! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH ! ! This file is part of DAMASK, ! the Düsseldorf Advanced MAterial Simulation Kit. ! ! DAMASK is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! DAMASK is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with DAMASK. If not, see . ! !-------------------------------------------------------------------------------------------------- !* $Id$ !-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief Parses material config file, either solverJobName.materialConfig or material.config !> @details reads the material configuration file, where solverJobName.materialConfig takes !! precedence over material.config and parses the sections 'homogenization', 'crystallite', !! 'phase', 'texture', and 'microstucture' !-------------------------------------------------------------------------------------------------- module material use prec, only: & pReal, & pInt, & p_intvec implicit none private character(len=64), parameter, public :: & MATERIAL_configFile = 'material.config', & !< generic name for material configuration file MATERIAL_localFileExt = 'materialConfig' !< extension of solver job name depending material configuration file character(len=32), parameter, public :: & MATERIAL_partHomogenization = 'homogenization', & !< keyword for homogenization part MATERIAL_partCrystallite = 'crystallite', & !< keyword for crystallite part MATERIAL_partPhase = 'phase' !< keyword for phase part character(len=64), dimension(:), allocatable, public, protected :: & phase_elasticity, & !< elasticity of each phase phase_plasticity, & !< plasticity of each phase phase_name, & !< name of each phase homogenization_name, & !< name of each homogenization homogenization_type, & !< type of each homogenization crystallite_name !< name of each crystallite setting integer(pInt), public, protected :: & homogenization_maxNgrains, & !< max number of grains in any USED homogenization material_Nphase, & !< number of phases material_Nhomogenization, & !< number of homogenizations material_Nmicrostructure, & !< number of microstructures material_Ncrystallite !< number of crystallite settings integer(pInt), dimension(:), allocatable, public, protected :: & homogenization_Ngrains, & !< number of grains in each homogenization homogenization_Noutput, & !< number of '(output)' items per homogenization phase_Noutput, & !< number of '(output)' items per phase phase_elasticityInstance, & !< instance of particular elasticity of each phase phase_plasticityInstance, & !< instance of particular plasticity of each phase crystallite_Noutput, & !< number of '(output)' items per crystallite setting homogenization_typeInstance, & !< instance of particular type of each homogenization microstructure_crystallite !< crystallite setting ID of each microstructure integer(pInt), dimension(:,:,:), allocatable, public:: & material_phase !< phase (index) of each grain,IP,element integer(pInt), dimension(:,:,:), allocatable, public, protected :: & material_texture !< texture (index) of each grain,IP,element real(pReal), dimension(:,:,:,:), allocatable, public, protected :: & material_EulerAngles !< initial orientation of each grain,IP,element logical, dimension(:), allocatable, public, protected :: & microstructure_active, & microstructure_elemhomo, & !< flag to indicate homogeneous microstructure distribution over element's IPs phase_localPlasticity !< flags phases with local constitutive law character(len=32), parameter, private :: & MATERIAL_partMicrostructure = 'microstructure', & !< keyword for microstructure part MATERIAL_partTexture = 'texture' !< keyword for texture part character(len=64), dimension(:), allocatable, private :: & microstructure_name, & !< name of each microstructure texture_name !< name of each texture character(len=256), dimension(:), allocatable, private :: & texture_ODFfile !< name of each ODF file integer(pInt), private :: & material_Ntexture, & !< number of textures microstructure_maxNconstituents, & !< max number of constituents in any phase texture_maxNgauss, & !< max number of Gauss components in any texture texture_maxNfiber !< max number of Fiber components in any texture integer(pInt), dimension(:), allocatable, private :: & microstructure_Nconstituents, & !< number of constituents in each microstructure texture_symmetry, & !< number of symmetric orientations per texture texture_Ngauss, & !< number of Gauss components per texture texture_Nfiber !< number of Fiber components per texture integer(pInt), dimension(:,:), allocatable, private :: & microstructure_phase, & !< phase IDs of each microstructure microstructure_texture !< texture IDs of each microstructure real(pReal), dimension(:,:), allocatable, private :: & microstructure_fraction !< vol fraction of each constituent in microstructure real(pReal), dimension(:,:,:), allocatable, private :: & material_volume, & !< volume of each grain,IP,element texture_Gauss, & !< data of each Gauss component texture_Fiber, & !< data of each Fiber component texture_transformation !< transformation for each texture logical, dimension(:), allocatable, private :: & homogenization_active public :: material_init private :: material_parseHomogenization, & material_parseMicrostructure, & material_parseCrystallite, & material_parsePhase, & material_parseTexture, & material_populateGrains contains !