name of each post result output integer(pInt), dimension(:), allocatable, target, public :: & plastic_phenopowerlaw_Noutput !< number of outputs per instance of this constitution integer(pInt), dimension(:), allocatable, public, protected :: & plastic_phenopowerlaw_totalNslip, & !< no. of slip system used in simulation plastic_phenopowerlaw_totalNtwin, & !< no. of twin system used in simulation plastic_phenopowerlaw_totalNtrans !< no. of trans system used in simulation integer(pInt), dimension(:,:), allocatable, private :: & plastic_phenopowerlaw_Nslip, & !< active number of slip systems per family (input parameter, per family) plastic_phenopowerlaw_Ntwin, & !< active number of twin systems per family (input parameter, per family) plastic_phenopowerlaw_Ntrans !< active number of trans systems per family (input parameter, per family) real(pReal), dimension(:), allocatable, private :: & plastic_phenopowerlaw_gdot0_slip, & !< reference shear strain rate for slip (input parameter) plastic_phenopowerlaw_gdot0_twin, & !< reference shear strain rate for twin (input parameter) plastic_phenopowerlaw_n_slip, & !< stress exponent for slip (input parameter) plastic_phenopowerlaw_n_twin, & !< stress exponent for twin (input parameter) plastic_phenopowerlaw_spr, & !< push-up factor for slip saturation due to twinning plastic_phenopowerlaw_twinB, & plastic_phenopowerlaw_twinC, & plastic_phenopowerlaw_twinD, & plastic_phenopowerlaw_twinE, & plastic_phenopowerlaw_h0_SlipSlip, & !< reference hardening slip - slip (input parameter) plastic_phenopowerlaw_h0_TwinSlip, & !< reference hardening twin - slip (input parameter) plastic_phenopowerlaw_h0_TwinTwin, & !< reference hardening twin - twin (input parameter) plastic_phenopowerlaw_a_slip, & plastic_phenopowerlaw_aTolResistance, & plastic_phenopowerlaw_aTolShear, & plastic_phenopowerlaw_aTolTwinfrac, & plastic_phenopowerlaw_aTolTransfrac, & plastic_phenopowerlaw_Cnuc, & !< coefficient for strain-induced martensite nucleation plastic_phenopowerlaw_Cdwp, & !< coefficient for double well potential plastic_phenopowerlaw_Cgro, & !< coefficient for stress-assisted martensite growth plastic_phenopowerlaw_deltaG !< free energy difference between austensite and martensite [MPa] real(pReal), dimension(:,:), allocatable, private :: & plastic_phenopowerlaw_tau0_slip, & !< initial critical shear stress for slip (input parameter, per family) plastic_phenopowerlaw_tau0_twin, & !< initial critical shear stress for twin (input parameter, per family) plastic_phenopowerlaw_tausat_slip, & !< maximum critical shear stress for slip (input parameter, per family) plastic_phenopowerlaw_nonSchmidCoeff, & plastic_phenopowerlaw_interaction_SlipSlip, & !< interaction factors slip - slip (input parameter) plastic_phenopowerlaw_interaction_SlipTwin, & !< interaction factors slip - twin (input parameter) plastic_phenopowerlaw_interaction_TwinSlip, & !< interaction factors twin - slip (input parameter) plastic_phenopowerlaw_interaction_TwinTwin !< interaction factors twin - twin (input parameter) real(pReal), dimension(:,:,:), allocatable, private :: & plastic_phenopowerlaw_hardeningMatrix_SlipSlip, & plastic_phenopowerlaw_hardeningMatrix_SlipTwin, & plastic_phenopowerlaw_hardeningMatrix_TwinSlip, & plastic_phenopowerlaw_hardeningMatrix_TwinTwin enum, bind(c) enumerator :: undefined_ID, & resistance_slip_ID, & accumulatedshear_slip_ID, & shearrate_slip_ID, & resolvedstress_slip_ID, & totalshear_ID, & resistance_twin_ID, & accumulatedshear_twin_ID, & shearrate_twin_ID, & resolvedstress_twin_ID, & totalvolfrac_twin_ID end enum integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: & plastic_phenopowerlaw_outputID !< ID of each post result output type, private :: tPhenopowerlawState real(pReal), pointer, dimension(:,:) :: & s_slip, & s_twin, & accshear_slip, & accshear_twin real(pReal), pointer, dimension(:) :: & sumGamma, & sumF end type type(tPhenopowerlawState), allocatable, dimension(:), private :: & dotState, & state, & state0 public :: & plastic_phenopowerlaw_init, & plastic_phenopowerlaw_LpAndItsTangent, & plastic_phenopowerlaw_dotState, & plastic_phenopowerlaw_postResults private :: & plastic_phenopowerlaw_aTolState, & plastic_phenopowerlaw_stateInit contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- subroutine plastic_phenopowerlaw_init(fileUnit) use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use debug, only: & debug_level, & debug_constitutive,& debug_levelBasic use math, only: & math_Mandel3333to66, & math_Voigt66to3333 use IO, only: & IO_read, & IO_lc, & IO_getTag, & IO_isBlank, & IO_stringPos, & IO_stringValue, & IO_floatValue, & IO_intValue, & IO_warning, & IO_error, & IO_timeStamp, & IO_EOF use material, only: & phase_plasticity, & phase_plasticityInstance, & phase_Noutput, & PLASTICITY_PHENOPOWERLAW_label, & PLASTICITY_PHENOPOWERLAW_ID, & material_phase, & plasticState, & MATERIAL_partPhase use lattice use numerics,only: & analyticJaco, & worldrank, & numerics_integrator implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), allocatable, dimension(:) :: chunkPos integer(pInt) :: & maxNinstance, & instance,phase,j,k, f,o, & Nchunks_SlipSlip = 0_pInt, Nchunks_SlipTwin = 0_pInt, & Nchunks_TwinSlip = 0_pInt, Nchunks_TwinTwin = 0_pInt, & Nchunks_SlipFamilies = 0_pInt, Nchunks_TwinFamilies = 0_pInt, & Nchunks_TransFamilies = 0_pInt, Nchunks_nonSchmid = 0_pInt, & NipcMyPhase, & offset_slip, index_myFamily, index_otherFamily, & mySize=0_pInt,sizeState,sizeDotState, sizeDeltaState, & startIndex, endIndex character(len=65536) :: & tag = '', & line = '' real(pReal), dimension(:), allocatable :: tempPerSlip mainProcess: if (worldrank == 0) then write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_PHENOPOWERLAW_label//' init -+>>>' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" endif mainProcess maxNinstance = int(count(phase_plasticity == PLASTICITY_PHENOPOWERLAW_ID),pInt) if (maxNinstance == 0_pInt) return if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) & write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance allocate(plastic_phenopowerlaw_sizePostResults(maxNinstance), source=0_pInt) allocate(plastic_phenopowerlaw_sizePostResult(maxval(phase_Noutput),maxNinstance), & source=0_pInt) allocate(plastic_phenopowerlaw_output(maxval(phase_Noutput),maxNinstance)) plastic_phenopowerlaw_output = '' allocate(plastic_phenopowerlaw_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID) allocate(plastic_phenopowerlaw_Noutput(maxNinstance), source=0_pInt) allocate(plastic_phenopowerlaw_Nslip(lattice_maxNslipFamily,maxNinstance), source=0_pInt) allocate(plastic_phenopowerlaw_Ntwin(lattice_maxNtwinFamily,maxNinstance), source=0_pInt) allocate(plastic_phenopowerlaw_Ntrans(lattice_maxNtransFamily,maxNinstance), source=0_pInt) allocate(plastic_phenopowerlaw_totalNslip(maxNinstance), source=0_pInt) allocate(plastic_phenopowerlaw_totalNtwin(maxNinstance), source=0_pInt) allocate(plastic_phenopowerlaw_totalNtrans(maxNinstance), source=0_pInt) allocate(plastic_phenopowerlaw_gdot0_slip(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_n_slip(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_tau0_slip(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_tausat_slip(lattice_maxNslipFamily,maxNinstance),source=0.0_pReal) allocate(plastic_phenopowerlaw_gdot0_twin(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_n_twin(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_tau0_twin(lattice_maxNtwinFamily,maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_spr(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_twinB(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_twinC(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_twinD(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_twinE(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_h0_SlipSlip(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_h0_TwinSlip(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_h0_TwinTwin(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_interaction_SlipSlip(lattice_maxNinteraction,maxNinstance), & source=0.0_pReal) allocate(plastic_phenopowerlaw_interaction_SlipTwin(lattice_maxNinteraction,maxNinstance), & source=0.0_pReal) allocate(plastic_phenopowerlaw_interaction_TwinSlip(lattice_maxNinteraction,maxNinstance), & source=0.0_pReal) allocate(plastic_phenopowerlaw_interaction_TwinTwin(lattice_maxNinteraction,maxNinstance), & source=0.0_pReal) allocate(plastic_phenopowerlaw_a_slip(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_aTolResistance(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_aTolShear(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_aTolTwinfrac(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_aTolTransfrac(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_nonSchmidCoeff(lattice_maxNnonSchmid,maxNinstance), & source=0.0_pReal) allocate(plastic_phenopowerlaw_Cnuc(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_Cdwp(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_Cgro(maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_deltaG(maxNinstance), source=0.0_pReal) rewind(fileUnit) phase = 0_pInt do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partPhase) ! wind forward to line = IO_read(fileUnit) enddo parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part line = IO_read(fileUnit) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(fileUnit, .true.) ! reset IO_read exit endif if (IO_getTag(line,'[',']') /= '') then ! next phase phase = phase + 1_pInt ! advance phase section counter if (phase_plasticity(phase) == PLASTICITY_PHENOPOWERLAW_ID) then Nchunks_SlipFamilies = count(lattice_NslipSystem(:,phase) > 0_pInt) ! maximum number of slip families according to lattice type of current phase Nchunks_TwinFamilies = count(lattice_NtwinSystem(:,phase) > 0_pInt) ! maximum number of twin families according to lattice type of current phase Nchunks_TransFamilies = count(lattice_NtransSystem(:,phase) > 0_pInt) ! maximum number of trans families according to lattice type of current phase Nchunks_SlipSlip = maxval(lattice_interactionSlipSlip(:,:,phase)) Nchunks_SlipTwin = maxval(lattice_interactionSlipTwin(:,:,phase)) Nchunks_TwinSlip = maxval(lattice_interactionTwinSlip(:,:,phase)) Nchunks_TwinTwin = maxval(lattice_interactionTwinTwin(:,:,phase)) Nchunks_nonSchmid = lattice_NnonSchmid(phase) if(allocated(tempPerSlip)) deallocate(tempPerSlip) allocate(tempPerSlip(Nchunks_SlipFamilies)) endif cycle ! skip to next line endif if (phase > 0_pInt ) then; if (phase_plasticity(phase) == PLASTICITY_PHENOPOWERLAW_ID) then ! one of my phases. Do not short-circuit here (.and. between if-statements), it's not safe in Fortran instance = phase_plasticityInstance(phase) ! which instance of my plasticity is present phase chunkPos = IO_stringPos(line) tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key select case(tag) case ('(output)') select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt))) case ('resistance_slip') plastic_phenopowerlaw_Noutput(instance) = plastic_phenopowerlaw_Noutput(instance) + 1_pInt plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = resistance_slip_ID plastic_phenopowerlaw_output(plastic_phenopowerlaw_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('accumulatedshear_slip','accumulated_shear_slip') plastic_phenopowerlaw_Noutput(instance) = plastic_phenopowerlaw_Noutput(instance) + 1_pInt plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = accumulatedshear_slip_ID plastic_phenopowerlaw_output(plastic_phenopowerlaw_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('shearrate_slip') plastic_phenopowerlaw_Noutput(instance) = plastic_phenopowerlaw_Noutput(instance) + 1_pInt plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = shearrate_slip_ID plastic_phenopowerlaw_output(plastic_phenopowerlaw_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('resolvedstress_slip') plastic_phenopowerlaw_Noutput(instance) = plastic_phenopowerlaw_Noutput(instance) + 1_pInt plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = resolvedstress_slip_ID plastic_phenopowerlaw_output(plastic_phenopowerlaw_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('totalshear') plastic_phenopowerlaw_Noutput(instance) = plastic_phenopowerlaw_Noutput(instance) + 1_pInt plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = totalshear_ID plastic_phenopowerlaw_output(plastic_phenopowerlaw_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('resistance_twin') plastic_phenopowerlaw_Noutput(instance) = plastic_phenopowerlaw_Noutput(instance) + 1_pInt plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = resistance_twin_ID plastic_phenopowerlaw_output(plastic_phenopowerlaw_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('accumulatedshear_twin','accumulated_shear_twin') plastic_phenopowerlaw_Noutput(instance) = plastic_phenopowerlaw_Noutput(instance) + 1_pInt plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = accumulatedshear_twin_ID plastic_phenopowerlaw_output(plastic_phenopowerlaw_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('shearrate_twin') plastic_phenopowerlaw_Noutput(instance) = plastic_phenopowerlaw_Noutput(instance) + 1_pInt plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = shearrate_twin_ID plastic_phenopowerlaw_output(plastic_phenopowerlaw_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('resolvedstress_twin') plastic_phenopowerlaw_Noutput(instance) = plastic_phenopowerlaw_Noutput(instance) + 1_pInt plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = resolvedstress_twin_ID plastic_phenopowerlaw_output(plastic_phenopowerlaw_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('totalvolfrac_twin') plastic_phenopowerlaw_Noutput(instance) = plastic_phenopowerlaw_Noutput(instance) + 1_pInt plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = totalvolfrac_twin_ID plastic_phenopowerlaw_output(plastic_phenopowerlaw_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case default end select !