
5-9 September 2011

Brian Wylie
Jülich Supercomputing Centre

b.wylie@fz-juelich.de

8th VI-HPS Tuning Workshop
hosted by GRS in Aachen

2

● Presenters
■ Shirley Moore (University of Tennessee ICL)
■ Sameer Shende (University of Oregon PRL)
■ Tobias Hilbrich & Joachim Protze (TU Dresden)
■ Yury Oleynik & Josef Wiedendorfer (TU München)
■ Wolfgang Frings & Brian Wylie (Jülich Supercomputing Centre)
■ Judit Gimenez & Jesus Labarta (Barcelona Supercomp. Center)

● Thanks
■ Local arrangements & facilities

► Daniel Becker, Marc-André Hermanns (GRS)
► Systems: JSC & RWTH

■ Sponsor: Bull
■ You

► Your questions, suggestions & feedback are highly valued

Opening

Virtual Institute –
High Productivity Supercomputing

Goal: Improve the quality and accelerate the development
process of complex simulation codes running on
highly-parallel computer systems

● Funded by Helmholtz Association
of German Research Centres

● Activities
■ Development and integration of HPC programming tools

► Correctness checking & performance analysis
■ Training workshops
■ Service

► Support email lists
► Application engagement

■ Academic workshops

 www.vi-hps.org

Forschungszentrum Jülich
■ Jülich Supercomputing Centre

RWTH Aachen University
■ Centre for Computing & Communication

Technical University of Dresden
■ Centre for Information Services & HPC

University of Tennessee (Knoxville)
■ Innovative Computing Laboratory

German Research School
■ Laboratory of Parallel Programming

Technical University of Munich
■ Chair for Computer Architecture

University of Oregon
■ Performance Research Laboratory

University of Stuttgart
■ HPC Centre

VI-HPS partners & associates

VI-HPS productivity tools

● KCachegrind
■ Callgraph-based cache analysis

● Marmot/MUST
■ MPI correctness checking

● PAPI
■ Interfacing to hardware performance counters

● Periscope
■ Automatic analysis via an on-line distributed search

● Scalasca
■ Large-scale parallel performance analysis

● TAU
■ Integrated parallel performance system

● Vampir/VampirTrace
■ Event tracing and graphical trace visualization & analysis

Technologies and their integration

Optimization

Visual trace
analysis

Automatic
profile & trace

analysis

Error
detection

Hardware
monitoring

Execution

SCALASCA

VAMPIR

PAPI

MARMOT/MUST

PERISCOPEKCACHEGRIND

TAU

VI-HPS Training & Tuning Workshops

● Goals
■ Give an overview of the programming tools suite
■ Explain the functionality of individual tools
■ Teach how to use the tools effectively
■ Offer hands-on experience and expert assistance using tools
■ Receive feedback from users to guide future development

● For best results, bring & analyse/tune your own code(s)!

● VI-HPS Tuning Workshop series
■ Aachen (3/08), Dresden (10/08), Jülich (2/09), Bremen (9/09),

Garching (3/10), Amsterdam (05/10), Stuttgart (03/11)
● VI-HPS Tutorial series
■ SC'08, ICCS'09, SC'09, Cluster'10, SC'10, SC'11

● Training with individual tools & platforms (e.g., BlueGene)

Upcoming VI-HPS training events

● SC'11 tutorial (13 Nov 2011, Seattle, WA, USA)
■ full-day hands-on tutorial using Live DVD
■ “Practical hybrid parallel application performance engineering”

● Further events to be determined
■ (one-day) tutorials

► with guided exercises using Live DVD
■ (multi-day) training workshops

► with your own applications on real HPC systems

Check www.vi-hps.org/training for announced events
● Contact us if you might be interested in hosting an event

POINT/VI-HPS Live-DVD

● Bootable Linux installation on DVD (or USB memory stick)
● Includes everything needed to try out our parallel tools on

an x86-architecture notebook computer
■ VI-HPS tools: KCachegrind, Marmot, PAPI,

Periscope, Scalasca, TAU, VT/Vampir*
■ Also: Eclipse/PTP, TotalView*, etc.

