!-------------------------------------------------------------------------------------------------- !* $Id$ !-------------------------------------------------------------------------------------------------- !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief Utilities used by the different spectral solver variants !-------------------------------------------------------------------------------------------------- module DAMASK_spectral_Utilities use prec, only: & pReal, & pInt use mesh, only : & res, & res1_red, & geomdim, & mesh_NcpElems, & wgt use math use IO, only: & IO_error implicit none !-------------------------------------------------------------------------------------------------- ! variables storing information for spectral method and FFTW type(C_PTR), private :: plan_forward, plan_backward ! plans for fftw real(pReal), private, dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat ! gamma operator (field) for spectral method real(pReal), private, dimension(:,:,:,:), allocatable :: xi ! wave vector field for divergence and for gamma operator complex(pReal),private, dimension(:,:,:,:,:), pointer :: field_fourier real(pReal), private, dimension(3,3,3,3) :: C_ref real(pReal), public, dimension(:,:,:,:,:), pointer :: field_real !-------------------------------------------------------------------------------------------------- ! debug fftw type(C_PTR), private :: plan_scalarField_forth, plan_scalarField_back complex(pReal),private, dimension(:,:,:), pointer :: scalarField_real complex(pReal),private, dimension(:,:,:), pointer :: scalarField_fourier !-------------------------------------------------------------------------------------------------- ! debug divergence type(C_PTR), private :: plan_divergence real(pReal), private, dimension(:,:,:,:), pointer :: divergence_real complex(pReal), private, dimension(:,:,:,:), pointer :: divergence_fourier real(pReal), dimension(:,:,:,:), allocatable :: divergence_post !-------------------------------------------------------------------------------------------------- !variables controlling debugging logical,public :: debugGeneral, debugDivergence, debugRestart, debugFFTW !-------------------------------------------------------------------------------------------------- ! derived types type solutionState logical :: converged = .false. logical :: regrid = .false. logical :: term_ill = .false. end type solutionState type boundaryCondition real(pReal), dimension(3,3) :: values = 0.0_pReal real(pReal), dimension(3,3) :: maskFloat = 0.0_pReal logical, dimension(3,3) :: maskLogical = .false. character(len=64) :: myType = 'None' end type boundaryCondition contains !-------------------------------------------------------------------------------------------------- !> @brief allocates all neccessary fields, sets debug flags, create plans for fftw !> @details Sets the debug levels for general, divergence, restart and fftw from the biwise coding !> provided by the debug module to logicals. !> Allocates all fields used by FFTW and create the corresponding plans depending on the debug !> level chosen. !> Initializes FFTW. !-------------------------------------------------------------------------------------------------- subroutine Utilities_init() use numerics, only: & DAMASK_NumThreadsInt, & fftw_planner_flag, & fftw_timelimit, & memory_efficient use debug, only: & debug_level, & debug_spectral, & debug_levelBasic, & debug_spectralDivergence, & debug_spectralRestart, & debug_spectralFFTW use mesh, only : & virt_dim implicit none integer(pInt) :: i, j, k integer(pInt), dimension(3) :: k_s !