-------------------------------------------------------------------------------------------------- ! parameters depending on number of slip families case ('nslip') if (chunkPos(1) < Nchunks_SlipFamilies + 1_pInt) & call IO_warning(50_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') if (chunkPos(1) > Nchunks_SlipFamilies + 1_pInt) & call IO_error(150_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') Nchunks_SlipFamilies = chunkPos(1) - 1_pInt ! user specified number of (possibly) active slip families (e.g. 6 0 6 --> 3) do j = 1_pInt, Nchunks_SlipFamilies plastic_phenopowerlaw_Nslip(j,instance) = IO_intValue(line,chunkPos,1_pInt+j) enddo case ('tausat_slip','tau0_slip') tempPerSlip = 0.0_pReal do j = 1_pInt, Nchunks_SlipFamilies if (plastic_phenopowerlaw_Nslip(j,instance) > 0_pInt) & tempPerSlip(j) = IO_floatValue(line,chunkPos,1_pInt+j) enddo select case(tag) case ('tausat_slip') plastic_phenopowerlaw_tausat_slip(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) case ('tau0_slip') plastic_phenopowerlaw_tau0_slip(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) end select !-------------------------------------------------------------------------------------------------- ! parameters depending on number of twin families case ('ntwin') if (chunkPos(1) < Nchunks_TwinFamilies + 1_pInt) & call IO_warning(51_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') if (chunkPos(1) > Nchunks_TwinFamilies + 1_pInt) & call IO_error(150_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') Nchunks_TwinFamilies = chunkPos(1) - 1_pInt do j = 1_pInt, Nchunks_TwinFamilies plastic_phenopowerlaw_Ntwin(j,instance) = IO_intValue(line,chunkPos,1_pInt+j) enddo case ('tau0_twin') do j = 1_pInt, Nchunks_TwinFamilies if (plastic_phenopowerlaw_Ntwin(j,instance) > 0_pInt) & plastic_phenopowerlaw_tau0_twin(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j) enddo !-------------------------------------------------------------------------------------------------- ! parameters depending on number of transformation families case ('ntrans') if (chunkPos(1) < Nchunks_TransFamilies + 1_pInt) & call IO_warning(51_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') if (chunkPos(1) > Nchunks_TransFamilies + 1_pInt) & call IO_error(150_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') Nchunks_TransFamilies = chunkPos(1) - 1_pInt do j = 1_pInt, Nchunks_TransFamilies plastic_phenopowerlaw_Ntrans(j,instance) = IO_intValue(line,chunkPos,1_pInt+j) enddo !-------------------------------------------------------------------------------------------------- ! parameters depending on number of interactions case ('interaction_slipslip') if (chunkPos(1) < 1_pInt + Nchunks_SlipSlip) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') do j = 1_pInt, Nchunks_SlipSlip plastic_phenopowerlaw_interaction_SlipSlip(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j) enddo case ('interaction_sliptwin') if (chunkPos(1) < 1_pInt + Nchunks_SlipTwin) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') do j = 1_pInt, Nchunks_SlipTwin plastic_phenopowerlaw_interaction_SlipTwin(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j) enddo case ('interaction_twinslip') if (chunkPos(1) < 1_pInt + Nchunks_TwinSlip) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') do j = 1_pInt, Nchunks_TwinSlip plastic_phenopowerlaw_interaction_TwinSlip(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j) enddo case ('interaction_twintwin') if (chunkPos(1) < 1_pInt + Nchunks_TwinTwin) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') do j = 1_pInt, Nchunks_TwinTwin plastic_phenopowerlaw_interaction_TwinTwin(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j) enddo case ('nonschmid_coefficients') if (chunkPos(1) < 1_pInt + Nchunks_nonSchmid) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') do j = 1_pInt,Nchunks_nonSchmid plastic_phenopowerlaw_nonSchmidCoeff(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j) enddo !-------------------------------------------------------------------------------------------------- ! parameters independent of number of slip/twin systems case ('gdot0_slip') plastic_phenopowerlaw_gdot0_slip(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('n_slip') plastic_phenopowerlaw_n_slip(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('a_slip', 'w0_slip') plastic_phenopowerlaw_a_slip(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('gdot0_twin') plastic_phenopowerlaw_gdot0_twin(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('n_twin') plastic_phenopowerlaw_n_twin(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('s_pr') plastic_phenopowerlaw_spr(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('twin_b') plastic_phenopowerlaw_twinB(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('twin_c') plastic_phenopowerlaw_twinC(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('twin_d') plastic_phenopowerlaw_twinD(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('twin_e') plastic_phenopowerlaw_twinE(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('h0_slipslip') plastic_phenopowerlaw_h0_SlipSlip(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('h0_twinslip') plastic_phenopowerlaw_h0_TwinSlip(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('h0_twintwin') plastic_phenopowerlaw_h0_TwinTwin(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('atol_resistance') plastic_phenopowerlaw_aTolResistance(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('atol_shear') plastic_phenopowerlaw_aTolShear(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('atol_twinfrac') plastic_phenopowerlaw_aTolTwinfrac(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('atol_transfrac') plastic_phenopowerlaw_aTolTransfrac(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('cnuc') plastic_phenopowerlaw_Cnuc(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('cdwp') plastic_phenopowerlaw_Cdwp(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('cgro') plastic_phenopowerlaw_Cgro(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('deltag') plastic_phenopowerlaw_deltaG(instance) = IO_floatValue(line,chunkPos,2_pInt) case