► * time/capability-limited
evaluation licences provided
for commercial products

■ GCC (w/ OpenMP), OpenMPI
■ Manuals/User Guides
■ Tutorial exercises & examples

● Produced by U. Oregon PRL
■ Sameer Shende

http://www.vi-hps.org/training

11

Outline

Monday 5 Sept.
■ 09:00 (early registration & set-up, individual preparation)
■ 12:00-13:30 (lunch)
■ Welcome & introduction to VI-HPS
■ Introduction to parallel performance analysis
■ 15:00-15:30 (break)
■ Overview of VI-HPS tools
■ Lab setup
■ 17:30 (adjourn)

■ 19:00 Dinner sponsored by Bull, “Im Alten Zollhaus”

12

Tuesday 6 Sept.
■ 09:00-10:30 Scalasca
■ 11:00-12:30 Periscope

Wednesday 7 Sept.
■ 09:00-10:30 TAU
■ 11:00-12:30 KCachegrind

Thursday 8 Sept.
■ 09:00-10:30 Vampir
■ 11:00-12:30 Paraver

Friday 9 Sept.
■ 09:00-10:30 Marmot / MUST
■ 11:00-12:30 VI-HPS libraries:

 PAPI & SIONlib

● Hands-on exercises part
of each tool presentation
every morning session

● Hands-on coaching to
apply tools to analyse &
tune your own codes on
workshop HPC systems
each afternoon to 17:30

Outline of rest of week

Prepare to analyse your own application codes

● Ensure your application codes build and run to completion
with appropriate datasets
■ initial configuration should ideally run in less than 15 minutes

with 1-4 compute nodes (up to 96 processes/threads)
► to facilitate rapid turnaround and quick experimentation

■ larger/longer scalability configurations are also interesting
► turnaround may be limited due to busyness of batch queues

● Compare your application performance on other systems
■ VI-HPS tools already installed on a number of HPC systems

► if not, ask your system administrator to install them
(or install a personal copy yourself)

VI-HPS productivity tools

● KCachegrind
■ Callgraph-based cache analysis

● Marmot/MUST
■ MPI correctness checking

● PAPI
■ Interfacing to hardware performance counters

● Periscope
■ Automatic analysis via an on-line distributed search

● Scalasca
■ Large-scale parallel performance analysis

● TAU
■ Integrated parallel performance system

● Vampir/VampirTrace
■ Event tracing and graphical trace visualization & analysis

Cachegrind: cache analysis by simple cache simulation
■ Captures dynamic callgraph
■ Based on valgrind dynamic binary instrumentation
■ Runs on x86/PowerPC/ARM unmodified binaries

► No root access required
■ ASCII reports produced

[KQ]Cachegrind GUI
■ Visualization of cachegrind output

Developed by TU Munich
■ Released as GPL open-source
■ http://kcachegrind.sf.net/

KCachegrind

Profile

Binary

2-level $ Simulator

Memory
Accesses Event Counters

Debug Info

KCachegrind GUI

Source code view

Machine code
annotation

Event cost tree map

Call graph view

http://kcachegrind.sf.net/

Tool to check for correct MPI usage at runtime
■ Checks conformance to MPI standard

► Supports Fortran & C bindings of MPI-1.2
■ Checks parameters passed to MPI
■ Monitors MPI resource usage

Implementation
■ C++ library gets linked to the application
■ Does not require source code modifications
■ Additional process used as DebugServer
■ Results written in a log file (ASCII/HTML/CUBE)

Developed by HLRS & TU Dresden
■ Released as open-source
■ http://www.hlrs.de/organization/av/amt/projects/marmot

Marmot

Marmot logfiles

http://www.hlrs.de/organization/av/amt/projects/marmot

Next generation MPI runtime error detection tool
■ Successor of the Marmot and Umpire tools
■ Initial merge of Marmot's many local checks with Umpire's

non-local checks
■ Improved scalability expected in future

Developed by TU Dresden, LLNL & LANL
■ to be released as open-source (BSD license)
■ currently in beta-testing for first release in November 2011
■ http://tu-dresden.de/.../must

MUST

Portable performance counter library & utilities
■ Configures and accesses hardware/system counters
■ Predefined events derived from available native counters
■ Core component for CPU/processor counters

► instructions, floating point operations, branches predicted/taken,
cache accesses/misses, TLB misses, cycles, stall cycles, …

► performs transparent multiplexing when required
■ Extensible components for off-processor counters

► InfiniBand network, Lustre filesystem, system hardware health, …
■ Used by multi-platform performance measurement tools

► Periscope, Scalasca, TAU, VampirTrace, ...

Developed by UTK-ICL
■ Available as open-source for most modern processors

http://icl.cs.utk.edu/papi/

PAPI

http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/software_werkzeuge_zur_unterstuetzung_von_programmierung_und_optimierung/must

juropa$ papi_avail

Available events and hardware information.