-------------------------------------------------------------------------------------------------- !> @brief parses material configuration file !> @details figures out if solverJobName.materialConfig is present, if not looks for !> material.config !-------------------------------------------------------------------------------------------------- subroutine material_init use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use IO, only: & IO_error, & IO_open_file, & IO_open_jobFile_stat, & IO_timeStamp use debug, only: & debug_level, & debug_material, & debug_levelBasic, & debug_levelExtensive implicit none integer(pInt), parameter :: fileunit = 200_pInt integer(pInt) :: m,c,h, myDebug myDebug = debug_level(debug_material) write(6,'(/,a)') ' <<<+- material init -+>>>' write(6,'(a)') ' $Id$' write(6,'(a16,a)') ' Current time : ',IO_timeStamp() #include "compilation_info.f90" if (.not. IO_open_jobFile_stat(fileunit,material_localFileExt)) then ! no local material configuration present... call IO_open_file(fileunit,material_configFile) ! ...open material.config file endif call material_parseHomogenization(fileunit,material_partHomogenization) if (iand(myDebug,debug_levelBasic) /= 0_pInt) then write(6,'(a)') ' Homogenization parsed' endif call material_parseMicrostructure(fileunit,material_partMicrostructure) if (iand(myDebug,debug_levelBasic) /= 0_pInt) then write(6,'(a)') ' Microstructure parsed' endif call material_parseCrystallite(fileunit,material_partCrystallite) if (iand(myDebug,debug_levelBasic) /= 0_pInt) then write(6,'(a)') ' Crystallite parsed' endif call material_parseTexture(fileunit,material_partTexture) if (iand(myDebug,debug_levelBasic) /= 0_pInt) then write(6,'(a)') ' Texture parsed' endif call material_parsePhase(fileunit,material_partPhase) if (iand(myDebug,debug_levelBasic) /= 0_pInt) then write(6,'(a)') ' Phase parsed' endif close(fileunit) do m = 1_pInt,material_Nmicrostructure if (microstructure_crystallite(m) < 1_pInt .or. & microstructure_crystallite(m) > material_Ncrystallite) & call IO_error(150_pInt,m) if (minval(microstructure_phase(1:microstructure_Nconstituents(m),m)) < 1_pInt .or. & maxval(microstructure_phase(1:microstructure_Nconstituents(m),m)) > material_Nphase) & call IO_error(151_pInt,m) if (minval(microstructure_texture(1:microstructure_Nconstituents(m),m)) < 1_pInt .or. & maxval(microstructure_texture(1:microstructure_Nconstituents(m),m)) > material_Ntexture) & call IO_error(152_pInt,m) ! if (abs(sum(microstructure_fraction(:,m)) - 1.0_pReal) >= 1.0e-6_pReal) then ! have ppm precision in fractions ! if (iand(myDebug,debug_levelExtensive) /= 0_pInt) then ! write(6,'(a,1x,f12.9)') ' sum of microstructure fraction = ',sum(microstructure_fraction(:,m)) ! endif ! call IO_error(153_pInt,m) ! endif enddo debugOut: if (iand(myDebug,debug_levelExtensive) /= 0_pInt) then write(6,'(/,a,/)') ' MATERIAL configuration' write(6,'(a32,1x,a16,1x,a6)') 'homogenization ','type ','grains' do h = 1_pInt,material_Nhomogenization write(6,'(1x,a32,1x,a16,1x,i6)') homogenization_name(h),homogenization_type(h),homogenization_Ngrains(h) enddo write(6,'(/,a14,18x,1x,a11,1x,a12,1x,a13)') 'microstructure','crystallite','constituents','homogeneous' do m = 1_pInt,material_Nmicrostructure write(6,'(1x,a32,1x,i11,1x,i12,1x,l13)') microstructure_name(m), & microstructure_crystallite(m), & microstructure_Nconstituents(m), & microstructure_elemhomo(m) if (microstructure_Nconstituents(m) > 0_pInt) then do c = 1_pInt,microstructure_Nconstituents(m) write(6,'(a1,1x,a32,1x,a32,1x,f7.4)') '>',phase_name(microstructure_phase(c,m)),& texture_name(microstructure_texture(c,m)),& microstructure_fraction(c,m) enddo write(6,*) endif enddo endif debugOut call material_populateGrains end subroutine material_init !-------------------------------------------------------------------------------------------------- !> @brief parses the homogenization part in the material configuration file !-------------------------------------------------------------------------------------------------- subroutine material_parseHomogenization(myFile,myPart) use IO, only: & IO_read, & IO_globalTagInPart, & IO_countSections, & IO_error, & IO_countTagInPart, & IO_lc, & IO_getTag, & IO_isBlank, & IO_stringValue, & IO_intValue, & IO_stringPos use mesh, only: & mesh_element implicit none character(len=*), intent(in) :: myPart integer(pInt), intent(in) :: myFile integer(pInt), parameter :: maxNchunks = 2_pInt integer(pInt), dimension(1+2*maxNchunks) :: positions integer(pInt) Nsections, section, s character(len=65536) :: tag character(len=65536) :: line logical :: echo echo = IO_globalTagInPart(myFile,myPart,'/echo/') Nsections = IO_countSections(myFile,myPart) material_Nhomogenization = Nsections if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart) allocate(homogenization_name(Nsections)); homogenization_name = '' allocate(homogenization_type(Nsections)); homogenization_type = '' allocate(homogenization_typeInstance(Nsections)); homogenization_typeInstance = 0_pInt allocate(homogenization_Ngrains(Nsections)); homogenization_Ngrains = 0_pInt allocate(homogenization_Noutput(Nsections)); homogenization_Noutput = 0_pInt allocate(homogenization_active(Nsections)); homogenization_active = .false. forall (s = 