default end select endif; endif enddo parsingFile sanityChecks: do phase = 1_pInt, size(phase_plasticity) myPhase: if (phase_plasticity(phase) == PLASTICITY_phenopowerlaw_ID) then instance = phase_plasticityInstance(phase) plastic_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,instance) = & min(lattice_NslipSystem(1:lattice_maxNslipFamily,phase),& ! limit active slip systems per family to min of available and requested plastic_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,instance)) plastic_phenopowerlaw_Ntwin(1:lattice_maxNtwinFamily,instance) = & min(lattice_NtwinSystem(1:lattice_maxNtwinFamily,phase),& ! limit active twin systems per family to min of available and requested plastic_phenopowerlaw_Ntwin(:,instance)) plastic_phenopowerlaw_totalNslip(instance) = sum(plastic_phenopowerlaw_Nslip(:,instance)) ! how many slip systems altogether plastic_phenopowerlaw_totalNtwin(instance) = sum(plastic_phenopowerlaw_Ntwin(:,instance)) ! how many twin systems altogether plastic_phenopowerlaw_totalNtrans(instance) = sum(plastic_phenopowerlaw_Ntrans(:,instance)) ! how many trans systems altogether if (any(plastic_phenopowerlaw_tau0_slip(:,instance) < 0.0_pReal .and. & plastic_phenopowerlaw_Nslip(:,instance) > 0)) & call IO_error(211_pInt,el=instance,ext_msg='tau0_slip ('//PLASTICITY_PHENOPOWERLAW_label//')') if (plastic_phenopowerlaw_gdot0_slip(instance) <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='gdot0_slip ('//PLASTICITY_PHENOPOWERLAW_label//')') if (plastic_phenopowerlaw_n_slip(instance) <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='n_slip ('//PLASTICITY_PHENOPOWERLAW_label//')') if (any(plastic_phenopowerlaw_tausat_slip(:,instance) <= 0.0_pReal .and. & plastic_phenopowerlaw_Nslip(:,instance) > 0)) & call IO_error(211_pInt,el=instance,ext_msg='tausat_slip ('//PLASTICITY_PHENOPOWERLAW_label//')') if (any(abs(plastic_phenopowerlaw_a_slip(instance)) <= tiny(0.0_pReal) .and. & plastic_phenopowerlaw_Nslip(:,instance) > 0)) & call IO_error(211_pInt,el=instance,ext_msg='a_slip ('//PLASTICITY_PHENOPOWERLAW_label//')') if (any(plastic_phenopowerlaw_tau0_twin(:,instance) < 0.0_pReal .and. & plastic_phenopowerlaw_Ntwin(:,instance) > 0)) & call IO_error(211_pInt,el=instance,ext_msg='tau0_twin ('//PLASTICITY_PHENOPOWERLAW_label//')') if ( plastic_phenopowerlaw_gdot0_twin(instance) <= 0.0_pReal .and. & any(plastic_phenopowerlaw_Ntwin(:,instance) > 0)) & call IO_error(211_pInt,el=instance,ext_msg='gdot0_twin ('//PLASTICITY_PHENOPOWERLAW_label//')') if ( plastic_phenopowerlaw_n_twin(instance) <= 0.0_pReal .and. & any(plastic_phenopowerlaw_Ntwin(:,instance) > 0)) & call IO_error(211_pInt,el=instance,ext_msg='n_twin ('//PLASTICITY_PHENOPOWERLAW_label//')') if (plastic_phenopowerlaw_aTolResistance(instance) <= 0.0_pReal) & plastic_phenopowerlaw_aTolResistance(instance) = 1.0_pReal ! default absolute tolerance 1 Pa if (plastic_phenopowerlaw_aTolShear(instance) <= 0.0_pReal) & plastic_phenopowerlaw_aTolShear(instance) = 1.0e-6_pReal ! default absolute tolerance 1e-6 if (plastic_phenopowerlaw_aTolTwinfrac(instance) <= 0.0_pReal) & plastic_phenopowerlaw_aTolTwinfrac(instance) = 1.0e-6_pReal ! default absolute tolerance 1e-6 if (plastic_phenopowerlaw_aTolTransfrac(instance) <= 0.0_pReal) & plastic_phenopowerlaw_aTolTransfrac(instance) = 1.0e-6_pReal ! default absolute tolerance 1e-6 endif myPhase enddo sanityChecks !-------------------------------------------------------------------------------------------------- ! allocation of variables whose size depends on the total number of active slip systems allocate(plastic_phenopowerlaw_hardeningMatrix_SlipSlip(maxval(plastic_phenopowerlaw_totalNslip),& ! slip resistance from slip activity maxval(plastic_phenopowerlaw_totalNslip),& maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_hardeningMatrix_SlipTwin(maxval(plastic_phenopowerlaw_totalNslip),& ! slip resistance from twin activity maxval(plastic_phenopowerlaw_totalNtwin),& maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_hardeningMatrix_TwinSlip(maxval(plastic_phenopowerlaw_totalNtwin),& ! twin resistance from slip activity maxval(plastic_phenopowerlaw_totalNslip),& maxNinstance), source=0.0_pReal) allocate(plastic_phenopowerlaw_hardeningMatrix_TwinTwin(maxval(plastic_phenopowerlaw_totalNtwin),& ! twin resistance from twin activity maxval(plastic_phenopowerlaw_totalNtwin),& maxNinstance), source=0.0_pReal) allocate(state(maxNinstance)) allocate(state0(maxNinstance)) allocate(dotState(maxNinstance)) initializeInstances: do phase = 1_pInt, size(phase_plasticity) ! loop through all phases in material.config myPhase2: if (phase_plasticity(phase) == PLASTICITY_phenopowerlaw_ID) then ! only consider my phase NipcMyPhase = count(material_phase == phase) ! number of IPCs containing my phase instance = phase_plasticityInstance(phase) ! which instance of my phase !-------------------------------------------------------------------------------------------------- ! Determine size of postResults array outputsLoop: do o = 1_pInt,plastic_phenopowerlaw_Noutput(instance) select case(plastic_phenopowerlaw_outputID(o,instance)) case(resistance_slip_ID, & shearrate_slip_ID, & accumulatedshear_slip_ID, & resolvedstress_slip_ID & ) mySize = plastic_phenopowerlaw_totalNslip(instance) case(resistance_twin_ID, & shearrate_twin_ID, & accumulatedshear_twin_ID, & resolvedstress_twin_ID & ) mySize = plastic_phenopowerlaw_totalNtwin(instance) case(totalshear_ID, & totalvolfrac_twin_ID & ) mySize = 1_pInt case default end select outputFound: if (mySize > 0_pInt) then plastic_phenopowerlaw_sizePostResult(o,instance) = mySize plastic_phenopowerlaw_sizePostResults(instance) = plastic_phenopowerlaw_sizePostResults(instance) + mySize endif outputFound enddo outputsLoop !