$ integer(pInt) :: ierr type(C_PTR) :: tensorField ! field in real and fourier space type(C_PTR) :: scalarField_realC, scalarField_fourierC type(C_PTR) :: divergence write(6,'(a)') '' write(6,'(a)') ' <<<+- DAMASK_spectralSolver Utilities init -+>>>' write(6,'(a)') ' $Id$' #include "compilation_info.f90" write(6,'(a)') '' !-------------------------------------------------------------------------------------------------- ! set debugging parameters debugGeneral = iand(debug_level(debug_spectral),debug_levelBasic) /= 0 debugDivergence = iand(debug_level(debug_spectral),debug_spectralDivergence) /= 0 debugRestart = iand(debug_level(debug_spectral),debug_spectralRestart) /= 0 debugFFTW = iand(debug_level(debug_spectral),debug_spectralFFTW) /= 0 !-------------------------------------------------------------------------------------------------- ! allocation allocate (xi (3,res1_red,res(2),res(3)), source = 0.0_pReal) ! start out isothermally tensorField = fftw_alloc_complex(int(res1_red*res(2)*res(3)*9_pInt,C_SIZE_T)) ! allocate continous data using a C function, C_SIZE_T is of type integer(8) call c_f_pointer(tensorField, field_real, [ res(1)+2_pInt,res(2),res(3),3,3]) ! place a pointer for a real representation on tensorField call c_f_pointer(tensorField, field_fourier, [ res1_red, res(2),res(3),3,3]) ! place a pointer for a complex representation on tensorField !-------------------------------------------------------------------------------------------------- ! general initialization of fftw (see manual on fftw.org for more details) if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(error_ID=808_pInt) ! check for correct precision in C !$ if(DAMASK_NumThreadsInt > 0_pInt) then !$ ierr = fftw_init_threads() !$ if (ierr == 0_pInt) call IO_error(error_ID = 809_pInt) !$ call fftw_plan_with_nthreads(DAMASK_NumThreadsInt) !$ endif call fftw_set_timelimit(fftw_timelimit) ! set timelimit for plan creation !-------------------------------------------------------------------------------------------------- ! creating plans plan_forward = fftw_plan_many_dft_r2c(3,[ res(3),res(2) ,res(1)],9,& ! dimensions , length in each dimension in reversed order field_real,[ res(3),res(2) ,res(1)+2_pInt],& ! input data , physical length in each dimension in reversed order 1, res(3)*res(2)*(res(1)+2_pInt),& ! striding , product of physical lenght in the 3 dimensions field_fourier,[ res(3),res(2) ,res1_red],& 1, res(3)*res(2)* res1_red,fftw_planner_flag) plan_backward =fftw_plan_many_dft_c2r(3,[ res(3),res(2) ,res(1)],9,& field_fourier,[ res(3),res(2) ,res1_red],& 1, res(3)*res(2)* res1_red,& field_real,[ res(3),res(2) ,res(1)+2_pInt],& 1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag) !-------------------------------------------------------------------------------------------------- ! depending on (debug) options, allocate more memory and create additional plans if (debugDivergence) then divergence = fftw_alloc_complex(int(res1_red*res(2)*res(3)*3_pInt,C_SIZE_T)) call c_f_pointer(divergence, divergence_real, [ res(1)+2_pInt,res(2),res(3),3]) call c_f_pointer(divergence, divergence_fourier, [ res1_red, res(2),res(3),3]) allocate (divergence_post(res(1),res(2),res(3),3)); divergence_post = 0.0_pReal plan_divergence = fftw_plan_many_dft_c2r(3,[ res(3),res(2) ,res(1)],3,& divergence_fourier,[ res(3),res(2) ,res1_red],& 1, res(3)*res(2)* res1_red,& divergence_real,[ res(3),res(2) ,res(1)+2_pInt],& 1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag) endif if (debugFFTW) then scalarField_realC = fftw_alloc_complex(int(res(1)*res(2)*res(3),C_SIZE_T)) ! do not do an inplace transform scalarField_fourierC = fftw_alloc_complex(int(res(1)*res(2)*res(3),C_SIZE_T)) call c_f_pointer(scalarField_realC, scalarField_real, [res(1),res(2),res(3)]) call c_f_pointer(scalarField_fourierC, scalarField_fourier, [res(1),res(2),res(3)]) plan_scalarField_forth = fftw_plan_dft_3d(res(3),res(2),res(1),& !reversed order scalarField_real,scalarField_fourier,-1,fftw_planner_flag) plan_scalarField_back = fftw_plan_dft_3d(res(3),res(2),res(1),& !reversed order scalarField_fourier,scalarField_real,+1,fftw_planner_flag) endif if (debugGeneral) write(6,'(a)') 'FFTW initialized' !