#!/usr/bin/env python3 import os import sys import multiprocessing from optparse import OptionParser,OptionGroup import numpy as np from scipy import spatial import damask scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptID = ' '.join([scriptName,damask.version]) def Laguerre_tessellation(grid, seeds, weights, grains, periodic = True, cpus = 2): def findClosestSeed(fargs): point, seeds, myWeights = fargs tmp = np.repeat(point.reshape(3,1), len(seeds), axis=1).T dist = np.sum((tmp - seeds)**2,axis=1) -myWeights return np.argmin(dist) # seed point closest to point copies = \ np.array([ [ -1,-1,-1 ], [ 0,-1,-1 ], [ 1,-1,-1 ], [ -1, 0,-1 ], [ 0, 0,-1 ], [ 1, 0,-1 ], [ -1, 1,-1 ], [ 0, 1,-1 ], [ 1, 1,-1 ], [ -1,-1, 0 ], [ 0,-1, 0 ], [ 1,-1, 0 ], [ -1, 0, 0 ], [ 0, 0, 0 ], [ 1, 0, 0 ], [ -1, 1, 0 ], [ 0, 1, 0 ], [ 1, 1, 0 ], [ -1,-1, 1 ], [ 0,-1, 1 ], [ 1,-1, 1 ], [ -1, 0, 1 ], [ 0, 0, 1 ], [ 1, 0, 1 ], [ -1, 1, 1 ], [ 0, 1, 1 ], [ 1, 1, 1 ], ]).astype(float)*info['size'] if periodic else \ np.array([ [ 0, 0, 0 ], ]).astype(float) repeatweights = np.tile(weights,len(copies)).flatten(order='F') # Laguerre weights (1,2,3,1,2,3,...,1,2,3) for vec in copies: # periodic copies of seed points ... try: seeds = np.append(seeds, seeds+vec, axis=0) # ... (1+a,2+a,3+a,...,1+z,2+z,3+z) except NameError: seeds = seeds+vec damask.util.croak('...using {} cpu{}'.format(options.cpus, 's' if options.cpus > 1 else '')) arguments = [[arg,seeds,repeatweights] for arg in list(grid)] if cpus > 1: # use multithreading pool = multiprocessing.Pool(processes = cpus) # initialize workers result = pool.map_async(findClosestSeed, arguments) # evaluate function in parallel pool.close() pool.join() closestSeeds = np.array(result.get()).flatten() else: closestSeeds = np.zeros(len(arguments),dtype='i') for i,arg in enumerate(arguments): closestSeeds[i] = findClosestSeed(arg) # closestSeed is modulo number of original seed points (i.e. excluding periodic copies) return grains[closestSeeds%seeds.shape[0]] def Voronoi_tessellation(grid, seeds, grains, size, periodic = True): KDTree = spatial.cKDTree(seeds,boxsize=size) if periodic else spatial.cKDTree(seeds) devNull,closestSeeds = KDTree.query(grid) return grains[closestSeeds] # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog option(s) [seedfile(s)]', description = """ Generate geometry description and material configuration by tessellation of given seeds file. """, version = scriptID) group = OptionGroup(parser, "Tessellation","") group.add_option('-l', '--laguerre', dest = 'laguerre', action = 'store_true', help = 'use Laguerre (weighted Voronoi) tessellation') group.add_option('--cpus', dest = 'cpus', type = 'int', metavar = 'int', help = 'number of parallel processes to use for Laguerre tessellation [%default]') group.add_option('--nonperiodic', dest = 'periodic', action = 'store_false', help = 'nonperiodic tessellation') parser.add_option_group(group) group = OptionGroup(parser, "Geometry","") group.add_option('-g', '--grid', dest = 'grid', type = 'int', nargs = 3, metavar = ' '.join(['int']*3), help = 'a,b,c grid of hexahedral box') group.add_option('-s', '--size', dest = 'size', type = 'float', nargs = 3, metavar=' '.join(['float']*3), help = 'x,y,z size of hexahedral box') group.add_option('-o', '--origin', dest = 'origin', type = 'float', nargs = 3, metavar=' '.join(['float']*3), help = 'origin of grid') group.add_option('--nonnormalized', dest = 'normalized', action = 'store_false', help = 'seed coordinates are not normalized to a unit cube') parser.add_option_group(group) group = OptionGroup(parser, "Seeds","") group.add_option('-p', '--pos', '--seedposition', dest = 'pos', type = 'string', metavar = 'string', help = 'label of