# -*- coding: UTF-8 no BOM -*- ################################################### # NOTE: everything here needs to be a np array # ################################################### import math,os import numpy as np # ****************************************************************************************** class Rodrigues: def __init__(self, vector = np.zeros(3)): self.vector = vector def asQuaternion(self): norm = np.linalg.norm(self.vector) halfAngle = np.arctan(norm) return Quaternion(np.cos(halfAngle),np.sin(halfAngle)*self.vector/norm) def asAngleAxis(self): norm = np.linalg.norm(self.vector) halfAngle = np.arctan(norm) return (2.0*halfAngle,self.vector/norm) # ****************************************************************************************** class Quaternion: """ Orientation represented as unit quaternion. All methods and naming conventions based on http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions. w is the real part, (x, y, z) are the imaginary parts. Representation of rotation is in ACTIVE form! (Derived directly or through angleAxis, Euler angles, or active matrix) Vector "a" (defined in coordinate system "A") is actively rotated to new coordinates "b". b = Q * a b = np.dot(Q.asMatrix(),a) """ def __init__(self, quatArray = [1.0,0.0,0.0,0.0]): """Initializes to identity if not given""" self.w, \ self.x, \ self.y, \ self.z = quatArray self.homomorph() def __iter__(self): """Components""" return iter([self.w,self.x,self.y,self.z]) def __copy__(self): """Create copy""" Q = Quaternion([self.w,self.x,self.y,self.z]) return Q copy = __copy__ def __repr__(self): """Readbable string""" return 'Quaternion(real=%+.6f, imag=<%+.6f, %+.6f, %+.6f>)' % \ (self.w, self.x, self.y, self.z) def __pow__(self, exponent): """Power""" omega = math.acos(self.w) vRescale = math.sin(exponent*omega)/math.sin(omega) Q = Quaternion() Q.w = math.cos(exponent*omega) Q.x = self.x * vRescale Q.y = self.y * vRescale Q.z = self.z * vRescale return Q def __ipow__(self, exponent): """In-place power""" omega = math.acos(self.w) vRescale = math.sin(exponent*omega)/math.sin(omega) self.w = np.cos(exponent*omega) self.x *= vRescale self.y *= vRescale self.z *= vRescale return self def __mul__(self, other): """Multiplication""" try: # quaternion Aw = self.w Ax = self.x Ay = self.y Az = self.z Bw = other.w Bx = other.x By = other.y Bz = other.z Q = Quaternion() Q.w = - Ax * Bx - Ay * By - Az * Bz + Aw * Bw Q.x = + Ax * Bw + Ay * Bz - Az * By + Aw * Bx Q.y = - Ax * Bz + Ay * Bw + Az * Bx + Aw * By Q.z = + Ax * By - Ay * Bx + Az * Bw + Aw * Bz return Q except: pass try: # vector (perform active rotation, i.e. q*v*q.conjugated) w = self.w x = self.x y = self.y z = self.z Vx = other[0] Vy = other[1] Vz = other[2] return np.array([\ w * w * Vx + 2 * y * w * Vz - 2 * z * w * Vy + \ x * x * Vx + 2 * y * x * Vy + 2 * z * x * Vz - \ z * z * Vx - y * y * Vx, 2 * x * y * Vx + y * y * Vy + 2 * z * y * Vz + \ 2 * w * z * Vx - z * z * Vy + w * w * Vy - \ 2 * x * w * Vz - x * x * Vy, 2 * x * z * Vx + 2 * y * z * Vy + \ z * z * Vz - 2 * w * y * Vx - y * y * Vz + \ 2 * w * x * Vy - x * x * Vz + w * w * Vz ]) except: pass try: # scalar Q = self.copy() Q.w *= other Q.x *= other Q.y *= other