-------------------------------------------------------------------------------------------------- ! calculation of discrete angular frequencies, ordered as in FFTW (wrap around) do k = 1_pInt, res(3) k_s(3) = k - 1_pInt if(k > res(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - res(3) do j = 1_pInt, res(2) k_s(2) = j - 1_pInt if(j > res(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - res(2) do i = 1_pInt, res1_red k_s(1) = i - 1_pInt xi(1:3,i,j,k) = real(k_s, pReal)/virt_dim enddo; enddo; enddo if(memory_efficient) then ! allocate just single fourth order tensor allocate (gamma_hat(3,3,3,3,1,1,1), source = 0.0_pReal) else ! precalculation of gamma_hat field allocate (gamma_hat(3,3,3,3,res1_red ,res(2),res(3)), source =0.0_pReal) ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 endif end subroutine Utilities_init !-------------------------------------------------------------------------------------------------- !> @brief updates references stiffness and potentially precalculated gamma operator !> @details Sets the current reference stiffness to the stiffness given as an argument. !> If the gamma operator is precalculated, it is calculated with this stiffness. !> In case of a on-the-fly calculation, only the reference stiffness is updated. !> The gamma operator is filtered depening on the filter selected in numerics !-------------------------------------------------------------------------------------------------- subroutine Utilities_updateGamma(C) use numerics, only: & memory_efficient implicit none real(pReal), dimension(3,3,3,3), intent(in) :: C real(pReal), dimension(3,3) :: temp33_Real, xiDyad real(pReal) :: filter integer(pInt) :: i, j, k, l, m, n, o C_ref = C if(.not. memory_efficient) then do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) & xiDyad(l,m) = xi(l, i,j,k)*xi(m, i,j,k) forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) & temp33_Real(l,m) = sum(C_ref(l,m,1:3,1:3)*xiDyad) temp33_Real = math_inv33(temp33_Real) filter = Utilities_getFilter(xi(1:3,i,j,k)) forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, o=1_pInt:3_pInt)& gamma_hat(l,m,n,o, i,j,k) = filter*temp33_Real(l,n)*xiDyad(m,o) endif enddo; enddo; enddo gamma_hat(1:3,1:3,1:3,1:3, 1,1,1) = 0.0_pReal ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 endif end subroutine Utilities_updateGamma !-------------------------------------------------------------------------------------------------- !> @brief forward FFT of data in field_real to field_fourier with highest freqs. removed !> Does an unweighted FFT transform from real to complex. !> In case of debugging the FFT, also one component of the tensor (specified by row and column) !> is independetly transformed complex to complex and compared to the whole tensor transform !-------------------------------------------------------------------------------------------------- subroutine Utilities_forwardFFT(row,column) use mesh, only : & virt_dim implicit none integer(pInt), intent(in), optional :: row, column !-------------------------------------------------------------------------------------------------- ! copy one component of the stress field to to a single FT and check for mismatch if (debugFFTW) then if (.not. present(row) .or. .not. present(column)) stop scalarField_real(1:res(1),1:res(2),1:res(3)) =& ! store the selected component cmplx(field_real(1:res(1),1:res(2),1:res(3),row,column),0.0_pReal,pReal) endif !