1_pInt:Nsections) homogenization_active(s) = any(mesh_element(3,:) == s) ! current homogenization used in model? Homogenization view, maximum operations depend on maximum number of homog schemes homogenization_Noutput = IO_countTagInPart(myFile,myPart,'(output)',Nsections) rewind(myFile) line = '' section = 0_pInt do while (trim(line) /= '#EOF#' .and. IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to myPart line = IO_read(myFile) enddo if (echo) write(6,'(/,1x,a)') trim(line) ! echo part header do while (trim(line) /= '#EOF#') line = IO_read(myFile) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') exit ! stop at next part if (echo) write(6,'(2x,a)') trim(line) ! echo back read lines if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt homogenization_name(section) = IO_getTag(line,'[',']') endif if (section > 0_pInt) then positions = IO_stringPos(line,maxNchunks) tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key select case(tag) case ('type') homogenization_type(section) = IO_lc(IO_stringValue(line,positions,2_pInt)) ! adding: IO_lc function do s = 1_pInt,section if (homogenization_type(s) == homogenization_type(section)) & homogenization_typeInstance(section) = homogenization_typeInstance(section) + 1_pInt ! count instances enddo case ('ngrains') homogenization_Ngrains(section) = IO_intValue(line,positions,2_pInt) end select endif enddo homogenization_maxNgrains = maxval(homogenization_Ngrains,homogenization_active) end subroutine material_parseHomogenization !-------------------------------------------------------------------------------------------------- !> @brief parses the microstructure part in the material configuration file !-------------------------------------------------------------------------------------------------- subroutine material_parseMicrostructure(myFile,myPart) use IO use mesh, only: & mesh_element, & mesh_NcpElems implicit none character(len=*), intent(in) :: myPart integer(pInt), intent(in) :: myFile integer(pInt), parameter :: maxNchunks = 7_pInt integer(pInt), dimension(1_pInt+2_pInt*maxNchunks) :: positions integer(pInt) :: Nsections, section, constituent, e, i character(len=65536) :: tag character(len=65536) :: line logical :: echo echo = IO_globalTagInPart(myFile,myPart,'/echo/') Nsections = IO_countSections(myFile,myPart) material_Nmicrostructure = Nsections if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart) allocate(microstructure_name(Nsections)); microstructure_name = '' allocate(microstructure_crystallite(Nsections)); microstructure_crystallite = 0_pInt allocate(microstructure_Nconstituents(Nsections)) allocate(microstructure_active(Nsections)) allocate(microstructure_elemhomo(Nsections)) forall (e = 1_pInt:mesh_NcpElems) microstructure_active(mesh_element(4,e)) = .true. ! current microstructure used in model? Elementwise view, maximum N operations for N elements microstructure_Nconstituents = IO_countTagInPart(myFile,myPart,'(constituent)',Nsections) microstructure_maxNconstituents = maxval(microstructure_Nconstituents) microstructure_elemhomo = IO_spotTagInPart(myFile,myPart,'/elementhomogeneous/',Nsections) allocate(microstructure_phase (microstructure_maxNconstituents,Nsections)) microstructure_phase = 0_pInt allocate(microstructure_texture (microstructure_maxNconstituents,Nsections)) microstructure_texture = 0_pInt allocate(microstructure_fraction(microstructure_maxNconstituents,Nsections)) microstructure_fraction = 0.0_pReal rewind(myFile) line = '' ! to have it initialized section = 0_pInt ! - " - constituent = 0_pInt ! - " - do while (trim(line) /= '#EOF#' .and. IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to myPart line = IO_read(myFile) enddo if (echo) write(6,'(/,1x,a)') trim(line) ! echo part header do while (trim(line) /= '#EOF#') line = IO_read(myFile) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') exit ! stop at next part if (echo) write(6,'(2x,a)') trim(line) ! echo back read lines if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt constituent = 0_pInt microstructure_name(section) = IO_getTag(line,'[',']') endif if (section > 0_pInt) then positions = IO_stringPos(line,maxNchunks) tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key select case(tag) case ('crystallite') microstructure_crystallite(section) = IO_intValue(line,positions,2_pInt) case ('(constituent)') constituent = constituent + 1_pInt do i=2_pInt,6_pInt,2_pInt tag = IO_lc(IO_stringValue(line,positions,i)) select case (tag) case('phase') microstructure_phase(constituent,section) = IO_intValue(line,positions,i+1_pInt) case('texture') microstructure_texture(constituent,section) = IO_intValue(line,positions,i+1_pInt) case('fraction') microstructure_fraction(constituent,section) = IO_floatValue(line,positions,i+1_pInt) end select enddo end select endif enddo end subroutine material_parseMicrostructure !-------------------------------------------------------------------------------------------------- !> @brief parses the crystallite part in the material configuration file !