-------------------------------------------------------------------------------------------------- ! allocate state arrays sizeState = plastic_phenopowerlaw_totalNslip(instance) & ! s_slip + plastic_phenopowerlaw_totalNtwin(instance) & ! s_twin + 2_pInt & ! sum(gamma) + sum(f) + plastic_phenopowerlaw_totalNslip(instance) & ! accshear_slip + plastic_phenopowerlaw_totalNtwin(instance) ! accshear_twin sizeDotState = sizeState sizeDeltaState = 0_pInt plasticState(phase)%sizeState = sizeState plasticState(phase)%sizeDotState = sizeDotState plasticState(phase)%sizeDeltaState = sizeDeltaState plasticState(phase)%sizePostResults = plastic_phenopowerlaw_sizePostResults(instance) plasticState(phase)%nSlip =plastic_phenopowerlaw_totalNslip(instance) plasticState(phase)%nTwin =plastic_phenopowerlaw_totalNtwin(instance) plasticState(phase)%nTrans=plastic_phenopowerlaw_totalNtrans(instance) allocate(plasticState(phase)%aTolState ( sizeState), source=0.0_pReal) allocate(plasticState(phase)%state0 ( sizeState,NipcMyPhase), source=0.0_pReal) allocate(plasticState(phase)%partionedState0 ( sizeState,NipcMyPhase), source=0.0_pReal) allocate(plasticState(phase)%subState0 ( sizeState,NipcMyPhase), source=0.0_pReal) allocate(plasticState(phase)%state ( sizeState,NipcMyPhase), source=0.0_pReal) allocate(plasticState(phase)%dotState (sizeDotState,NipcMyPhase), source=0.0_pReal) allocate(plasticState(phase)%deltaState (sizeDeltaState,NipcMyPhase), source=0.0_pReal) if (.not. analyticJaco) then allocate(plasticState(phase)%state_backup ( sizeState,NipcMyPhase),source=0.0_pReal) allocate(plasticState(phase)%dotState_backup (sizeDotState,NipcMyPhase),source=0.0_pReal) endif if (any(numerics_integrator == 1_pInt)) then allocate(plasticState(phase)%previousDotState (sizeDotState,NipcMyPhase),source=0.0_pReal) allocate(plasticState(phase)%previousDotState2(sizeDotState,NipcMyPhase),source=0.0_pReal) endif if (any(numerics_integrator == 4_pInt)) & allocate(plasticState(phase)%RK4dotState (sizeDotState,NipcMyPhase), source=0.0_pReal) if (any(numerics_integrator == 5_pInt)) & allocate(plasticState(phase)%RKCK45dotState (6,sizeDotState,NipcMyPhase), source=0.0_pReal) offset_slip = plasticState(phase)%nSlip+plasticState(phase)%nTwin+2_pInt plasticState(phase)%slipRate => & plasticState(phase)%dotState(offset_slip+1:offset_slip+plasticState(phase)%nSlip,1:NipcMyPhase) plasticState(phase)%accumulatedSlip => & plasticState(phase)%state(offset_slip+1:offset_slip+plasticState(phase)%nSlip,1:NipcMyPhase) do f = 1_pInt,lattice_maxNslipFamily ! >>> interaction slip -- X index_myFamily = sum(plastic_phenopowerlaw_Nslip(1:f-1_pInt,instance)) do j = 1_pInt,plastic_phenopowerlaw_Nslip(f,instance) ! loop over (active) systems in my family (slip) do o = 1_pInt,lattice_maxNslipFamily index_otherFamily = sum(plastic_phenopowerlaw_Nslip(1:o-1_pInt,instance)) do k = 1_pInt,plastic_phenopowerlaw_Nslip(o,instance) ! loop over (active) systems in other family (slip) plastic_phenopowerlaw_hardeningMatrix_SlipSlip(index_myFamily+j,index_otherFamily+k,instance) = & plastic_phenopowerlaw_interaction_SlipSlip(lattice_interactionSlipSlip( & sum(lattice_NslipSystem(1:f-1,phase))+j, & sum(lattice_NslipSystem(1:o-1,phase))+k, & phase), instance ) enddo; enddo do o = 1_pInt,lattice_maxNtwinFamily index_otherFamily = sum(plastic_phenopowerlaw_Ntwin(1:o-1_pInt,instance)) do k = 1_pInt,plastic_phenopowerlaw_Ntwin(o,instance) ! loop over (active) systems in other family (twin) plastic_phenopowerlaw_hardeningMatrix_SlipTwin(index_myFamily+j,index_otherFamily+k,instance) = & plastic_phenopowerlaw_interaction_SlipTwin(lattice_interactionSlipTwin( & sum(lattice_NslipSystem(1:f-1_pInt,phase))+j, & sum(lattice_NtwinSystem(1:o-1_pInt,phase))+k, & phase), instance ) enddo; enddo enddo; enddo do f = 1_pInt,lattice_maxNtwinFamily ! >>> interaction twin -- X index_myFamily = sum(plastic_phenopowerlaw_Ntwin(1:f-1_pInt,instance)) do j = 1_pInt,plastic_phenopowerlaw_Ntwin(f,instance) ! loop over (active) systems in my family (twin) do o = 1_pInt,lattice_maxNslipFamily index_otherFamily = sum(plastic_phenopowerlaw_Nslip(1:o-1_pInt,instance)) do k = 1_pInt,plastic_phenopowerlaw_Nslip(o,instance) ! loop over (active) systems in other family (slip) plastic_phenopowerlaw_hardeningMatrix_TwinSlip(index_myFamily+j,index_otherFamily+k,instance) = & plastic_phenopowerlaw_interaction_TwinSlip(lattice_interactionTwinSlip( & sum(lattice_NtwinSystem(1:f-1_pInt,phase))+j, & sum(lattice_NslipSystem(1:o-1_pInt,phase))+k, & phase), instance ) enddo; enddo do o = 1_pInt,lattice_maxNtwinFamily index_otherFamily = sum(plastic_phenopowerlaw_Ntwin(1:o-1_pInt,instance)) do k = 1_pInt,plastic_phenopowerlaw_Ntwin(o,instance) ! loop over (active) systems in other family (twin) plastic_phenopowerlaw_hardeningMatrix_TwinTwin(index_myFamily+j,index_otherFamily+k,instance) = & plastic_phenopowerlaw_interaction_TwinTwin(lattice_interactionTwinTwin( & sum(lattice_NtwinSystem(1:f-1_pInt,phase))+j, & sum(lattice_NtwinSystem(1:o-1_pInt,phase))+k, & phase), instance ) enddo; enddo enddo; enddo startIndex = 1_pInt endIndex = plastic_phenopowerlaw_totalNslip(instance) state (instance)%s_slip=>plasticState(phase)%state (startIndex:endIndex,:) state0 (instance)%s_slip=>plasticState(phase)%state0 (startIndex:endIndex,:) dotState(instance)%s_slip=>plasticState(phase)%dotState(startIndex:endIndex,:) startIndex = endIndex + 1_pInt endIndex = endIndex + plastic_phenopowerlaw_totalNtwin(instance) state (instance)%s_twin=>plasticState(phase)%state (startIndex:endIndex,:) state0 (instance)%s_twin=>plasticState(phase)%state0 (startIndex:endIndex,:) dotState(instance)%s_twin=>plasticState(phase)%dotState(startIndex:endIndex,:) startIndex = endIndex + 1_pInt endIndex = endIndex + 1_pInt state (instance)%sumGamma=>plasticState(phase)%state (startIndex,:) state0 (instance)%sumGamma=>plasticState(phase)%state0 (startIndex,:) dotState(instance)%sumGamma=>plasticState(phase)%dotState(startIndex,:) startIndex = endIndex + 1_pInt endIndex = endIndex + 1_pInt state (instance)%sumF=>plasticState(phase)%state (startIndex,:) state0 (instance)%sumF=>plasticState(phase)%state0 (startIndex,:) dotState(instance)%sumF=>plasticState(phase)%dotState(startIndex,:) startIndex = endIndex + 1_pInt endIndex = endIndex +plastic_phenopowerlaw_totalNslip(instance) state (instance)%accshear_slip=>plasticState(phase)%state (startIndex:endIndex,:) state0 (instance)%accshear_slip=>plasticState(phase)%state0 (startIndex:endIndex,:) dotState(instance)%accshear_slip=>plasticState(phase)%dotState(startIndex:endIndex,:) startIndex = endIndex + 1_pInt endIndex = endIndex +plastic_phenopowerlaw_totalNtwin(instance) state (instance)%accshear_slip=>plasticState(phase)%state (startIndex:endIndex,:) state0 (instance)%accshear_slip=>plasticState(phase)%state0 (startIndex:endIndex,:) dotState(instance)%accshear_slip=>plasticState(phase)%dotState(startIndex:endIndex,:) call plastic_phenopowerlaw_stateInit(phase,instance) call plastic_phenopowerlaw_aTolState(phase,instance) endif myPhase2 enddo initializeInstances end subroutine plastic_phenopowerlaw_init !