-------------------------------------------------------------------------------------------------- ! call function to calculate divergence from math (for post processing) to check results if (debugDivergence) & call divergence_fft(res,virt_dim,3_pInt,field_real(1:res(1),1:res(2),1:res(3),1:3,1:3),divergence_post) !-------------------------------------------------------------------------------------------------- ! doing the FT call fftw_execute_dft_r2c(plan_forward,field_real,field_fourier) !-------------------------------------------------------------------------------------------------- ! comparing 1 and 3x3 FT results if (debugFFTW) then call fftw_execute_dft(plan_scalarField_forth,scalarField_real,scalarField_fourier) write(6,'(a,i1,1x,i1)') 'checking FT results of compontent ', row, column write(6,'(a,2(es11.4,1x))') 'max FT relative error = ',& maxval( real((scalarField_fourier(1:res1_red,1:res(2),1:res(3))-& field_fourier(1:res1_red,1:res(2),1:res(3),row,column))/& scalarField_fourier(1:res1_red,1:res(2),1:res(3)))), & maxval(aimag((scalarField_fourier(1:res1_red,1:res(2),1:res(3))-& field_fourier(1:res1_red,1:res(2),1:res(3),row,column))/& scalarField_fourier(1:res1_red,1:res(2),1:res(3)))) endif !-------------------------------------------------------------------------------------------------- ! removing highest frequencies field_fourier ( res1_red,1:res(2) , 1:res(3) ,1:3,1:3)& = cmplx(0.0_pReal,0.0_pReal,pReal) field_fourier (1:res1_red, res(2)/2_pInt+1_pInt,1:res(3) ,1:3,1:3)& = cmplx(0.0_pReal,0.0_pReal,pReal) if(res(3)>1_pInt) & field_fourier (1:res1_red,1:res(2), res(3)/2_pInt+1_pInt,1:3,1:3)& = cmplx(0.0_pReal,0.0_pReal,pReal) end subroutine Utilities_forwardFFT !-------------------------------------------------------------------------------------------------- !> @brief backward FFT of data in field_fourier to field_real !> Does an inverse FFT transform from complex to real !> In case of debugging the FFT, also one component of the tensor (specified by row and column) !> is independetly transformed complex to complex and compared to the whole tensor transform !> results is weighted by number of points stored in wgt !-------------------------------------------------------------------------------------------------- subroutine Utilities_backwardFFT(row,column) implicit none integer(pInt), intent(in), optional :: row, column integer(pInt) :: i, j, k, m, n !-------------------------------------------------------------------------------------------------- ! comparing 1 and 3x3 inverse FT results if (debugFFTW) then scalarField_fourier = field_fourier(1:res1_red,1:res(2),1:res(3),row,column) do i = 0_pInt, res(1)/2_pInt-2_pInt ! unpack fft data for conj complex symmetric part m = 1_pInt do k = 1_pInt, res(3) n = 1_pInt do j = 1_pInt, res(2) scalarField_fourier(res(1)-i,j,k) = conjg(scalarField_fourier(2+i,n,m)) if(n == 1_pInt) n = res(2) + 1_pInt n = n-1_pInt enddo if(m == 1_pInt) m = res(3) + 1_pInt m = m -1_pInt enddo; enddo endif call fftw_execute_dft_c2r(plan_backward,field_fourier,field_real) ! back transform of fluct deformation gradient !-------------------------------------------------------------------------------------------------- ! comparing 1 and 3x3 inverse FT results if (debugFFTW) then write(6,'(a,i1,1x,i1)') 'checking iFT results of compontent ', row, column call fftw_execute_dft(plan_scalarField_back,scalarField_fourier,scalarField_real) write(6,'(a,es11.4)') 'max iFT relative error = ',& maxval((real(scalarField_real(1:res(1),1:res(2),1:res(3)))-& field_real(1:res(1),1:res(2),1:res(3),row,column))/& real(scalarField_real(1:res(1),1:res(2),1:res(3)))) endif field_real = field_real * wgt end subroutine Utilities_backwardFFT !