-------------------------------------------------------------------------------------------------- subroutine material_parseCrystallite(myFile,myPart) use IO, only: & IO_read, & IO_countSections, & IO_error, & IO_countTagInPart, & IO_globalTagInPart, & IO_getTag, & IO_lc, & IO_isBlank implicit none character(len=*), intent(in) :: myPart integer(pInt), intent(in) :: myFile integer(pInt) :: Nsections, & section character(len=65536) :: line logical :: echo echo = IO_globalTagInPart(myFile,myPart,'/echo/') Nsections = IO_countSections(myFile,myPart) material_Ncrystallite = Nsections if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart) allocate(crystallite_name(Nsections)); crystallite_name = '' allocate(crystallite_Noutput(Nsections)); crystallite_Noutput = 0_pInt crystallite_Noutput = IO_countTagInPart(myFile,myPart,'(output)',Nsections) rewind(myFile) line = '' section = 0_pInt do while (trim(line) /= '#EOF#' .and. IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to myPart line = IO_read(myFile) enddo if (echo) write(6,'(/,1x,a)') trim(line) ! echo part header do while (trim(line) /= '#EOF#') line = IO_read(myFile) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') exit ! stop at next part if (echo) write(6,'(2x,a)') trim(line) ! echo back read lines if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt crystallite_name(section) = IO_getTag(line,'[',']') endif enddo end subroutine material_parseCrystallite !-------------------------------------------------------------------------------------------------- !> @brief parses the phase part in the material configuration file !-------------------------------------------------------------------------------------------------- subroutine material_parsePhase(myFile,myPart) use IO, only: & IO_read, & IO_globalTagInPart, & IO_countSections, & IO_error, & IO_countTagInPart, & IO_getTag, & IO_spotTagInPart, & IO_lc, & IO_isBlank, & IO_stringValue, & IO_stringPos implicit none character(len=*), intent(in) :: myPart integer(pInt), intent(in) :: myFile integer(pInt), parameter :: maxNchunks = 2_pInt integer(pInt), dimension(1+2*maxNchunks) :: positions integer(pInt) Nsections, section, s character(len=65536) :: tag character(len=65536) :: line logical :: echo echo = IO_globalTagInPart(myFile,myPart,'/echo/') Nsections = IO_countSections(myFile,myPart) material_Nphase = Nsections if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart) allocate(phase_name(Nsections)); phase_name = '' allocate(phase_elasticity(Nsections)); phase_elasticity = '' allocate(phase_elasticityInstance(Nsections)); phase_elasticityInstance = 0_pInt allocate(phase_plasticity(Nsections)); phase_plasticity = '' allocate(phase_plasticityInstance(Nsections)); phase_plasticityInstance = 0_pInt allocate(phase_Noutput(Nsections)); phase_Noutput = 0_pInt allocate(phase_localPlasticity(Nsections)); phase_localPlasticity = .false. phase_Noutput = IO_countTagInPart(myFile,myPart,'(output)',Nsections) phase_localPlasticity = .not. IO_spotTagInPart(myFile,myPart,'/nonlocal/',Nsections) rewind(myFile) line = '' section = 0_pInt do while (trim(line) /= '#EOF#' .and. IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to myPart line = IO_read(myFile) enddo if (echo) write(6,'(/,1x,a)') trim(line) ! echo part header do while (trim(line) /= '#EOF#') line = IO_read(myFile) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') exit ! stop at next part if (echo) write(6,'(2x,a)') trim(line) ! echo back read lines if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt phase_name(section) = IO_getTag(line,'[',']') endif if (section > 0_pInt) then positions = IO_stringPos(line,maxNchunks) tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key select case(tag) case ('elasticity') phase_elasticity(section) = IO_lc(IO_stringValue(line,positions,2_pInt)) do s = 1_pInt,section if (phase_elasticity(s) == phase_elasticity(section)) & phase_elasticityInstance(section) = phase_elasticityInstance(section) + 1_pInt ! count instances enddo case ('plasticity') phase_plasticity(section) = IO_lc(IO_stringValue(line,positions,2_pInt)) do s = 1_pInt,section if (phase_plasticity(s) == phase_plasticity(section)) & phase_plasticityInstance(section) = phase_plasticityInstance(section) + 1_pInt ! count instances enddo end select endif enddo end subroutine material_parsePhase !-------------------------------------------------------------------------------------------------- !> @brief parses the texture part in the material configuration file !-------------------------------------------------------------------------------------------------- subroutine material_parseTexture(myFile,myPart) use IO, only: & IO_read, & IO_globalTagInPart, & IO_countSections, & IO_error, & IO_countTagInPart, & IO_getTag, & IO_spotTagInPart, & IO_lc, & IO_isBlank, & IO_floatValue, & IO_stringValue, & IO_stringPos use math, only: & inRad, & math_sampleRandomOri, & math_I3, & math_inv33 implicit none character(len=*), intent(in) :: myPart integer(pInt), intent(in) :: myFile integer(pInt), parameter :: maxNchunks = 13_pInt integer(pInt), dimension(1+2*maxNchunks) :: positions integer(pInt) :: Nsections, section, gauss, fiber, j character(len=65536) :: tag character(len=65536) :: line logical :: echo echo = IO_globalTagInPart(myFile,myPart,'/echo/') Nsections = IO_countSections(myFile,myPart) material_Ntexture = Nsections if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart) allocate(texture_name(Nsections)); texture_name = '' allocate(texture_ODFfile(Nsections)); texture_ODFfile = '' allocate(texture_symmetry(Nsections)); texture_symmetry = 1_pInt allocate(texture_Ngauss(Nsections)); texture_Ngauss = 0_pInt allocate(texture_Nfiber(Nsections)); texture_Nfiber = 0_pInt texture_Ngauss = IO_countTagInPart(myFile,myPart,'(gauss)', Nsections) + & IO_countTagInPart(myFile,myPart,'(random)',Nsections) texture_Nfiber = IO_countTagInPart(myFile,myPart,'(fiber)', Nsections) texture_maxNgauss = maxval(texture_Ngauss) texture_maxNfiber = maxval(texture_Nfiber) allocate(texture_Gauss (5,texture_maxNgauss,Nsections)); texture_Gauss = 0.0_pReal allocate(texture_Fiber (6,texture_maxNfiber,Nsections)); texture_Fiber = 0.0_pReal allocate(texture_transformation(3,3,Nsections)); do j = 1_pInt, Nsections texture_transformation(1:3,1:3,j) = math_I3 enddo rewind(myFile) line = '' ! to have in initialized section = 0_pInt ! - " - gauss = 0_pInt ! - " - fiber = 0_pInt ! - " - do while (trim(line) /= '#EOF#' .and. IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to myPart line = IO_read(myFile) enddo if (echo) write(6,'(/,1x,a)') trim(line) ! echo part header do while (trim(line) /= '#EOF#') line = IO_read(myFile) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') exit ! stop at next part if (echo) write(6,'(2x,a)') trim(line) ! echo back read lines if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt gauss = 0_pInt fiber = 0_pInt texture_name(section) = IO_getTag(line,'[',']') endif if (section > 0_pInt) then positions = IO_stringPos(line,maxNchunks) tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key textureType: select case(tag) case ('axes', 'rotation') textureType do j = 1_pInt, 3_pInt ! look for "x", "y", and "z" entries tag = IO_lc(IO_stringValue(line,positions,j+1_pInt)) select case (tag) case('x', '+x') texture_transformation(j,1:3,section) = (/ 1.0_pReal, 0.0_pReal, 0.0_pReal/) ! original axis is now +x-axis case('-x') texture_transformation(j,1:3,section) = (/-1.0_pReal, 0.0_pReal, 0.0_pReal/) ! original axis is now -x-axis case('y', '+y') texture_transformation(j,1:3,section) = (/ 0.0_pReal, 1.0_pReal, 0.0_pReal/) ! original axis is now +y-axis case('-y') texture_transformation(j,1:3,section) = (/ 0.0_pReal,-1.0_pReal, 0.0_pReal/) ! original axis is now -y-axis case('z', '+z') texture_transformation(j,1:3,section) = (/ 0.0_pReal, 0.0_pReal, 1.0_pReal/) ! original axis is now +z-axis case('-z') texture_transformation(j,1:3,section) = (/ 0.0_pReal, 0.0_pReal,-1.0_pReal/) ! original axis is now -z-axis case default call IO_error(157_pInt,section) end select enddo case ('hybridia') textureType texture_ODFfile(section) = IO_stringValue(line,positions,2_pInt) case ('symmetry') textureType tag = IO_lc(IO_stringValue(line,positions,2_pInt)) select case (tag) case('orthotropic') texture_symmetry(section) = 4_pInt case('monoclinic') texture_symmetry(section) = 2_pInt case default texture_symmetry(section) = 1_pInt end select case ('(random)') textureType gauss = gauss + 1_pInt texture_Gauss(1:3,gauss,section) = math_sampleRandomOri() do j = 2_pInt,4_pInt,2_pInt tag = IO_lc(IO_stringValue(line,positions,j)) select case (tag) case('scatter') texture_Gauss(4,gauss,section) = IO_floatValue(line,positions,j+1_pInt)*inRad case('fraction') texture_Gauss(5,gauss,section) = IO_floatValue(line,positions,j+1_pInt) end select enddo case ('(gauss)') textureType gauss = gauss + 1_pInt do j = 2_pInt,10_pInt,2_pInt tag = IO_lc(IO_stringValue(line,positions,j)) select case (tag) case('phi1') texture_Gauss(1,gauss,section) = IO_floatValue(line,positions,j+1_pInt)*inRad case('phi') texture_Gauss(2,gauss,section) = IO_floatValue(line,positions,j+1_pInt)*inRad case('phi2') texture_Gauss(3,gauss,section) = IO_floatValue(line,positions,j+1_pInt)*inRad case('scatter') texture_Gauss(4,gauss,section) = IO_floatValue(line,positions,j+1_pInt)*inRad case('fraction') texture_Gauss(5,gauss,section) = IO_floatValue(line,positions,j+1_pInt) end select enddo case ('(fiber)') textureType fiber = fiber + 1_pInt do j = 2_pInt,12_pInt,2_pInt tag = IO_lc(IO_stringValue(line,positions,j)) select case (tag) case('alpha1') texture_Fiber(1,fiber,section) = IO_floatValue(line,positions,j+1_pInt)*inRad case('alpha2') texture_Fiber(2,fiber,section) = IO_floatValue(line,positions,j+1_pInt)*inRad case('beta1') texture_Fiber(3,fiber,section) = IO_floatValue(line,positions,j+1_pInt)*inRad case('beta2') texture_Fiber(4,fiber,section) = IO_floatValue(line,positions,j+1_pInt)*inRad case('scatter') texture_Fiber(5,fiber,section) = IO_floatValue(line,positions,j+1_pInt)*inRad case('fraction') texture_Fiber(6,fiber,section) = IO_floatValue(line,positions,j+1_pInt) end select enddo end select textureType endif enddo end subroutine material_parseTexture !-------------------------------------------------------------------------------------------------- !> @brief populates the grains !> @details populates the grains by identifying active microstructure/homogenization pairs, !! calculates the volume of the grains and deals with texture components and hybridIA !