Q.z *= other return Q except: return self.copy() def __imul__(self, other): """In-place multiplication""" try: # Quaternion Ax = self.x Ay = self.y Az = self.z Aw = self.w Bx = other.x By = other.y Bz = other.z Bw = other.w self.x = Ax * Bw + Ay * Bz - Az * By + Aw * Bx self.y = -Ax * Bz + Ay * Bw + Az * Bx + Aw * By self.z = Ax * By - Ay * Bx + Az * Bw + Aw * Bz self.w = -Ax * Bx - Ay * By - Az * Bz + Aw * Bw except: pass return self def __div__(self, other): """Division""" if isinstance(other, (int,float)): w = self.w / other x = self.x / other y = self.y / other z = self.z / other return self.__class__([w,x,y,z]) else: return NotImplemented def __idiv__(self, other): """In-place division""" if isinstance(other, (int,float)): self.w /= other self.x /= other self.y /= other self.z /= other return self def __add__(self, other): """Addition""" if isinstance(other, Quaternion): w = self.w + other.w x = self.x + other.x y = self.y + other.y z = self.z + other.z return self.__class__([w,x,y,z]) else: return NotImplemented def __iadd__(self, other): """In-place addition""" if isinstance(other, Quaternion): self.w += other.w self.x += other.x self.y += other.y self.z += other.z return self def __sub__(self, other): """Subtraction""" if isinstance(other, Quaternion): Q = self.copy() Q.w -= other.w Q.x -= other.x Q.y -= other.y Q.z -= other.z return Q else: return self.copy() def __isub__(self, other): """In-place subtraction""" if isinstance(other, Quaternion): self.w -= other.w self.x -= other.x self.y -= other.y self.z -= other.z return self def __neg__(self): """Additive inverse""" self.w = -self.w self.x = -self.x self.y = -self.y self.z = -self.z return self def __abs__(self): """Norm""" return math.sqrt(self.w ** 2 + \ self.x ** 2 + \ self.y ** 2 + \ self.z ** 2) magnitude = __abs__ def __eq__(self,other): """Equal at e-8 precision""" return (abs(self.w-other.w) < 1e-8 and \ abs(self.x-other.x) < 1e-8 and \ abs(self.y-other.y) < 1e-8 and \ abs(self.z-other.z) < 1e-8) \ or \ (abs(-self.w-other.w) < 1e-8 and \ abs(-self.x-other.x) < 1e-8 and \ abs(-self.y-other.y) < 1e-8 and \ abs(-self.z-other.z) < 1e-8) def __ne__(self,other): """Not equal at e-8 precision""" return not self.__eq__(self,other) def __cmp__(self,other): """Linear ordering""" return (self.Rodrigues()>other.Rodrigues()) - (self.Rodrigues() 0.0: self /= d return self def conjugate(self): self.x = -self.x self.y = -self.y self.z = -self.z return self def inverse(self): d = self.magnitude() if d > 0.0: self.conjugate() self /= d return self def homomorph(self): if self.w < 0.0: self.w = -self.w self.x = -self.x self.y = -self.y self.z = -self.z return self def normalized(self): return self.copy().normalize() def conjugated(self): return self.copy().conjugate() def inversed(self): return self.copy().inverse() def homomorphed(self): return self.copy().homomorph() def asList(self): return [i for i in self] def asM(self): # to find Averaging Quaternions (see F. Landis Markley et al.) return np.outer([i for i in self],[i for i in self]) def asMatrix(self): return np.array( [[1.0-2.0*(self.y*self.y+self.z*self.z), 2.0*(self.x*self.y-self.z*self.w), 2.0*(self.x*self.z+self.y*self.w)], [ 2.0*(self.x*self.y+self.z*self.w), 