
Introduction to Parallel Performance
Analysis and Engineering

Shirley Moore
shirley@eecs.utk.edu

8th VI-HPS Tuning Workshop
5-9 September 2011

Performance Engineering

2

•  Optimization process
•  Effective use of performance technology

characterization

Performance
Tuning

Performance
Diagnosis

Performance
Experimentation

Performance
Observation	

hypotheses	

properties	

•  Instrumentation
•  Measurement
•  Analysis
•  Visualization

Performance
Technology

•  Experiment
management

•  Performance
data storage

Performance
Technology

•  Data mining
•  Models
•  Expert systems

Performance
Technology

Performance Optimization Cycle

3

•  Design experiment
•  Collect performance data
•  Calculate metrics
•  Analyze results
•  Visualize results
•  Identify bottlenecks and

causes
•  Tune performance

Instrumentation

Presentation

Measurement

Optimization

Analysis

Parallel Performance Properties

4

•  Parallel code performance is influenced by both
sequential and parallel factors

•  Sequential factors
–  Computation
–  Cache and memory use
–  Input/output

•  Parallel factors
–  Thread / process interactions
–  Communication and synchronization

Performance Observation

5

•  Understanding performance requires observation of
performance properties.

•  Performance tools and methodologies are primarily
distinguished by what observations are made and how.
–  How application program is instrumented
–  What performance data are obtained

•  Tools and methods cover broad range.

Metrics and Measurement

6

•  Observability depends on measurement
•  A metric represents a type of measured data

–  Count, time, hardware counters

•  A measurement records performance data
–  Associated with application program static or dynamic execution

portions

•  Derived metrics are computed
–  Rates (e.g., flops)

•  Metrics and measurements dictated by model or
experiment

Execution Time

7

•  Wallclock time
–  Based on realtime clock

•  Virtual process time
–  Time when process is executing

•  User time and system time
–  Does not include time when process is stalled

•  Parallel execution time
–  Runs whenever any parallel part is executing
–  Global time basis

Direct Performance Observation

8

•  Execution actions exposed as events
–  In general, actions reflect some execution state

•  presence at a code location or change in data
•  occurrence in parallelism context (thread of execution)

–  Events encode actions for observation
•  Observation is direct

–  Direct instrumentation of program code (probes)
–  Instrumentation invokes performance measurement
–  Event measurement = performance data + context

•  Performance experiment
–  Actual events + performance measurements

Indirect Performance Observation

9

•  Program code instrumentation is not used
•  Performance is observed indirectly

–  Execution is interrupted
•  can be triggered by different events

–  Execution state is queried (sampled)
•  different performance data measured

–  Event-based sampling (EBS)
•  Performance attribution is inferred

–  Determined by execution context (state)
–  Observation resolution determined by interrupt period
–  Performance data associated with context for period

Direct Observation: Instrumentation

10

•  Events defined by instrumentation access
•  Instrumentation levels

–  Source code – Library code
–  Object code – Executable code
–  Runtime system – Operating system

•  Different levels provide different information
•  Different tools needed for each level
•  Levels can have different granularity

Direct Observation: Techniques

11

•  Static instrumentation
–  Program instrumented prior to execution

•  Dynamic instrumentation
–  Program instrumented at runtime

•  Manual and automatic mechanisms
•  Tools required for automatic support

–  Source time: preprocessor, translator, compiler
–  Link time: wrapper library, preload
–  Execution time: binary rewrite, dynamic

•  Advantages / disadvantages

Direct Observation: Mapping

12

•  Associate
performance data
with high-level
semantic
abstractions

•  Abstract events at
user-level provide
semantic context

Indirect Observation: Events/Triggers

13

•  Events are actions external to program code
–  Timer countdown, HW counter overflow, …
–  Consequence of program execution
–  Event frequency determined by:

•  Type, setup, number enabled (exposed)

•  Triggers used to invoke measurement tool
–  Traps when events occur (interrupt)
–  Associated with events
–  May add differentiation to events

Indirect Observation: Context

14

•  When events trigger, execution context
determined at time of trap (interrupt)
–  Access to PC from interrupt frame
–  Access to information about process/thread
–  Possible access to call stack

•  requires call stack unwinder

•  Assumption is that the context was the same
during the preceding period
–  Between successive triggers
–  Statistical approximation valid for long running

programs

Direct / Indirect Comparison

15

•  Direct performance observation
 Measures performance data exactly
 Links performance data with application events
 Requires instrumentation of code
 Measurement overhead can cause execution

intrusion and possibly performance perturbation
•  Indirect performance observation

 Argued to have less overhead and intrusion
 Can observe finer granularity
 No code modification required (may need symbols)
 Inexact measurement and attribution without

hardware support

Measurement Techniques

16

•  When is measurement triggered?
–  External agent (indirect, asynchronous)

•  interrupts, hardware counter overflow, …
–  Internal agent (direct, synchronous)

•  through code modification
•  How are measurements made?