-------------------------------------------------------------------------------------------------- subroutine material_populateGrains use math, only: & math_RtoEuler, & math_EulerToR, & math_mul33x33, & math_range, & math_sampleRandomOri, & math_sampleGaussOri, & math_sampleFiberOri, & math_symmetricEulers use mesh, only: & mesh_element, & mesh_maxNips, & mesh_NcpElems, & mesh_ipVolume, & FE_Nips, & FE_geomtype use IO, only: & IO_error, & IO_hybridIA use FEsolving, only: & FEsolving_execIP use debug, only: & debug_level, & debug_material, & debug_levelBasic implicit none integer(pInt), dimension (:,:), allocatable :: Ngrains integer(pInt), dimension (microstructure_maxNconstituents) :: & NgrainsOfConstituent, & currentGrainOfConstituent, & randomOrder real(pReal), dimension (microstructure_maxNconstituents) :: & rndArray real(pReal), dimension (:), allocatable :: volumeOfGrain real(pReal), dimension (:,:), allocatable :: orientationOfGrain real(pReal), dimension (3) :: orientation real(pReal), dimension (3,3) :: symOrientation integer(pInt), dimension (:), allocatable :: phaseOfGrain, textureOfGrain integer(pInt) :: t,e,i,g,j,m,c,r,homog,micro,sgn,hme, myDebug, & phaseID,textureID,dGrains,myNgrains,myNorientations,myNconstituents, & grain,constituentGrain,ipGrain,symExtension, ip real(pReal) :: extreme,rnd integer(pInt), dimension (:,:), allocatable :: Nelems ! counts number of elements in homog, micro array type(p_intvec), dimension (:,:), allocatable :: elemsOfHomogMicro ! lists element number in homog, micro array myDebug = debug_level(debug_material) allocate(material_volume(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; material_volume = 0.0_pReal allocate(material_phase(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; material_phase = 0_pInt allocate(material_texture(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; material_texture = 0_pInt allocate(material_EulerAngles(3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; material_EulerAngles = 0.0_pReal allocate(Ngrains(material_Nhomogenization,material_Nmicrostructure)); Ngrains = 0_pInt allocate(Nelems(material_Nhomogenization,material_Nmicrostructure)); Nelems = 0_pInt !-------------------------------------------------------------------------------------------------- ! precounting of elements for each homog/micro pair do e = 1_pInt, mesh_NcpElems homog = mesh_element(3,e) micro = mesh_element(4,e) Nelems(homog,micro) = Nelems(homog,micro) + 1_pInt enddo allocate(elemsOfHomogMicro(material_Nhomogenization,material_Nmicrostructure)) do homog = 1,material_Nhomogenization do micro = 1,material_Nmicrostructure if (Nelems(homog,micro) > 0_pInt) then allocate(elemsOfHomogMicro(homog,micro)%p(Nelems(homog,micro))) elemsOfHomogMicro(homog,micro)%p = 0_pInt endif enddo enddo !-------------------------------------------------------------------------------------------------- ! identify maximum grain count per IP (from element) and find grains per homog/micro pair Nelems = 0_pInt ! reuse as counter elementLooping: do e = 1_pInt,mesh_NcpElems t = FE_geomtype(mesh_element(2,e)) homog = mesh_element(3,e) micro = mesh_element(4,e) if (homog < 1_pInt .or. homog > material_Nhomogenization) & ! out of bounds call IO_error(154_pInt,e,0_pInt,0_pInt) if (micro < 1_pInt .or. micro > material_Nmicrostructure) & ! out of bounds call IO_error(155_pInt,e,0_pInt,0_pInt) if (microstructure_elemhomo(micro)) then ! how many grains are needed at this element? dGrains = homogenization_Ngrains(homog) ! only one set of Ngrains (other IPs are plain copies) else dGrains = homogenization_Ngrains(homog) * FE_Nips(t) ! each IP has Ngrains endif Ngrains(homog,micro) = Ngrains(homog,micro) + dGrains ! total grain count Nelems(homog,micro) = Nelems(homog,micro) + 1_pInt ! total element count elemsOfHomogMicro(homog,micro)%p(Nelems(homog,micro)) = e ! remember elements active in this homog/micro pair enddo elementLooping allocate(volumeOfGrain(maxval(Ngrains))) ! reserve memory for maximum case allocate(phaseOfGrain(maxval(Ngrains))) ! reserve memory for maximum case allocate(textureOfGrain(maxval(Ngrains))) ! reserve memory for maximum case allocate(orientationOfGrain(3,maxval(Ngrains))) ! reserve memory for maximum case if (iand(myDebug,debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(/,a/)') ' MATERIAL grain population' write(6,'(a32,1x,a32,1x,a6)') 'homogenization_name','microstructure_name','grain#' !$OMP END CRITICAL (write2out) endif do homog = 1_pInt,material_Nhomogenization ! loop over homogenizations dGrains = homogenization_Ngrains(homog) ! grain number per material point do micro = 1_pInt,material_Nmicrostructure ! all pairs of homog and micro if (Ngrains(homog,micro) > 0_pInt) then ! an active pair of homog and micro myNgrains = Ngrains(homog,micro) ! assign short name for total number of grains to populate myNconstituents = microstructure_Nconstituents(micro) ! assign short name for number of constituents if (iand(myDebug,debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(/,a32,1x,a32,1x,i6)') homogenization_name(homog),microstructure_name(micro),myNgrains !$OMP END CRITICAL (write2out) endif !