1.0-2.0*(self.x*self.x+self.z*self.z), 2.0*(self.y*self.z-self.x*self.w)], [ 2.0*(self.x*self.z-self.y*self.w), 2.0*(self.x*self.w+self.y*self.z), 1.0-2.0*(self.x*self.x+self.y*self.y)]]) def asAngleAxis(self, degrees = False): if self.w > 1: self.normalize() s = math.sqrt(1. - self.w**2) x = 2*self.w**2 - 1. y = 2*self.w * s angle = math.atan2(y,x) if angle < 0.0: angle *= -1. s *= -1. return (np.degrees(angle) if degrees else angle, np.array([1.0, 0.0, 0.0] if np.abs(angle) < 1e-6 else [self.x / s, self.y / s, self.z / s])) def asRodrigues(self): return np.inf*np.ones(3) if self.w == 0.0 else np.array([self.x, self.y, self.z])/self.w def asEulers(self, type = "bunge", degrees = False, standardRange = False): """ Orientation as Bunge-Euler angles. Conversion of ACTIVE rotation to Euler angles taken from: Melcher, A.; Unser, A.; Reichhardt, M.; Nestler, B.; Poetschke, M.; Selzer, M. Conversion of EBSD data by a quaternion based algorithm to be used for grain structure simulations Technische Mechanik 30 (2010) pp 401--413. """ angles = [0.0,0.0,0.0] if type.lower() == 'bunge' or type.lower() == 'zxz': if abs(self.x) < 1e-4 and abs(self.y) < 1e-4: x = self.w**2 - self.z**2 y = 2.*self.w*self.z angles[0] = math.atan2(y,x) elif abs(self.w) < 1e-4 and abs(self.z) < 1e-4: x = self.x**2 - self.y**2 y = 2.*self.x*self.y angles[0] = math.atan2(y,x) angles[1] = math.pi else: chi = math.sqrt((self.w**2 + self.z**2)*(self.x**2 + self.y**2)) x = (self.w * self.x - self.y * self.z)/2./chi y = (self.w * self.y + self.x * self.z)/2./chi angles[0] = math.atan2(y,x) x = self.w**2 + self.z**2 - (self.x**2 + self.y**2) y = 2.*chi angles[1] = math.atan2(y,x) x = (self.w * self.x + self.y * self.z)/2./chi y = (self.z * self.x - self.y * self.w)/2./chi angles[2] = math.atan2(y,x) if standardRange: angles[0] %= 2*math.pi if angles[1] < 0.0: angles[1] += math.pi angles[2] *= -1.0 angles[2] %= 2*math.pi return np.degrees(angles) if degrees else angles # # Static constructors @classmethod def fromIdentity(cls): return cls() @classmethod def fromRandom(cls,randomSeed = None): if randomSeed is None: randomSeed = int(os.urandom(4).encode('hex'), 16) np.random.seed(randomSeed) r = np.random.random(3) w = math.cos(2.0*math.pi*r[0])*math.sqrt(r[2]) x = math.sin(2.0*math.pi*r[1])*math.sqrt(1.0-r[2]) y = math.cos(2.0*math.pi*r[1])*math.sqrt(1.0-r[2]) z = math.sin(2.0*math.pi*r[0])*math.sqrt(r[2]) return cls([w,x,y,z]) @classmethod def fromRodrigues(cls, rodrigues): if not isinstance(rodrigues, np.ndarray): rodrigues = np.array(rodrigues) halfangle = math.atan(np.linalg.norm(rodrigues)) c = math.cos(halfangle) w = c x,y,z = c*rodrigues return cls([w,x,y,z]) @classmethod def fromAngleAxis(cls, angle, axis, degrees = False): if not isinstance(axis, np.ndarray): axis = np.array(axis,dtype='d') axis = axis.astype(float)/np.linalg.norm(axis) angle = np.radians(angle) if degrees else angle s = math.sin(0.5 * angle) w = math.cos(0.5 * angle) x = axis[0] * s y = axis[1] * s z = axis[2] * s return cls([w,x,y,z]) @classmethod def fromEulers(cls, eulers, type = 'Bunge', degrees = False): if not isinstance(eulers, np.ndarray): eulers = np.array(eulers,dtype='d') eulers = np.radians(eulers) if