-------------------------------------------------------------------------------------------------- !> @brief sets the initial microstructural state for a given instance of this plasticity !-------------------------------------------------------------------------------------------------- subroutine plastic_phenopowerlaw_stateInit(ph,instance) use lattice, only: & lattice_maxNslipFamily, & lattice_maxNtwinFamily use material, only: & plasticState implicit none integer(pInt), intent(in) :: & instance, & !< number specifying the instance of the plasticity ph integer(pInt) :: & i real(pReal), dimension(plasticState(ph)%sizeState) :: & tempState tempState = 0.0_pReal do i = 1_pInt,lattice_maxNslipFamily tempState(1+sum(plastic_phenopowerlaw_Nslip(1:i-1,instance)) : & sum(plastic_phenopowerlaw_Nslip(1:i ,instance))) = & plastic_phenopowerlaw_tau0_slip(i,instance) enddo do i = 1_pInt,lattice_maxNtwinFamily tempState(1+sum(plastic_phenopowerlaw_Nslip(:,instance))+& sum(plastic_phenopowerlaw_Ntwin(1:i-1,instance)) : & sum(plastic_phenopowerlaw_Nslip(:,instance))+& sum(plastic_phenopowerlaw_Ntwin(1:i ,instance))) = & plastic_phenopowerlaw_tau0_twin(i,instance) enddo plasticState(ph)%state0(:,:) = spread(tempState, & ! spread single tempstate array 2, & ! along dimension 2 size(plasticState(ph)%state0(1,:))) ! number of copies (number of IPCs) end subroutine plastic_phenopowerlaw_stateInit !-------------------------------------------------------------------------------------------------- !> @brief sets the relevant state values for a given instance of this plasticity !-------------------------------------------------------------------------------------------------- subroutine plastic_phenopowerlaw_aTolState(ph,instance) use material, only: & plasticState implicit none integer(pInt), intent(in) :: & instance, & !< number specifying the instance of the plasticity ph plasticState(ph)%aTolState(1:plastic_phenopowerlaw_totalNslip(instance)+ & plastic_phenopowerlaw_totalNtwin(instance)) = & plastic_phenopowerlaw_aTolResistance(instance) plasticState(ph)%aTolState(1+plastic_phenopowerlaw_totalNslip(instance)+ & plastic_phenopowerlaw_totalNtwin(instance)) = & plastic_phenopowerlaw_aTolShear(instance) plasticState(ph)%aTolState(2+plastic_phenopowerlaw_totalNslip(instance)+ & plastic_phenopowerlaw_totalNtwin(instance)) = & plastic_phenopowerlaw_aTolTwinFrac(instance) plasticState(ph)%aTolState(3+plastic_phenopowerlaw_totalNslip(instance)+ & plastic_phenopowerlaw_totalNtwin(instance): & 2+2*(plastic_phenopowerlaw_totalNslip(instance)+ & plastic_phenopowerlaw_totalNtwin(instance))) = & plastic_phenopowerlaw_aTolShear(instance) end subroutine plastic_phenopowerlaw_aTolState !-------------------------------------------------------------------------------------------------- !> @brief calculates plastic velocity gradient and its tangent !-------------------------------------------------------------------------------------------------- subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el) use math, only: & math_Plain3333to99, & math_Mandel6to33 use lattice, only: & lattice_Sslip, & lattice_Sslip_v, & lattice_Stwin, & lattice_Stwin_v, & lattice_maxNslipFamily, & lattice_maxNtwinFamily, & lattice_NslipSystem, & lattice_NtwinSystem, & lattice_NnonSchmid use material, only: & phaseAt, phasememberAt, & phase_plasticityInstance implicit none real(pReal), dimension(3,3), intent(out) :: & Lp !< plastic velocity gradient real(pReal), dimension(9,9), intent(out) :: & dLp_dTstar99 !< derivative of Lp with respect to 2nd Piola Kirchhoff stress integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation integer(pInt) :: & instance, & index_myFamily, & f,i,j,k,l,m,n, & of, & ph real(pReal) :: & tau_slip_pos,tau_slip_neg, & gdot_slip_pos,gdot_slip_neg, & dgdot_dtauslip_pos,dgdot_dtauslip_neg, & gdot_twin,dgdot_dtautwin,tau_twin real(pReal), dimension(3,3,3,3) :: & dLp_dTstar3333 !< derivative of Lp with respect to Tstar as 4th order tensor real(pReal), dimension(3,3,2) :: & nonSchmid_tensor of = phasememberAt(ipc,ip,el) ph = phaseAt(ipc,ip,el) instance = phase_plasticityInstance(ph) Lp = 0.0_pReal dLp_dTstar3333 = 0.0_pReal dLp_dTstar99 = 0.0_pReal !-------------------------------------------------------------------------------------------------- ! Slip part j = 0_pInt slipFamilies: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family slipSystems: do i = 1_pInt,plastic_phenopowerlaw_Nslip(f,instance) j = j+1_pInt ! Calculation of Lp tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph)) tau_slip_neg = tau_slip_pos nonSchmid_tensor(1:3,1:3,1) = lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph) nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,1) do k = 1,lattice_NnonSchmid(ph) tau_slip_pos = tau_slip_pos + plastic_phenopowerlaw_nonSchmidCoeff(k,instance)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,ph)) tau_slip_neg = tau_slip_neg + plastic_phenopowerlaw_nonSchmidCoeff(k,instance)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph)) nonSchmid_tensor(1:3,1:3,1) = nonSchmid_tensor(1:3,1:3,1) + plastic_phenopowerlaw_nonSchmidCoeff(k,instance)*& lattice_Sslip(1:3,1:3,2*k,index_myFamily+i,ph) nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,2) + plastic_phenopowerlaw_nonSchmidCoeff(k,instance)*& lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+i,ph) enddo gdot_slip_pos = 0.5_pReal*plastic_phenopowerlaw_gdot0_slip(instance)* & ((abs(tau_slip_pos)/(state(instance)%s_slip(j,of))) & **plastic_phenopowerlaw_n_slip(instance))*sign(1.0_pReal,tau_slip_pos) gdot_slip_neg = 0.5_pReal*plastic_phenopowerlaw_gdot0_slip(instance)* & ((abs(tau_slip_neg)/(state(instance)%s_slip(j,of))) & **plastic_phenopowerlaw_n_slip(instance))*sign(1.0_pReal,tau_slip_neg) Lp = Lp + (1.0_pReal-state(instance)%sumF(of))*& ! 1-F (gdot_slip_pos+gdot_slip_neg)*lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph) ! Calculation of the tangent of Lp if (abs(gdot_slip_pos) > tiny(0.0_pReal)) then dgdot_dtauslip_pos = gdot_slip_pos*plastic_phenopowerlaw_n_slip(instance)/tau_slip_pos forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + & dgdot_dtauslip_pos*lattice_Sslip(k,l,1,index_myFamily+i,ph)* & nonSchmid_tensor(m,n,1) endif if (abs(gdot_slip_neg) > tiny(0.0_pReal)) then dgdot_dtauslip_neg = gdot_slip_neg*plastic_phenopowerlaw_n_slip(instance)/tau_slip_neg forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + & dgdot_dtauslip_neg*lattice_Sslip(k,l,1,index_myFamily+i,ph)* & nonSchmid_tensor(m,n,2) endif enddo slipSystems enddo slipFamilies !