–  Profiling
•  summarizes performance data during execution
•  per process / thread and organized with respect to context

–  Tracing
•  trace record with performance data and timestamp
•  per process / thread

Measured Performance

17

•  Counts
•  Durations
•  Communication costs
•  Synchronization costs
•  Memory use
•  Hardware counts
•  System calls

Critical issues

18

•  Accuracy
–  Timing and counting accuracy depends on resolution
–  Any performance measurement generates overhead

•  Execution on performance measurement code
–  Measurement overhead can lead to intrusion
–  Intrusion can cause perturbation

•  alters program behavior
•  Granularity

–  How many measurements are made
–  How much overhead per measurement

•  Tradeoff (general wisdom)
–  Accuracy is inversely correlated with granularity

Profiling

19

•  Recording of aggregated information
–  Counts, time, …

•  … about program and system entities
–  Functions, loops, basic blocks, …
–  Processes, threads

•  Methods
–  Event-based sampling (indirect, statistical)
–  Direct measurement (deterministic)

inclusive
duration

exclusive
duration

int foo()
{
 int a;
 a = a + 1;

 bar();

 a = a + 1;
 return a;
}

Inclusive and Exclusive Profiles

20

•  Performance with respect to code regions
•  Exclusive measurements for region only
•  Inclusive measurements includes child regions

Flat and Callpath Profiles

21

•  Static call graph
–  Shows all parent-child calling relationships in a program

•  Dynamic call graph
–  Reflects actual execution time calling relationships

•  Flat profile
–  Performance metrics for when event is active
–  Exclusive and inclusive

•  Callpath profile
–  Performance metrics for calling path (event chain)
–  Differentiate performance with respect to program

execution state
–  Exclusive and inclusive

void master {

 ...

 send(B, tag, buf);
 ...

}

Process A:

void slave {

 ...
 recv(A, tag, buf);

 ...

}

Process B:
void worker {

 ...
 recv(A, tag, buf);

 ...

}

void master {

 ...

 send(B, tag, buf);
 ...

} 58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

1 master

2 worker

3 ...

 trace(ENTER, 1);

 trace(SEND, B);

 trace(EXIT, 1);

 trace(ENTER, 2);

 trace(RECV, A);

 trace(EXIT, 2);

MONITOR

Trace File Generation

1 master

2 worker

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main
master
worker

58 60 62 64 66 68 70

B

A

Trace Analysis and Visualization

Trace Formats

24

•  Different tools produce different formats
–  Differ by event types supported
–  Differ by ASCII and binary representations

•  Vampir Trace Format (VTF)
•  KOJAK (EPILOG)
•  Jumpshot (SLOG-2)
•  Paraver

•  Open Trace Format (OTF)
–  Supports interoperation between tracing tools

Profiling / Tracing Comparison

25

•  Profiling
 Finite, bounded performance data size
 Applicable to both direct and indirect methods
 Loses time dimension (not entirely)
 Lacks ability to fully describe process interaction

•  Tracing
 Temporal and spatial dimension to performance data
 Capture parallel dynamics and process interaction
 Some inconsistencies with indirect methods
 Unbounded performance data size (large)
 Complex event buffering and clock synchronization

Performance Analysis Questions

26

•  How does performance vary with different compilers?
•  Is poor performance correlated with certain OS features?
•  Has a recent change caused unanticipated

performance?
•  How does performance vary with MPI variants?
•  Why is one application version faster than another?
•  What is the reason for the observed scaling behavior?
•  Did two runs exhibit similar performance?
•  How are performance data related to application events?
•  Which machines will run my code the fastest and why?
•  Which benchmarks predict my code performance best?

Performance Data Management

27

•  Performance diagnosis and optimization involves
multiple performance experiments

•  Support for common performance data
management tasks augments tool use
–  Performance experiment data and metadata storage
–  Performance database and query

•  What type of performance data should be
stored?
–  Parallel profiles or parallel traces
–  Storage size will dictate
–  Experiment metadata helps in meta analysis tasks

•  Serves tool integration objectives

Metadata Collection

28

•  Integration of metadata with each parallel profile
–  Separate information from performance data

•  Three ways to incorporate metadata
–  Measured hardware/system information

•  CPU speed, memory in GB, MPI node IDs, …
–  Application instrumentation (application-specific)

•  Application parameters, input data, domain decomposition
•  Capture arbitrary name/value pair and save with experiment

–  Data management tools can read additional metadata
•  Compiler flags, submission scripts, input files, …
•  Before or after execution

•  Enhances analysis capabilities

Performance Data Mining

29

•  Conduct parallel performance analysis in a
systematic, collaborative and reusable manner
–  Manage performance complexity and automate

process
–  Discover performance relationship and properties
–  Multi-experiment performance analysis

•  Data mining applied to parallel performance data
–  Comparative, clustering, correlation, characterization,

…
–  Large-scale performance data reduction

•  Implement extensible analysis framework
–  Abstraction / automation of data mining operations
–  Interface to existing analysis and data mining tools

How to explain performance?

30

•  Should not just redescribe performance results
•  Should explain performance phenomena

–  What are the causes for performance observed?
–  What are the factors and how do they interrelate?
–  Performance analytics, forensics, and decision support

•  Add knowledge to do more intelligent things
–  Automated analysis needs informed feedback
–  Performance model generation requires interpretation

•  Performance knowledge discovery framework
–  Integrating meta-information
–  Knowledge-based performance problem solving

Metadata and Knowledge Role

31

Performance Result	

Execution	

You have to
capture these...	

...to understand this	

Performance Optimization Process

32

•  Performance characterization
–  Identify major performance contributors
–  Identify sources of performance inefficiency
–  Utilize timing and hardware measures

•  Performance diagnosis (Performance
Debugging)
–  Look for conditions of performance problems
–  Determine if conditions are met and their severity
–  What and where are the performance bottlenecks

•  Performance tuning
–  Focus on dominant performance contributors
–  Eliminate main performance bottlenecks