degrees else eulers c = np.cos(0.5 * eulers) s = np.sin(0.5 * eulers) if type.lower() == 'bunge' or type.lower() == 'zxz': w = c[0] * c[1] * c[2] - s[0] * c[1] * s[2] x = c[0] * s[1] * c[2] + s[0] * s[1] * s[2] y = - c[0] * s[1] * s[2] + s[0] * s[1] * c[2] z = c[0] * c[1] * s[2] + s[0] * c[1] * c[2] else: w = c[0] * c[1] * c[2] - s[0] * s[1] * s[2] x = s[0] * s[1] * c[2] + c[0] * c[1] * s[2] y = s[0] * c[1] * c[2] + c[0] * s[1] * s[2] z = c[0] * s[1] * c[2] - s[0] * c[1] * s[2] return cls([w,x,y,z]) # Modified Method to calculate Quaternion from Orientation Matrix, # Source: http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/ @classmethod def fromMatrix(cls, m): if m.shape != (3,3) and np.prod(m.shape) == 9: m = m.reshape(3,3) tr = np.trace(m) if tr > 1e-8: s = math.sqrt(tr + 1.0)*2.0 return cls( [ s*0.25, (m[2,1] - m[1,2])/s, (m[0,2] - m[2,0])/s, (m[1,0] - m[0,1])/s, ]) elif m[0,0] > m[1,1] and m[0,0] > m[2,2]: t = m[0,0] - m[1,1] - m[2,2] + 1.0 s = 2.0*math.sqrt(t) return cls( [ (m[2,1] - m[1,2])/s, s*0.25, (m[0,1] + m[1,0])/s, (m[2,0] + m[0,2])/s, ]) elif m[1,1] > m[2,2]: t = -m[0,0] + m[1,1] - m[2,2] + 1.0 s = 2.0*math.sqrt(t) return cls( [ (m[0,2] - m[2,0])/s, (m[0,1] + m[1,0])/s, s*0.25, (m[1,2] + m[2,1])/s, ]) else: t = -m[0,0] - m[1,1] + m[2,2] + 1.0 s = 2.0*math.sqrt(t) return cls( [ (m[1,0] - m[0,1])/s, (m[2,0] + m[0,2])/s, (m[1,2] + m[2,1])/s, s*0.25, ]) @classmethod def new_interpolate(cls, q1, q2, t): """ Interpolation See http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070017872_2007014421.pdf for (another?) way to interpolate quaternions. """ assert isinstance(q1, Quaternion) and isinstance(q2, Quaternion) Q = cls() costheta = q1.w * q2.w + q1.x * q2.x + q1.y * q2.y + q1.z * q2.z if costheta < 0.: costheta = -costheta q1 = q1.conjugated() elif costheta > 1: costheta = 1 theta = math.acos(costheta) if abs(theta) < 0.01: Q.w = q2.w Q.x = q2.x Q.y = q2.y Q.z = q2.z return Q sintheta = math.sqrt(1.0 - costheta * costheta) if abs(sintheta) < 0.01: Q.w = (q1.w + q2.w) * 0.5 Q.x = (q1.x + q2.x) * 0.5 Q.y = (q1.y + q2.y) * 0.5 Q.z = (q1.z + q2.z) * 0.5 return Q ratio1 = math.sin((1 - t) * theta) / sintheta ratio2 = math.sin(t * theta) / sintheta Q.w = q1.w * ratio1 + q2.w * ratio2 Q.x = q1.x * ratio1 + q2.x * ratio2 Q.y = q1.y * ratio1 + q2.y * ratio2 Q.z = q1.z * ratio1 + q2.z * ratio2 return Q # ****************************************************************************************** class Symmetry: lattices = [None,'orthorhombic','tetragonal','hexagonal','cubic',] def __init__(self, symmetry = None): """Lattice with given symmetry, defaults to None""" if isinstance(symmetry, str) and symmetry.lower() in Symmetry.lattices: self.lattice = symmetry.lower() else: self.lattice = None def __copy__(self): """Copy""" return self.__class__(self.lattice) copy = __copy__ def __repr__(self): """Readbable string""" return '%s' % (self.lattice) def __eq__(self, other): """Equal""" return self.lattice == other.lattice def __neq__(self, other): """Not equal""" return not self.