coordinates [%default]') group.add_option('-w', '--weight', dest = 'weight', type = 'string', metavar = 'string', help = 'label of weights [%default]') group.add_option('-m', '--microstructure', dest = 'microstructure', type = 'string', metavar = 'string', help = 'label of microstructures [%default]') group.add_option('-e', '--eulers', dest = 'eulers', type = 'string', metavar = 'string', help = 'label of Euler angles [%default]') group.add_option('--axes', dest = 'axes', type = 'string', nargs = 3, metavar = ' '.join(['string']*3), help = 'orientation coordinate frame in terms of position coordinate frame') parser.add_option_group(group) group = OptionGroup(parser, "Configuration","") group.add_option('--without-config', dest = 'config', action = 'store_false', help = 'omit material configuration header') group.add_option('--homogenization', dest = 'homogenization', type = 'int', metavar = 'int', help = 'homogenization index to be used [%default]') group.add_option('--phase', dest = 'phase', type = 'int', metavar = 'int', help = 'phase index to be used [%default]') parser.add_option_group(group) parser.set_defaults(pos = 'pos', weight = 'weight', microstructure = 'microstructure', eulers = 'euler', homogenization = 1, phase = 1, cpus = 2, laguerre = False, periodic = True, normalized = True, config = True, ) (options,filenames) = parser.parse_args() if filenames == []: filenames = [None] for name in filenames: damask.util.report(scriptName,name) table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name) size = np.zeros(3) origin = np.zeros(3) for line in table.comments: items = line.lower().strip().split() key = items[0] if items else '' if key == 'grid': grid = np.array([ int(dict(zip(items[1::2],items[2::2]))[i]) for i in ['a','b','c']]) elif key == 'size': size = np.array([float(dict(zip(items[1::2],items[2::2]))[i]) for i in ['x','y','z']]) elif key == 'origin': origin = np.array([float(dict(zip(items[1::2],items[2::2]))[i]) for i in ['x','y','z']]) if options.grid: grid = np.array(options.grid) if options.size: size = np.array(options.size) if options.origin: origin = np.array(options.origin) size = np.where(size <= 0.0,grid/grid.max(),size) seeds = table.get(options.pos) * size if options.normalized else table.get(options.pos) - origin if options.eulers in table.labels: eulers = table.get(options.eulers) grains = table.get(options.microstructure) if options.microstructure in table.labels else np.arange(len(seeds))+1 grainIDs = np.unique(grains).astype('i') NgrainIDs = len(grainIDs) coords = damask.grid_filters.cell_coord0(grid,size).reshape(-1,3) damask.util.croak('tessellating...') if options.laguerre: indices = Laguerre_tessellation(coords,seeds,table.get(options.weight),grains,options.periodic,options.cpus) else: indices = Voronoi_tessellation(coords,seeds,grains,size,options.periodic) config_header = [] if options.config: if options.eulers in table.labels: config_header += [''] for ID in grainIDs: eulerID = np.nonzero(grains == ID)[0][0] # find first occurrence of this grain id config_header += ['[Grain{}]'.format(ID), '(gauss)\tphi1 {:.2f}\tPhi {:.2f}\tphi2 {:.2f}'.format(*eulers[eulerID]) ] if options.axes: config_header += ['axes\t{} {} {}'.format(*options.axes)] config_header += [''] for ID in grainIDs: config_header += ['[Grain{}]'.format(ID), '(constituent)\tphase {}\ttexture {}\tfraction 1.0'.format(options.phase,ID) ] config_header += [''] header = [scriptID + ' ' + ' '.join(sys.argv[1:])]\ + config_header geom = damask.Geom(indices.reshape(grid,order='F'),size,origin, homogenization=options.homogenization,comments=header) damask.util.croak(geom) geom.to_file(sys.stdout if name is None else os.path.splitext(name)[0]+'.geom',pack=False)