-------------------------------------------------------------------------------------------------- ! calculate volume of each grain volumeOfGrain = 0.0_pReal grain = 0_pInt do hme = 1_pInt, Nelems(homog,micro) e = elemsOfHomogMicro(homog,micro)%p(hme) ! my combination of homog and micro, only perform calculations for elements with homog, micro combinations which is indexed in cpElemsindex t = FE_geomtype(mesh_element(2,e)) if (microstructure_elemhomo(micro)) then ! homogeneous distribution of grains over each element's IPs volumeOfGrain(grain+1_pInt:grain+dGrains) = sum(mesh_ipVolume(1:FE_Nips(t),e))/& real(dGrains,pReal) ! each grain combines size of all IPs in that element grain = grain + dGrains ! wind forward by Ngrains@IP else forall (i = 1_pInt:FE_Nips(t)) & ! loop over IPs volumeOfGrain(grain+(i-1)*dGrains+1_pInt:grain+i*dGrains) = & mesh_ipVolume(i,e)/dGrains ! assign IPvolume/Ngrains@IP to all grains of IP grain = grain + FE_Nips(t) * dGrains ! wind forward by Nips*Ngrains@IP endif enddo if (grain /= myNgrains) & call IO_error(0,el = homog,ip = micro,ext_msg = 'inconsistent grain count after volume calc') !-------------------------------------------------------------------------------------------------- ! divide myNgrains as best over constituents ! ! example: three constituents with fractions of 0.25, 0.25, and 0.5 distributed over 20 (microstructure) grains ! ! ***** ***** ********** ! NgrainsOfConstituent: 5, 5, 10 ! counters: ! |-----> grain (if constituent == 2) ! |--> constituentGrain (of constituent 2) ! NgrainsOfConstituent = 0_pInt ! reset counter of grains per constituent forall (i = 1_pInt:myNconstituents) & NgrainsOfConstituent(i) = nint(microstructure_fraction(i,micro) * myNgrains, pInt) ! do rounding integer conversion do while (sum(NgrainsOfConstituent) /= myNgrains) ! total grain count over constituents wrong? sgn = sign(1_pInt, myNgrains - sum(NgrainsOfConstituent)) ! direction of required change extreme = 0.0_pReal t = 0_pInt do i = 1_pInt,myNconstituents ! find largest deviator if (real(sgn,pReal)*log(NgrainsOfConstituent(i)/myNgrains/microstructure_fraction(i,micro)) > extreme) then extreme = real(sgn,pReal)*log(NgrainsOfConstituent(i)/myNgrains/microstructure_fraction(i,micro)) t = i endif enddo NgrainsOfConstituent(t) = NgrainsOfConstituent(t) + sgn ! change that by one enddo !-------------------------------------------------------------------------------------------------- ! assign phase and texture info phaseOfGrain = 0_pInt textureOfGrain = 0_pInt orientationOfGrain = 0.0_pReal texture: do i = 1_pInt,myNconstituents ! loop over constituents grain = sum(NgrainsOfConstituent(1_pInt:i-1_pInt)) ! set microstructure grain index of current constituent ! "grain" points to start of this constituent's grain population constituentGrain = 0_pInt ! constituent grain index phaseID = microstructure_phase(i,micro) textureID = microstructure_texture(i,micro) phaseOfGrain (grain+1_pInt:grain+NgrainsOfConstituent(i)) = phaseID ! assign resp. phase textureOfGrain(grain+1_pInt:grain+NgrainsOfConstituent(i)) = textureID ! assign resp. texture myNorientations = ceiling(real(NgrainsOfConstituent(i),pReal)/& real(texture_symmetry(textureID),pReal),pInt) ! max number of unique orientations (excl. symmetry) !-------------------------------------------------------------------------------------------------- ! ...has texture components if (texture_ODFfile(textureID) == '') then gauss: do t = 1_pInt,texture_Ngauss(textureID) ! loop over Gauss components do g = 1_pInt,int(myNorientations*texture_Gauss(5,t,textureID),pInt) ! loop over required grain count orientationOfGrain(:,grain+constituentGrain+g) = & math_sampleGaussOri(texture_Gauss(1:3,t,textureID),& texture_Gauss( 4,t,textureID)) enddo constituentGrain = & constituentGrain + int(myNorientations*texture_Gauss(5,t,textureID)) ! advance counter for grains of current constituent enddo gauss fiber: do t = 1_pInt,texture_Nfiber(textureID) ! loop over fiber components do g = 1_pInt,int(myNorientations*texture_Fiber(6,t,textureID),pInt) ! loop over required grain count orientationOfGrain(:,grain+constituentGrain+g) = & math_sampleFiberOri(texture_Fiber(1:2,t,textureID),& texture_Fiber(3:4,t,textureID),& texture_Fiber( 5,t,textureID)) enddo constituentGrain = & constituentGrain + int(myNorientations*texture_fiber(6,t,textureID),pInt) ! advance counter for grains of current constituent enddo fiber random: do constituentGrain = constituentGrain+1_pInt,myNorientations ! fill remainder with random orientationOfGrain(:,grain+constituentGrain) = math_sampleRandomOri() enddo random !-------------------------------------------------------------------------------------------------- ! ...has hybrid IA else orientationOfGrain(1:3,grain+1_pInt:grain+myNorientations) = & IO_hybridIA(myNorientations,texture_ODFfile(textureID)) if (all(orientationOfGrain(1:3,grain+1_pInt) == -1.0_pReal)) call IO_error(156_pInt) endif !-------------------------------------------------------------------------------------------------- ! ...texture transformation do j = 1_pInt,myNorientations ! loop over each "real" orientation orientationOfGrain(1:3,grain+j) = math_RtoEuler( & ! translate back to Euler angles math_mul33x33( & ! pre-multiply math_EulertoR(orientationOfGrain(1:3,grain+j)), & ! face-value orientation texture_transformation(1:3,1:3,textureID) & ! and transformation matrix ) & ) enddo !