-------------------------------------------------------------------------------------------------- !> @brief doing convolution gamma_hat * field_real with average value given by fieldAim !-------------------------------------------------------------------------------------------------- subroutine Utilities_fourierConvolution(fieldAim) use numerics, only: & memory_efficient implicit none real(pReal), dimension(3,3), intent(in) :: fieldAim real(pReal), dimension(3,3) :: xiDyad, temp33_Real real(pReal) :: filter integer(pInt) :: i, j, k, l, m, n, o complex(pReal), dimension(3,3) :: temp33_complex write(6,'(a)') '' write(6,'(a)') '... doing convolution .................' !-------------------------------------------------------------------------------------------------- ! to the actual spectral method calculation (mechanical equilibrium) if(memory_efficient) then ! memory saving version, on-the-fly calculation of gamma_hat do k = 1_pInt, res(3); do j = 1_pInt, res(2) ;do i = 1_pInt, res1_red if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) & xiDyad(l,m) = xi(l, i,j,k)*xi(m, i,j,k) forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) & temp33_Real(l,m) = sum(C_ref(l,m,1:3,1:3)*xiDyad) temp33_Real = math_inv33(temp33_Real) filter = Utilities_getFilter(xi(1:3,i,j,k)) forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, o=1_pInt:3_pInt)& gamma_hat(l,m,n,o, 1,1,1) = filter*temp33_Real(l,n)*xiDyad(m,o) forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) & temp33_Complex(l,m) = sum(gamma_hat(l,m,1:3,1:3, 1,1,1) * field_fourier(i,j,k,1:3,1:3)) field_fourier(i,j,k,1:3,1:3) = temp33_Complex endif enddo; enddo; enddo else ! use precalculated gamma-operator do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt,res1_red forall( m = 1_pInt:3_pInt, n = 1_pInt:3_pInt) & temp33_Complex(m,n) = sum(gamma_hat(m,n,1:3,1:3, i,j,k) * field_fourier(i,j,k,1:3,1:3)) field_fourier(i,j,k, 1:3,1:3) = temp33_Complex enddo; enddo; enddo endif field_fourier(1,1,1,1:3,1:3) = cmplx(fieldAim*real(mesh_NcpElems,pReal),0.0_pReal,pReal) ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 end subroutine Utilities_fourierConvolution !-------------------------------------------------------------------------------------------------- !> @brief calculate root mean square of divergence of field_fourier !-------------------------------------------------------------------------------------------------- real(pReal) function Utilities_divergenceRMS() integer(pInt) :: i, j, k real(pReal) :: err_div_RMS, err_real_div_RMS, err_post_div_RMS,& err_div_max, err_real_div_max complex(pReal), dimension(3) :: temp3_complex write(6,'(a)') '' write(6,'(a)') '... calculating divergence .................' !-------------------------------------------------------------------------------------------------- ! calculating RMS divergence criterion in Fourier space Utilities_divergenceRMS = 0.0_pReal do k = 1_pInt, res(3); do j = 1_pInt, res(2) do i = 2_pInt, res1_red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice. Utilities_divergenceRMS = Utilities_divergenceRMS & + 2.0_pReal*(sum (real(math_mul33x3_complex(field_fourier(i,j,k,1:3,1:3),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal)& ! --> sum squared L_2 norm of vector +sum(aimag(math_mul33x3_complex(field_fourier(i,j,k,1:3,1:3),& xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal)) enddo Utilities_divergenceRMS = Utilities_divergenceRMS & ! Those two layers (DC and Nyquist) do not have a conjugate complex counterpart + sum( real(math_mul33x3_complex(field_fourier(1 ,j,k,1:3,1:3),& xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)& + sum(aimag(math_mul33x3_complex(field_fourier(1 ,j,k,1:3,1:3),& xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)& + sum( real(math_mul33x3_complex(field_fourier(res1_red,j,k,1:3,1:3),& xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)& + sum(aimag(math_mul33x3_complex(field_fourier(res1_red,j,k,1:3,1:3),& xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal) enddo; enddo Utilities_divergenceRMS = sqrt(Utilities_divergenceRMS) *wgt ! RMS in real space calculated with Parsevals theorem from Fourier space !-------------------------------------------------------------------------------------------------- ! calculate additional divergence criteria and report if (debugDivergence) then ! calculate divergence again err_div_max = 0.0_pReal do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red temp3_Complex = math_mul33x3_complex(field_fourier(i,j,k,1:3,1:3)*wgt,& ! weighting P_fourier xi(1:3,i,j,k))*TWOPIIMG err_div_max = max(err_div_max,sum(abs(temp3_Complex)**2.0_pReal)) divergence_fourier(i,j,k,1:3) = temp3_Complex ! need divergence NOT squared enddo; enddo; enddo call fftw_execute_dft_c2r(plan_divergence,divergence_fourier,divergence_real) ! already weighted err_real_div_RMS = sqrt(wgt*sum(divergence_real**2.0_pReal)) ! RMS in real space err_post_div_RMS = sqrt(wgt*sum(divergence_post**2.0_pReal)) ! RMS in real space err_real_div_max = sqrt(maxval(sum(divergence_real**2.0_pReal,dim=4))) ! max in real space err_div_max = sqrt( err_div_max) ! max in Fourier space write(6,'(1x,a,es11.4)') 'error divergence FT RMS = ',err_div_RMS write(6,'(1x,a,es11.4)') 'error divergence Real RMS = ',err_real_div_RMS write(6,'(1x,a,es11.4)') 'error divergence post RMS = ',err_post_div_RMS write(6,'(1x,a,es11.4)') 'error divergence FT max = ',err_div_max write(6,'(1x,a,es11.4)') 'error divergence Real max = ',err_real_div_max endif end function Utilities_divergenceRMS !-------------------------------------------------------------------------------------------------- !> @brief calculates mask compliance !-------------------------------------------------------------------------------------------------- function Utilities_maskedCompliance(rot_BC,mask_stressVector,C) real(pReal), dimension(3,3,3,3) :: Utilities_maskedCompliance real(pReal), dimension(3,3,3,3), intent(in) :: C integer(pInt) :: i, j, k, m, n real(pReal), dimension(3,3), intent(in) :: rot_BC logical, dimension(9), intent(in) :: mask_stressVector real(pReal), dimension(3,3,3,3) :: C_lastInc real(pReal), dimension(9,9) :: temp99_Real integer(pInt) :: size_reduced = 0_pInt real(pReal), dimension(:,:), allocatable :: s_reduced, c_reduced ! reduced compliance and stiffness (only for stress BC) logical :: errmatinv size_reduced = count(mask_stressVector) if(size_reduced > 0_pInt )then allocate (c_reduced(size_reduced,size_reduced), source =0.0_pReal) allocate (s_reduced(size_reduced,size_reduced), source =0.0_pReal) C_lastInc = math_rotate_forward3333(C,rot_BC) ! calculate stiffness from former inc temp99_Real = math_Plain3333to99(C_lastInc) k = 0_pInt ! build reduced stiffness do n = 1_pInt,9_pInt if(mask_stressVector(n)) then k = k + 1_pInt j = 0_pInt do m = 1_pInt,9_pInt if(mask_stressVector(m)) then j = j + 1_pInt c_reduced(k,j) = temp99_Real(n,m) endif; enddo; endif; enddo call math_invert(size_reduced, c_reduced, s_reduced, i, errmatinv) ! invert reduced stiffness if(errmatinv) call IO_error(error_ID=400_pInt) temp99_Real = 0.0_pReal ! build full compliance k = 0_pInt do n = 1_pInt,9_pInt if(mask_stressVector(n)) then k = k + 1_pInt j = 0_pInt do m = 1_pInt,9_pInt if(mask_stressVector(m)) then j = j + 1_pInt temp99_Real(n,m) = s_reduced(k,j) endif; enddo; endif; enddo