PAPI Version : 4.1.0.0
Vendor string and code : GenuineIntel (1)
Model string and code : Intel(R) Xeon(R) CPU
 X5570 @ 2.93GHz (26)
CPU Revision : 5.000000
CPUID Info : Family: 6 Model: 26
 Stepping: 5
CPU Megahertz : 1600.000000
CPU Clock Megahertz : 1600
Hdw Threads per core : 2
Cores per Socket : 4
NUMA Nodes : 2
CPU's per Node : 8
Total CPU's : 16
Number Hardware Counters : 16
Max Multiplex Counters : 512

 Name Code Avail Deriv Description

PAPI_L1_DCM 0x80000000 Yes No
 Level 1 data cache misses

PAPI_L1_ICM 0x80000001 Yes No
 Level 1 instruction cache misses
...

Of 107 possible events, 35 are available, of
which 9 are derived.

juropa$ papi_avail -d

...
Symbol Event Code Count |Short Descr.|
 |Long Description|
 |Developer's Notes|
 |Derived|
 |PostFix|
 Native Code[n]: <hex> |name|

PAPI_L1_DCM 0x80000000 1 |L1D cache misses|
 |Level 1 data cache misses|
 ||
 |NOT_DERIVED|
 ||
 Native Code[0]: 0x40002028 |L1D:REPL|

PAPI_L1_ICM 0x80000001 1 |L1I cache misses|
 |Level 1 instruction cache misses|
 ||
 |NOT_DERIVED|
 ||
 Native Code[0]: 0x40001031 |L1I:MISSES|

PAPI_L2_DCM 0x80000002 2 |L2D cache misses|
 |Level 2 data cache misses|
 ||
 |DERIVED_SUB|
 ||
 Native Code[0]: 0x40000437 |L2_RQSTS:MISS|
 Native Code[1]: 0x40002037 |
L2_RQSTS:IFETCH_MISS|

...

PAPI preset counters (and their definitions)

http://icl.cs.utk.edu/papi/

juropa$ papi_native_avail

Available native events and hardware information.

...

Event Code Symbol | Long Description |
--
0x40000000 UNHALTED_CORE_CYCLES | count core clock cycles whenever the cloc |
 | k signal on the specific core is running (not halted). Alias to e |
 | vent CPU_CLK_UNHALTED:THREAD |
--
0x40000001 INSTRUCTION_RETIRED | count the number of instructions at retire |
 | ment. Alias to event INST_RETIRED:ANY_P |
--
...

--
0x40000086 UNC_SNP_RESP_TO_REMOTE_HOME | Remote home snoop response - LLC d |
 | oes not have cache line |
 40000486 :I_STATE | Remote home snoop response - LLC does not have cache |
 | line |
 40000886 :S_STATE | Remote home snoop response - LLC has cache line in S |
 | state |
 40001086 :FWD_S_STATE | Remote home snoop response - LLC forwarding cache |
 | line in S state. |
 40002086 :FWD_I_STATE | Remote home snoop response - LLC has forwarded a |
 | modified cache line |
 40004086 :CONFLICT | Remote home conflict snoop response |
 40008086 :WB | Remote home snoop response - LLC has cache line in the M s |
 | tate |
 40010086 :HITM | Remote home snoop response - LLC HITM |
--
Total events reported: 135

PAPI native counters (and qualifiers)

Automated profile-based performance analysis
■ Iterative on-line performance analysis

► Multiple distributed hierarchical agents
■ Automatic search for bottlenecks based on properties

formalizing expert knowledge
► MPI wait states
► Processor utilization hardware counters

■ Clustering of processes/threads with similar properties
■ Eclipse-based integrated environment

Supports
■ SGI Altix Itanium2, IBM Power and x86-based architectures

Developed by TU Munich
■ Released as open-source
■ http://www.lrr.in.tum.de/periscope

Periscope

MPI
■ Excessive MPI communication time
■ Excessive MPI time due to many small messages
■ Excessive MPI time in receive due to late sender
■ ...

Hardware performance counters (platform-specific)
■ Cycles lost due to cache misses

► High L1/L2/L3 demand load miss rate
■ Cycles lost due to store instructions
■ Cycles lost due to address translation misses
■ Cycles lost due to no instruction to dispatch
■ ...