-------------------------------------------------------------------------------------------------- ! ...sample symmetry symExtension = texture_symmetry(textureID) - 1_pInt if (symExtension > 0_pInt) then ! sample symmetry (number of additional equivalent orientations) constituentGrain = myNorientations ! start right after "real" orientations do j = 1_pInt,myNorientations ! loop over each "real" orientation symOrientation = math_symmetricEulers(texture_symmetry(textureID), & orientationOfGrain(1:3,grain+j)) ! get symmetric equivalents e = min(symExtension,NgrainsOfConstituent(i)-constituentGrain) ! do not overshoot end of constituent grain array if (e > 0_pInt) then orientationOfGrain(1:3,grain+constituentGrain+1: & grain+constituentGrain+e) = & symOrientation(1:3,1:e) constituentGrain = constituentGrain + e ! remainder shrinks by e endif enddo endif !-------------------------------------------------------------------------------------------------- ! shuffle grains within current constituent do j = 1_pInt,NgrainsOfConstituent(i)-1_pInt ! walk thru grains of current constituent call random_number(rnd) t = nint(rnd*(NgrainsOfConstituent(i)-j)+j+0.5_pReal,pInt) ! select a grain in remaining list m = phaseOfGrain(grain+t) ! exchange current with random phaseOfGrain(grain+t) = phaseOfGrain(grain+j) phaseOfGrain(grain+j) = m m = textureOfGrain(grain+t) ! exchange current with random textureOfGrain(grain+t) = textureOfGrain(grain+j) textureOfGrain(grain+j) = m orientation = orientationOfGrain(1:3,grain+t) ! exchange current with random orientationOfGrain(1:3,grain+t) = orientationOfGrain(1:3,grain+j) orientationOfGrain(1:3,grain+j) = orientation enddo enddo texture !< @todo calc fraction after weighing with volumePerGrain, exchange in MC steps to improve result (humbug at the moment) !-------------------------------------------------------------------------------------------------- ! distribute grains of all constituents as accurately as possible to given constituent fractions ip = 0_pInt currentGrainOfConstituent = 0_pInt do hme = 1_pInt, Nelems(homog,micro) e = elemsOfHomogMicro(homog,micro)%p(hme) ! only perform calculations for elements with homog, micro combinations which is indexed in cpElemsindex t = FE_geomtype(mesh_element(2,e)) if (microstructure_elemhomo(micro)) then ! homogeneous distribution of grains over each element's IPs m = 1_pInt ! process only first IP else m = FE_Nips(t) ! process all IPs endif do i = 1_pInt, m ! loop over necessary IPs ip = ip + 1_pInt ! keep track of total ip count ipGrain = 0_pInt ! count number of grains assigned at this IP randomOrder = math_range(microstructure_maxNconstituents) ! start out with ordered sequence of constituents call random_number(rndArray) ! as many rnd numbers as (max) constituents do j = 1_pInt, myNconstituents - 1_pInt ! loop over constituents ... r = nint(rndArray(j)*(myNconstituents-j)+j+0.5_pReal,pInt) ! ... select one in remaining list c = randomOrder(r) ! ... call it "c" randomOrder(r) = randomOrder(j) ! ... and exchange with present position in constituent list grain = sum(NgrainsOfConstituent(1:c-1_pInt)) ! figure out actual starting index in overall/consecutive grain population do g = 1_pInt, min(dGrains-ipGrain, & ! leftover number of grains at this IP max(0_pInt, & ! no negative values nint(real(ip * dGrains * NgrainsOfConstituent(c)) / & ! fraction of grains scaled to this constituent... real(myNgrains),pInt) - & ! ...minus those already distributed currentGrainOfConstituent(c))) ipGrain = ipGrain + 1_pInt ! advance IP grain counter currentGrainOfConstituent(c) = currentGrainOfConstituent(c) + 1_pInt ! advance index of grain population for constituent c material_volume(ipGrain,i,e) = volumeOfGrain(grain+currentGrainOfConstituent(c)) ! assign properties material_phase(ipGrain,i,e) = phaseOfGrain(grain+currentGrainOfConstituent(c)) material_texture(ipGrain,i,e) = textureOfGrain(grain+currentGrainOfConstituent(c)) material_EulerAngles(1:3,ipGrain,i,e) = orientationOfGrain(1:3,grain+currentGrainOfConstituent(c)) enddo; enddo c = randomOrder(microstructure_Nconstituents(micro)) ! look up constituent remaining after random shuffling grain = sum(NgrainsOfConstituent(1:c-1_pInt)) ! figure out actual starting index in overall/consecutive grain population do ipGrain = ipGrain + 1_pInt, dGrains ! ensure last constituent fills up to dGrains currentGrainOfConstituent(c) = currentGrainOfConstituent(c) + 1_pInt material_volume(ipGrain,i,e) = volumeOfGrain(grain+currentGrainOfConstituent(c)) material_phase(ipGrain,i,e) = phaseOfGrain(grain+currentGrainOfConstituent(c)) material_texture(ipGrain,i,e) = textureOfGrain(grain+currentGrainOfConstituent(c)) material_EulerAngles(1:3,ipGrain,i,e) = orientationOfGrain(1:3,grain+currentGrainOfConstituent(c)) enddo enddo do i = i, FE_Nips(t) ! loop over IPs to (possibly) distribute copies from first IP material_volume (1_pInt:dGrains,i,e) = material_volume (1_pInt:dGrains,1,e) material_phase (1_pInt:dGrains,i,e) = material_phase (1_pInt:dGrains,1,e) material_texture(1_pInt:dGrains,i,e) = material_texture(1_pInt:dGrains,1,e) material_EulerAngles(1:3,1_pInt:dGrains,i,e) = material_EulerAngles(1:3,1_pInt:dGrains,1,e) enddo enddo endif ! active homog,micro pair enddo enddo deallocate(volumeOfGrain) deallocate(phaseOfGrain) deallocate(textureOfGrain) deallocate(orientationOfGrain) deallocate(Nelems) !> @todo - causing segmentation fault: needs looking into !do homog = 1,material_Nhomogenization ! do micro = 1,material_Nmicrostructure ! if (Nelems(homog,micro) > 0_pInt) deallocate(elemsOfHomogMicro(homog,micro)%p) ! enddo !enddo deallocate(elemsOfHomogMicro) end subroutine material_populateGrains end module material