__eq__(other) def __cmp__(self,other): """Linear ordering""" myOrder = Symmetry.lattices.index(self.lattice) otherOrder = Symmetry.lattices.index(other.lattice) return (myOrder > otherOrder) - (myOrder < otherOrder) def symmetryQuats(self,who = []): """List of symmetry operations as quaternions.""" if self.lattice == 'cubic': symQuats = [ [ 1.0, 0.0, 0.0, 0.0 ], [ 0.0, 1.0, 0.0, 0.0 ], [ 0.0, 0.0, 1.0, 0.0 ], [ 0.0, 0.0, 0.0, 1.0 ], [ 0.0, 0.0, 0.5*math.sqrt(2), 0.5*math.sqrt(2) ], [ 0.0, 0.0, 0.5*math.sqrt(2),-0.5*math.sqrt(2) ], [ 0.0, 0.5*math.sqrt(2), 0.0, 0.5*math.sqrt(2) ], [ 0.0, 0.5*math.sqrt(2), 0.0, -0.5*math.sqrt(2) ], [ 0.0, 0.5*math.sqrt(2),-0.5*math.sqrt(2), 0.0 ], [ 0.0, -0.5*math.sqrt(2),-0.5*math.sqrt(2), 0.0 ], [ 0.5, 0.5, 0.5, 0.5 ], [-0.5, 0.5, 0.5, 0.5 ], [-0.5, 0.5, 0.5, -0.5 ], [-0.5, 0.5, -0.5, 0.5 ], [-0.5, -0.5, 0.5, 0.5 ], [-0.5, -0.5, 0.5, -0.5 ], [-0.5, -0.5, -0.5, 0.5 ], [-0.5, 0.5, -0.5, -0.5 ], [-0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ], [ 0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ], [-0.5*math.sqrt(2), 0.0, 0.5*math.sqrt(2), 0.0 ], [-0.5*math.sqrt(2), 0.0, -0.5*math.sqrt(2), 0.0 ], [-0.5*math.sqrt(2), 0.5*math.sqrt(2), 0.0, 0.0 ], [-0.5*math.sqrt(2),-0.5*math.sqrt(2), 0.0, 0.0 ], ] elif self.lattice == 'hexagonal': symQuats = [ [ 1.0,0.0,0.0,0.0 ], [-0.5*math.sqrt(3), 0.0, 0.0,-0.5 ], [ 0.5, 0.0, 0.0, 0.5*math.sqrt(3) ], [ 0.0,0.0,0.0,1.0 ], [-0.5, 0.0, 0.0, 0.5*math.sqrt(3) ], [-0.5*math.sqrt(3), 0.0, 0.0, 0.5 ], [ 0.0,1.0,0.0,0.0 ], [ 0.0,-0.5*math.sqrt(3), 0.5, 0.0 ], [ 0.0, 0.5,-0.5*math.sqrt(3), 0.0 ], [ 0.0,0.0,1.0,0.0 ], [ 0.0,-0.5,-0.5*math.sqrt(3), 0.0 ], [ 0.0, 0.5*math.sqrt(3), 0.5, 0.0 ], ] elif self.lattice == 'tetragonal': symQuats = [ [ 1.0,0.0,0.0,0.0 ], [ 0.0,1.0,0.0,0.0 ], [ 0.0,0.0,1.0,0.0 ], [ 0.0,0.0,0.0,1.0 ], [ 0.0, 0.5*math.sqrt(2), 0.5*math.sqrt(2), 0.0 ], [ 0.0,-0.5*math.sqrt(2), 0.5*math.sqrt(2), 0.0 ], [ 0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ], [-0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ], ] elif self.lattice == 'orthorhombic': symQuats = [ [ 1.0,0.0,0.0,0.0 ], [ 0.0,1.0,0.0,0.0 ], [ 0.0,0.0,1.0,0.0 ], [ 0.0,0.0,0.0,1.0 ], ] else: symQuats = [ [ 1.0,0.0,0.0,0.0 ], ] return list(map(Quaternion, np.array(symQuats)[np.atleast_1d(np.array(who)) if who != [] else range(len(symQuats))])) def equivalentQuaternions(self, quaternion, who = []): """List of symmetrically equivalent quaternions based on own symmetry.""" return [quaternion*q for q in self.symmetryQuats(who)] def inFZ(self,R): """Check whether given Rodrigues vector falls into fundamental zone of own symmetry.""" if isinstance(R, Quaternion): R = R.asRodrigues() # translate accidentially passed quaternion # fundamental zone in Rodrigues space is point symmetric around origin R = abs(R) if self.lattice == 'cubic': return math.sqrt(2.0)-1.0 >= R[0] \ and math.sqrt(2.0)-1.0 >= R[1] \ and math.sqrt(2.0)-1.0 >= R[2] \ and 1.0 >= R[0] + R[1] + R[2] elif self.lattice == 'hexagonal': return 1.0 >= R[0] and 1.0 >= R[1] and 1.0 >= R[2] \ and 2.0 >= math.sqrt(3)*R[0] + R[1] \ and 2.0 >= math.sqrt(3)*R[1] + R[0] \ and 2.0 >= math.sqrt(3) + R[2] elif self.lattice == 'tetragonal': return 1.0 >= R[0] and 1.0 >= R[1] \ and math.sqrt(2.0) >= R[0] + R[1] \ and math.sqrt(2.0) >= R[2] + 1.0 elif self.lattice == 'orthorhombic': return 1.0 >= R[0] and 1.0 >= R[1] and 1.0 >= R[2] else: return True