deallocate(c_reduced) deallocate(s_reduced) else temp99_real = 0.0_pReal endif Utilities_maskedCompliance = math_Plain99to3333(temp99_Real) end function Utilities_maskedCompliance subroutine Utilities_constitutiveResponse(coordinates,F_lastInc,F,temperature,timeinc,& P,C,P_av,ForwardData,rotation_BC) use debug, only: & debug_reset, & debug_info use CPFEM, only: & CPFEM_general use FEsolving, only: restartWrite implicit none real(pReal), dimension(res(1),res(2),res(3)) :: temperature real(pReal), dimension(res(1),res(2),res(3),3) :: coordinates real(pReal), dimension(3,3,res(1),res(2),res(3)) :: F,F_lastInc, P real(pReal) :: timeinc logical :: ForwardData integer(pInt) :: i, j, k, ielem integer(pInt) :: CPFEM_mode real(pReal), dimension(3,3,3,3) :: dPdF, C real(pReal), dimension(6) :: sigma ! cauchy stress real(pReal), dimension(6,6) :: dsde real(pReal), dimension(3,3) :: P_av, rotation_BC write(6,'(a)') '' write(6,'(a)') '... evaluating constitutive response .................' if (ForwardData) then CPFEM_mode = 1_pInt else CPFEM_mode = 2_pInt endif ielem = 0_pInt do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) ielem = ielem + 1_pInt call CPFEM_general(3_pInt,& ! collect cycle coordinates(i,j,k,1:3), F_lastInc(1:3,1:3,i,j,k),F(1:3,1:3,i,j,k), & temperature(i,j,k),timeinc,ielem,1_pInt,sigma,dsde,P(1:3,1:3,i,j,k),dPdF) enddo; enddo; enddo P = 0.0_pReal ! needed because of the padding for FFTW C = 0.0_pReal ielem = 0_pInt call debug_reset() do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) ielem = ielem + 1_pInt call CPFEM_general(CPFEM_mode,& ! first element in first iteration retains CPFEM_mode 1, coordinates(i,j,k,1:3),F_lastInc(1:3,1:3,i,j,k), F(1:3,1:3,i,j,k), & ! others get 2 (saves winding forward effort) temperature(i,j,k),timeinc,ielem,1_pInt,sigma,dsde,P(1:3,1:3,i,j,k),dPdF) CPFEM_mode = 2_pInt C = C + dPdF enddo; enddo; enddo call debug_info() P_av = math_rotate_forward33(sum(sum(sum(P,dim=5),dim=4),dim=3) * wgt,rotation_BC) !average of P rotated restartWrite = .false. write (6,'(a,/,3(3(2x,f12.7,1x)/))',advance='no') ' Piola-Kirchhoff stress / MPa =',& math_transpose33(P_av)/1.e6_pReal C = C * wgt end subroutine Utilities_constitutiveResponse subroutine Utilities_forwardField(delta_aim,timeinc,timeinc_old,guessmode,field_lastInc,field) real(pReal), intent(in), dimension(3,3) :: delta_aim real(pReal), intent(in) :: timeinc, timeinc_old, guessmode real(pReal), intent(inout), dimension(3,3,res(1),res(2),res(3)) :: field_lastInc,field if (guessmode == 1.0_pReal) then field = field + (field-field_lastInc) * timeinc/timeinc_old field_lastInc = (field + field_lastInc * timeinc/timeinc_old) /(1.0_pReal + timeinc/timeinc_old) else field_lastInc = field field = field + spread(spread(spread(delta_aim,3,res(1)),4,res(2)),5,res(3)) endif end subroutine Utilities_forwardField real(pReal) function Utilities_getFilter(k) use numerics, only: & myfilter implicit none real(pReal), dimension(3),intent(in) :: k select case (myfilter) case ('none') Utilities_getFilter = 1.0_pReal case ('cosine') Utilities_getFilter = 0.125_pReal*(1.0_pReal + cos(pi*k(3)*geomdim(3)/(res(3)/2_pInt + 1_pInt))) & *(1.0_pReal + cos(pi*k(2)*geomdim(2)/(res(2)/2_pInt + 1_pInt))) & *(1.0_pReal + cos(pi*k(1)*geomdim(1)/(res(1)/2_pInt + 1_pInt))) end select end function Utilities_getFilter subroutine Utilities_destroy() implicit none if (debugDivergence) call fftw_destroy_plan(plan_divergence) if (debugFFTW) then call fftw_destroy_plan(plan_scalarField_forth) call fftw_destroy_plan(plan_scalarField_back) endif call fftw_destroy_plan(plan_forward) call fftw_destroy_plan(plan_backward) end subroutine Utilities_destroy end module DAMASK_spectral_Utilities