-------------------------------------------------------------------------------------------------- ! Twinning part j = 0_pInt twinFamilies: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family twinSystems: do i = 1_pInt,plastic_phenopowerlaw_Ntwin(f,instance) j = j+1_pInt ! Calculation of Lp tau_twin = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,ph)) gdot_twin = (1.0_pReal-state(instance)%sumF(of))*& ! 1-F plastic_phenopowerlaw_gdot0_twin(instance)*& (abs(tau_twin)/state(instance)%s_twin(j,of))**& plastic_phenopowerlaw_n_twin(instance)*max(0.0_pReal,sign(1.0_pReal,tau_twin)) Lp = Lp + gdot_twin*lattice_Stwin(1:3,1:3,index_myFamily+i,ph) ! Calculation of the tangent of Lp if (abs(gdot_twin) > tiny(0.0_pReal)) then dgdot_dtautwin = gdot_twin*plastic_phenopowerlaw_n_twin(instance)/tau_twin forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + & dgdot_dtautwin*lattice_Stwin(k,l,index_myFamily+i,ph)* & lattice_Stwin(m,n,index_myFamily+i,ph) endif enddo twinSystems enddo twinFamilies dLp_dTstar99 = math_Plain3333to99(dLp_dTstar3333) end subroutine plastic_phenopowerlaw_LpAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief calculates the rate of change of microstructure !-------------------------------------------------------------------------------------------------- subroutine plastic_phenopowerlaw_dotState(Tstar_v,ipc,ip,el) use lattice, only: & lattice_Sslip_v, & lattice_Stwin_v, & lattice_maxNslipFamily, & lattice_maxNtwinFamily, & lattice_NslipSystem, & lattice_NtwinSystem, & lattice_shearTwin, & lattice_NnonSchmid use material, only: & material_phase, & phaseAt, phasememberAt, & plasticState, & phase_plasticityInstance implicit none real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element !< microstructure state integer(pInt) :: & instance,ph, & nSlip,nTwin, & f,i,j,k, & index_Gamma,index_F,index_myFamily, & offset_accshear_slip,offset_accshear_twin, & of real(pReal) :: & c_SlipSlip,c_TwinSlip,c_TwinTwin, & ssat_offset, & tau_slip_pos,tau_slip_neg,tau_twin real(pReal), dimension(plastic_phenopowerlaw_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_slip,left_SlipSlip,left_SlipTwin,right_SlipSlip,right_TwinSlip real(pReal), dimension(plastic_phenopowerlaw_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_twin,left_TwinSlip,left_TwinTwin,right_SlipTwin,right_TwinTwin of = phasememberAt(ipc,ip,el) ph = phaseAt(ipc,ip,el) instance = phase_plasticityInstance(ph) nSlip = plastic_phenopowerlaw_totalNslip(instance) nTwin = plastic_phenopowerlaw_totalNtwin(instance) index_Gamma = nSlip + nTwin + 1_pInt index_F = nSlip + nTwin + 2_pInt offset_accshear_slip = nSlip + nTwin + 2_pInt offset_accshear_twin = nSlip + nTwin + 2_pInt + nSlip plasticState(ph)%dotState(:,of) = 0.0_pReal !-------------------------------------------------------------------------------------------------- ! system-independent (nonlinear) prefactors to M_Xx (X influenced by x) matrices c_SlipSlip = plastic_phenopowerlaw_h0_SlipSlip(instance)*& (1.0_pReal + plastic_phenopowerlaw_twinC(instance)*plasticState(ph)%state(index_F,of)**& plastic_phenopowerlaw_twinB(instance)) c_TwinSlip = plastic_phenopowerlaw_h0_TwinSlip(instance)*& plasticState(ph)%state(index_Gamma,of)**plastic_phenopowerlaw_twinE(instance) c_TwinTwin = plastic_phenopowerlaw_h0_TwinTwin(instance)*& plasticState(ph)%state(index_F,of)**plastic_phenopowerlaw_twinD(instance) !-------------------------------------------------------------------------------------------------- ! calculate left and right vectors and calculate dot gammas ssat_offset = plastic_phenopowerlaw_spr(instance)*sqrt(plasticState(ph)%state(index_F,of)) j = 0_pInt slipFamilies1: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family slipSystems1: do i = 1_pInt,plastic_phenopowerlaw_Nslip(f,instance) j = j+1_pInt left_SlipSlip(j) = 1.0_pReal ! no system-dependent left part left_SlipTwin(j) = 1.0_pReal ! no system-dependent left part right_SlipSlip(j) = abs(1.0_pReal-plasticState(ph)%state(j,of) / & (plastic_phenopowerlaw_tausat_slip(f,instance)+ssat_offset)) & **plastic_phenopowerlaw_a_slip(instance)& *sign(1.0_pReal,1.0_pReal-plasticState(ph)%state(j,of) / & (plastic_phenopowerlaw_tausat_slip(f,instance)+ssat_offset)) right_TwinSlip(j) = 1.0_pReal ! no system-dependent part !-------------------------------------------------------------------------------------------------- ! Calculation of dot gamma tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph)) tau_slip_neg = tau_slip_pos nonSchmidSystems: do k = 1,lattice_NnonSchmid(ph) tau_slip_pos = tau_slip_pos + plastic_phenopowerlaw_nonSchmidCoeff(k,instance)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k, index_myFamily+i,ph)) tau_slip_neg = tau_slip_neg + plastic_phenopowerlaw_nonSchmidCoeff(k,instance)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph)) enddo nonSchmidSystems gdot_slip(j) = plastic_phenopowerlaw_gdot0_slip(instance)*0.5_pReal* & ((abs(tau_slip_pos)/(plasticState(ph)%state(j,of)))**plastic_phenopowerlaw_n_slip(instance) & +(abs(tau_slip_neg)/(plasticState(ph)%state(j,of)))**plastic_phenopowerlaw_n_slip(instance))& *sign(1.0_pReal,tau_slip_pos) enddo slipSystems1 enddo slipFamilies1 j = 0_pInt twinFamilies1: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family twinSystems1: do i = 1_pInt,plastic_phenopowerlaw_Ntwin(f,instance) j = j+1_pInt left_TwinSlip(j) = 1.0_pReal ! no system-dependent left part left_TwinTwin(j) = 1.0_pReal ! no system-dependent left part right_SlipTwin(j) = 1.0_pReal ! no system-dependent right part right_TwinTwin(j) = 1.0_pReal ! no system-dependent right part !-------------------------------------------------------------------------------------------------- ! Calculation of dot vol frac tau_twin = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,ph)) gdot_twin(j) = (1.0_pReal-plasticState(ph)%state(index_F,of))*& ! 1-F plastic_phenopowerlaw_gdot0_twin(instance)*& (abs(tau_twin)/plasticState(ph)%state(nslip+j,of))**& plastic_phenopowerlaw_n_twin(instance)*max(0.0_pReal,sign(1.0_pReal,tau_twin)) enddo twinSystems1 enddo twinFamilies1 !