Periscope properties & strategies (examples)

http://www.lrr.in.tum.de/periscope

SC ’10: Hands-on Practical Parallel Application Performance Engineering

23

Periscope plug-in to Eclipse environment

SIR outline view

Properties view

Project view

Source code view

Automatic performance analysis toolset
■ Scalable performance analysis of large-scale applications

► particularly focused on MPI & OpenMP paradigms
► analysis of communication & synchronization overheads

■ Automatic and manual instrumentation capabilities
■ Runtime summarization and/or event trace analyses
■ Automatic search of event traces for patterns of inefficiency

► Scalable trace analysis based on parallel replay
■ Interactive exploration GUI and algebra utilities for XML

callpath profile analysis reports

Developed by JSC & GRS
■ Released as open-source
■ http://www.scalasca.org/

Scalasca

Scalasca automatic trace analysis report

http://www.scalasca.org/

Scalasca hybrid analysis report

Scalasca automatic trace analysis report

Integrated performance toolkit
■ Instrumentation, measurement, analysis & visualization

► Highly customizable installation, API, envvars & GUI
► Supports multiple profiling & tracing capabilities

■ Performance data management & data mining
■ Targets all parallel programming/execution paradigms

► Ported to a wide range of computer systems
■ Performance problem solving framework for HPC
■ Extensive bridges to/from other performance tools

► PerfSuite, Scalasca, Vampir, ...

Developed by U. Oregon/PRL
■ Broadly deployed open-source software
■ http://tau.uoregon.edu/

TAU Performance System

TAU Performance System components

SC ’10: Hands-on Practical Parallel Application Performance Engineering

29

TAU Architecture Program Analysis

Parallel Profile Analysis

P
D

T
P

er
fD

M
F

P
ar

aP
ro

f

Performance Data Mining

Performance Monitoring

T
A

U
ov

er
Su

pe
rm

on

PerfExplorer

http://tau.uoregon.edu/

TAU ParaProf GUI displays (selected)

TAU PerfExplorer data mining

Interactive event trace analysis
■ Alternative & supplement to automatic trace analysis
■ Visual presentation of dynamic runtime behaviour

► event timeline chart for states & interactions of processes/threads
► communication statistics, summaries & more

■ Interactive browsing, zooming, selecting
► linked displays & statistics adapt to selected time interval (zoom)
► scalable server runs in parallel to handle larger traces

Developed by TU Dresden ZIH
■ Open-source VampirTrace library bundled with OpenMPI 1.3
■ http://www.tu-dresden.de/zih/vampirtrace/
■ Vampir Server & GUI have a commercial license
■ http://www.vampir.eu/

Vampir & VampirTrace

Vampir interactive trace analysis GUI

http://www.tu-dresden.de/zih/vampirtrace/
http://www.vampir.eu/

Vampir interactive trace analysis GUI

Vampir interactive trace analysis GUI (zoom)

● Interactive event trace analysis
■ Visual presentation of dynamic runtime behaviour

► event timeline chart for states & interactions of processes
► Interactive browsing, zooming, selecting

■ Large variety of highly configurable analyses & displays
● Developed by Barcelona Supercomputing Center
■ Paraver trace analyser and Extrae measurement library
■ Open source available from http://www.bsc.es/paraver/

Paraver & Extrae

Paraver interactive trace analysis GUI

http://www.bsc.es/paraver/

VI-HPS component technologies

Key tool components also provided as open-source
■ Program/library instrumentation

► COBI, OPARI, PDToolkit
■ MPI library/tool integration

► UniMCI
■ Scalable I/O

► SIONlib
■ Libraries & tools for handling (and converting) traces

► EPILOG, PEARL, OTF
■ Analysis algebra & hierarchical/topological presentation

► CUBE

Portable native parallel I/O library & utilities
■ Scalable massively-parallel I/O to task-local files
■ Manages single or multiple physical files on disk

► optimizes bandwidth available from I/O servers by matching
blocksizes/alignment, reduces metadata-server contention

■ POSIX-I/O-compatible sequential & parallel API
► adoption requires minimal source-code changes

■ Tuned for common parallel filesystems
► GPFS (BlueGene), Lustre (Cray), ...

■ Convenient for application I/O, checkpointing,
► Used by Scalasca tracing (when configured)

Developed by JSC
■ Available as open-source from

http://www.fz-juelich.de/jsc/sionlib/

SIONlib

	Intro title
	Opening
	vi-hps
	Partners
	Tools
	Technologies and their integration
	Training
	Further training
	LiveDVD
	Outline.day1
	Outline.week
	Preparation
	Tools list
	KCachegrind
	KCachegrind GUI
	Marmot overview
	Marmot logfiles
	MUST
	PAPI
	papi_avail
	papi_native_avail
	Periscope overview
	Periscope properties
	Periscope plug-in
	Scalasca overview
	Scalasca GUI
	Scalasca bt-mz sum
	Scalasca bt-mz trace
	TAU overview
	TAU components
	Tau paraprof
	Tau perfexplorer
	Vampir overview
	Vampir GUI
	Vampir bt-mz overview
	Vampir bt-mz zoom
	Paraver overview
	Paraver GUI
	Component technologies
	SIONlib