-------------------------------------------------------------------------------------------------- ! calculate the overall hardening based on above j = 0_pInt slipFamilies2: do f = 1_pInt,lattice_maxNslipFamily slipSystems2: do i = 1_pInt,plastic_phenopowerlaw_Nslip(f,instance) j = j+1_pInt plasticState(ph)%dotState(j,of) = & ! evolution of slip resistance j c_SlipSlip * left_SlipSlip(j) * & dot_product(plastic_phenopowerlaw_hardeningMatrix_SlipSlip(j,1:nSlip,instance), & right_SlipSlip*abs(gdot_slip)) + & ! dot gamma_slip modulated by right-side slip factor dot_product(plastic_phenopowerlaw_hardeningMatrix_SlipTwin(j,1:nTwin,instance), & right_SlipTwin*gdot_twin) ! dot gamma_twin modulated by right-side twin factor plasticState(ph)%dotState(index_Gamma,of) = plasticState(ph)%dotState(index_Gamma,of) + & abs(gdot_slip(j)) plasticState(ph)%dotState(offset_accshear_slip+j,of) = abs(gdot_slip(j)) enddo slipSystems2 enddo slipFamilies2 j = 0_pInt twinFamilies2: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family twinSystems2: do i = 1_pInt,plastic_phenopowerlaw_Ntwin(f,instance) j = j+1_pInt plasticState(ph)%dotState(j+nSlip,of) = & ! evolution of twin resistance j c_TwinSlip * left_TwinSlip(j) * & dot_product(plastic_phenopowerlaw_hardeningMatrix_TwinSlip(j,1:nSlip,instance), & right_TwinSlip*abs(gdot_slip)) + & ! dot gamma_slip modulated by right-side slip factor c_TwinTwin * left_TwinTwin(j) * & dot_product(plastic_phenopowerlaw_hardeningMatrix_TwinTwin(j,1:nTwin,instance), & right_TwinTwin*gdot_twin) ! dot gamma_twin modulated by right-side twin factor if (plasticState(ph)%state(index_F,of) < 0.98_pReal) & ! ensure twin volume fractions stays below 1.0 plasticState(ph)%dotState(index_F,of) = plasticState(ph)%dotState(index_F,of) + & gdot_twin(j)/lattice_shearTwin(index_myFamily+i,ph) plasticState(ph)%dotState(offset_accshear_twin+j,of) = abs(gdot_twin(j)) enddo twinSystems2 enddo twinFamilies2 end subroutine plastic_phenopowerlaw_dotState !-------------------------------------------------------------------------------------------------- !> @brief return array of constitutive results !-------------------------------------------------------------------------------------------------- function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el) use material, only: & material_phase, & plasticState, & phaseAt, phasememberAt, & phase_plasticityInstance use lattice, only: & lattice_Sslip_v, & lattice_Stwin_v, & lattice_maxNslipFamily, & lattice_maxNtwinFamily, & lattice_NslipSystem, & lattice_NtwinSystem, & lattice_NnonSchmid implicit none real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element !< microstructure state real(pReal), dimension(plastic_phenopowerlaw_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & plastic_phenopowerlaw_postResults integer(pInt) :: & instance,ph, of, & nSlip,nTwin, & o,f,i,c,j,k, & index_Gamma,index_F,index_accshear_slip,index_accshear_twin,index_myFamily real(pReal) :: & tau_slip_pos,tau_slip_neg,tau of = phasememberAt(ipc,ip,el) ph = phaseAt(ipc,ip,el) instance = phase_plasticityInstance(ph) nSlip = plastic_phenopowerlaw_totalNslip(instance) nTwin = plastic_phenopowerlaw_totalNtwin(instance) index_Gamma = nSlip + nTwin + 1_pInt index_F = nSlip + nTwin + 2_pInt index_accshear_slip = nSlip + nTwin + 3_pInt index_accshear_twin = nSlip + nTwin + 3_pInt + nSlip plastic_phenopowerlaw_postResults = 0.0_pReal c = 0_pInt outputsLoop: do o = 1_pInt,plastic_phenopowerlaw_Noutput(instance) select case(plastic_phenopowerlaw_outputID(o,instance)) case (resistance_slip_ID) plastic_phenopowerlaw_postResults(c+1_pInt:c+nSlip) = plasticState(ph)%state(1:nSlip,of) c = c + nSlip case (accumulatedshear_slip_ID) plastic_phenopowerlaw_postResults(c+1_pInt:c+nSlip) = plasticState(ph)%state(index_accshear_slip:& index_accshear_slip+nSlip-1_pInt,of) c = c + nSlip case (shearrate_slip_ID) j = 0_pInt slipFamilies1: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family slipSystems1: do i = 1_pInt,plastic_phenopowerlaw_Nslip(f,instance) j = j + 1_pInt tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph)) tau_slip_neg = tau_slip_pos do k = 1,lattice_NnonSchmid(ph) tau_slip_pos = tau_slip_pos + plastic_phenopowerlaw_nonSchmidCoeff(k,instance)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,ph)) tau_slip_neg = tau_slip_neg + plastic_phenopowerlaw_nonSchmidCoeff(k,instance)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph)) enddo plastic_phenopowerlaw_postResults(c+j) = plastic_phenopowerlaw_gdot0_slip(instance)*0.5_pReal* & ((abs(tau_slip_pos)/plasticState(ph)%state(j,of))**plastic_phenopowerlaw_n_slip(instance) & +(abs(tau_slip_neg)/plasticState(ph)%state(j,of))**plastic_phenopowerlaw_n_slip(instance))& *sign(1.0_pReal,tau_slip_pos) enddo slipSystems1 enddo slipFamilies1 c = c + nSlip case (resolvedstress_slip_ID) j = 0_pInt slipFamilies2: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family slipSystems2: do i = 1_pInt,plastic_phenopowerlaw_Nslip(f,instance) j = j + 1_pInt plastic_phenopowerlaw_postResults(c+j) = & dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph)) enddo slipSystems2 enddo slipFamilies2 c = c + nSlip case (totalshear_ID) plastic_phenopowerlaw_postResults(c+1_pInt) = & plasticState(ph)%state(index_Gamma,of) c = c + 1_pInt case (resistance_twin_ID) plastic_phenopowerlaw_postResults(c+1_pInt:c+nTwin) = & plasticState(ph)%state(1_pInt+nSlip:1_pInt+nSlip+nTwin-1_pInt,of) c = c + nTwin case (accumulatedshear_twin_ID) plastic_phenopowerlaw_postResults(c+1_pInt:c+nTwin) = & plasticState(ph)%state(index_accshear_twin:index_accshear_twin+nTwin-1_pInt,of) c = c + nTwin case (shearrate_twin_ID) j = 0_pInt twinFamilies1: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family twinSystems1: do i = 1_pInt,plastic_phenopowerlaw_Ntwin(f,instance) j = j + 1_pInt tau = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,ph)) plastic_phenopowerlaw_postResults(c+j) = (1.0_pReal-plasticState(ph)%state(index_F,of))*& ! 1-F plastic_phenopowerlaw_gdot0_twin(instance)*& (abs(tau)/plasticState(ph)%state(j+nSlip,of))**& plastic_phenopowerlaw_n_twin(instance)*max(0.0_pReal,sign(1.0_pReal,tau)) enddo twinSystems1 enddo twinFamilies1 c = c + nTwin case (resolvedstress_twin_ID) j = 0_pInt twinFamilies2: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family twinSystems2: do i = 1_pInt,plastic_phenopowerlaw_Ntwin(f,instance) j = j + 1_pInt plastic_phenopowerlaw_postResults(c+j) = & dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,ph)) enddo twinSystems2 enddo twinFamilies2 c = c + nTwin case (totalvolfrac_twin_ID) plastic_phenopowerlaw_postResults(c+1_pInt) = plasticState(ph)%state(index_F,of) c = c + 1_pInt end select enddo outputsLoop end function plastic_phenopowerlaw_postResults end module plastic_phenopowerlaw