def inDisorientationSST(self,R): """ Check whether given Rodrigues vector (of misorientation) falls into standard stereographic triangle of own symmetry. Determination of disorientations follow the work of A. Heinz and P. Neumann: Representation of Orientation and Disorientation Data for Cubic, Hexagonal, Tetragonal and Orthorhombic Crystals Acta Cryst. (1991). A47, 780-789 """ if isinstance(R, Quaternion): R = R.asRodrigues() # translate accidentially passed quaternion epsilon = 0.0 if self.lattice == 'cubic': return R[0] >= R[1]+epsilon and R[1] >= R[2]+epsilon and R[2] >= epsilon elif self.lattice == 'hexagonal': return R[0] >= math.sqrt(3)*(R[1]-epsilon) and R[1] >= epsilon and R[2] >= epsilon elif self.lattice == 'tetragonal': return R[0] >= R[1]-epsilon and R[1] >= epsilon and R[2] >= epsilon elif self.lattice == 'orthorhombic': return R[0] >= epsilon and R[1] >= epsilon and R[2] >= epsilon else: return True def inSST(self, vector, proper = False, color = False): """ Check whether given vector falls into standard stereographic triangle of own symmetry. proper considers only vectors with z >= 0, hence uses two neighboring SSTs. Return inverse pole figure color if requested. """ # basis = {'cubic' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red # [1.,0.,1.]/np.sqrt(2.), # direction of green # [1.,1.,1.]/np.sqrt(3.)]).transpose()), # direction of blue # 'hexagonal' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red # [1.,0.,0.], # direction of green # [np.sqrt(3.),1.,0.]/np.sqrt(4.)]).transpose()), # direction of blue # 'tetragonal' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red # [1.,0.,0.], # direction of green # [1.,1.,0.]/np.sqrt(2.)]).transpose()), # direction of blue # 'orthorhombic' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red # [1.,0.,0.], # direction of green # [0.,1.,0.]]).transpose()), # direction of blue # } if self.lattice == 'cubic': basis = {'improper':np.array([ [-1. , 0. , 1. ], [ np.sqrt(2.) , -np.sqrt(2.) , 0. ], [ 0. , np.sqrt(3.) , 0. ] ]), 'proper':np.array([ [ 0. , -1. , 1. ], [-np.sqrt(2.) , np.sqrt(2.) , 0. ], [ np.sqrt(3. ) , 0. , 0. ] ]), } elif self.lattice == 'hexagonal': basis = {'improper':np.array([ [ 0. , 0. , 1. ], [ 1. , -np.sqrt(3.) , 0. ], [ 0. , 2. , 0. ] ]), 'proper':np.array([ [ 0. , 0. , 1. ], [-1. , np.sqrt(3.) , 0. ], [ np.sqrt(3) , -1. , 0. ] ]), } elif self.lattice == 'tetragonal': basis = {'improper':np.array([ [ 0. , 0. , 1. ], [ 1. , -1. , 0. ], [ 0. , np.sqrt(2.) , 0. ] ]), 'proper':np.array([ [ 0. , 0. , 1. ], [-1. , 1. , 0. ], [ np.sqrt(2.) , 0. , 0. ] ]), } elif self.lattice == 'orthorhombic': basis = {'improper':np.array([ [ 0., 0., 1.], [ 1., 0., 0.], [ 0., 1., 0.] ]), 'proper':np.array([ [ 0., 0., 1.], [-1., 0., 0.], [ 0., 1., 0.] ]), } else: basis = {'improper': np.zeros((3,3),dtype=float), 'proper': np.zeros((3,3),dtype=float), } if np.all(basis == 0.0): theComponents = -np.ones(3,'d') inSST = np.all(theComponents >= 0.0) else: v = np.array(vector,dtype = float) if proper: # check both improper ... theComponents = np.dot(basis['improper'],v) inSST = np.all(theComponents >= 0.0) if not inSST: # ... and proper SST theComponents = np.dot(basis['proper'],v) inSST = np.all(theComponents >= 0.0) else: v[2] = abs(v[2]) # z component projects identical theComponents = np.dot(basis['improper'],v) # for positive and negative values inSST = np.all(theComponents >= 0.0) if color: # have to return color array if inSST: rgb = np.power(theComponents/np.linalg.norm(theComponents),0.5) # smoothen color ramps rgb = np.minimum(np.ones(3,'d'),rgb) # limit to maximum intensity rgb /= max(rgb) # normalize to (HS)V = 1 else: rgb = np.zeros(3,'d') return (inSST,rgb) else: return inSST # code derived from http://pyeuclid.googlecode.com/svn/trunk/euclid.py # suggested reading: http://web.mit.edu/2.998/www/QuaternionReport1.pdf # ****************************************************************************************** class Orientation: __slots__ = ['quaternion','symmetry'] def __init__(self, quaternion = Quaternion.fromIdentity(), Rodrigues = None, angleAxis = None, matrix = None, Eulers = None, random = False, # integer to have a fixed seed or True for real random symmetry = None, degrees = False, ): if random: # produce random orientation if isinstance(random, bool ): self.quaternion = Quaternion.fromRandom() else: self.quaternion = Quaternion.fromRandom(randomSeed=random) elif isinstance(Eulers, np.ndarray) and Eulers.shape == (3,): # based on given Euler angles self.quaternion = Quaternion.fromEulers(Eulers,type='bunge',degrees=degrees) elif isinstance(matrix, np.ndarray) : # based on given rotation matrix self.quaternion = Quaternion.fromMatrix(matrix) elif isinstance(angleAxis, np.ndarray) and angleAxis.shape == (4,): # based on given angle and rotation axis self.quaternion = Quaternion.fromAngleAxis(angleAxis[0],angleAxis[1:4],degrees=degrees) elif isinstance(Rodrigues, np.ndarray) and Rodrigues.shape == (3,): # based on given Rodrigues vector self.quaternion = Quaternion.fromRodrigues(Rodrigues) elif isinstance(quaternion, Quaternion): # based on given quaternion self.quaternion = quaternion.homomorphed() elif isinstance(quaternion, np.ndarray) and quaternion.shape == (4,): # based on given quaternion-like array self.quaternion = Quaternion(quaternion).homomorphed() self.symmetry = Symmetry(symmetry) def __copy__(self): """Copy""" return self.__class__(quaternion=self.quaternion,symmetry=self.symmetry.lattice) copy = __copy__ def __repr__(self): """Value as all implemented representations""" return 'Symmetry: %s\n' % (self.symmetry) + \ 'Quaternion: %s\n' % (self.quaternion) + \ 'Matrix:\n%s\n' % ( '\n'.join(['\t'.join(map(str,self.asMatrix()[i,:])) for i in range(3)]) ) + \ 'Bunge Eulers / deg: %s' % ('\t'.join(map(str,self.asEulers('bunge',degrees=True))) ) def asQuaternion(self): return self.quaternion.asList() def asEulers(self, type = 'bunge', degrees = False, standardRange = False): return self.quaternion.asEulers(type, degrees, standardRange) eulers = property(asEulers) def asRodrigues(self): return self.quaternion.asRodrigues() rodrigues = property(asRodrigues) def asAngleAxis(self, degrees = False): return self.quaternion.asAngleAxis(degrees) angleAxis = property(asAngleAxis) def asMatrix(self): return self.quaternion.asMatrix() matrix = property(asMatrix) def inFZ(self): return self.symmetry.inFZ(self.quaternion.asRodrigues()) infz = property(inFZ) def equivalentQuaternions(self, who = []): return self.symmetry.equivalentQuaternions(self.quaternion,who) def equivalentOrientations(self, who = []): return [Orientation(quaternion = q, symmetry = self.symmetry.lattice) for q in self.equivalentQuaternions(who)] def reduced(self): """Transform orientation to fall into fundamental zone according to symmetry""" for me in self.symmetry.equivalentQuaternions(self.quaternion): if self.symmetry.inFZ(me.asRodrigues()): break return Orientation(quaternion=me,symmetry=self.symmetry.lattice) def disorientation(self, other, SST = True): """ Disorientation between myself and given other orientation. Rotation axis falls into SST if SST == True. (Currently requires same symmetry for both orientations. Look into A. Heinz and P. Neumann 1991 for cases with differing sym.) """ if self.symmetry != other.symmetry: raise TypeError('disorientation between different symmetry classes not supported yet.') misQ = self.quaternion.conjugated()*other.quaternion mySymQs = self.symmetry.symmetryQuats() if SST else self.symmetry.symmetryQuats()[:1] # take all or only first sym operation otherSymQs = other.symmetry.symmetryQuats() for i,sA in enumerate(mySymQs): for j,sB in enumerate(otherSymQs): theQ = sA.conjugated()*misQ*sB for k in range(2): theQ.conjugate() breaker = self.symmetry.inFZ(theQ) \ and (not SST or other.symmetry.inDisorientationSST(theQ)) if breaker: break if breaker: break if breaker: break # disorientation, own sym, other sym, self-->other: True, self<--other: False return (Orientation(quaternion = theQ,symmetry = self.symmetry.lattice), i,j,k == 1) def inversePole(self, axis, proper = False, SST = True): """Axis rotated according to orientation (using crystal symmetry to ensure location falls into SST)""" if SST: # pole requested to be within SST for i,q in enumerate(self.symmetry.equivalentQuaternions(self.quaternion)): # test all symmetric equivalent quaternions pole = q.conjugated()*axis # align crystal direction to axis if self.symmetry.inSST(pole,proper): break # found SST version else: pole = self.quaternion.conjugated()*axis # align crystal direction to axis return (pole,i if SST else 0) def IPFcolor(self,axis): """TSL color of inverse pole figure for given axis""" color = np.zeros(3,'d') for q in self.symmetry.equivalentQuaternions(self.quaternion): pole = q.conjugated()*axis # align crystal direction to axis inSST,color = self.symmetry.inSST(pole,color=True) if inSST: break return color @classmethod def average(cls, orientations, multiplicity = []): """ Average orientation ref: F. Landis Markley, Yang Cheng, John Lucas Crassidis, and Yaakov Oshman. Averaging Quaternions, Journal of Guidance, Control, and Dynamics, Vol. 30, No. 4 (2007), pp. 1193-1197. doi: 10.2514/1.28949 usage: a = Orientation(Eulers=np.radians([10, 10, 0]), symmetry='hexagonal') b = Orientation(Eulers=np.radians([20, 0, 0]), symmetry='hexagonal') avg = Orientation.average([a,b]) """ if not all(isinstance(item, Orientation) for item in orientations): raise TypeError("Only instances of Orientation can be averaged.") N = len(orientations) if multiplicity == [] or not multiplicity: multiplicity = np.ones(N,dtype='i') reference = orientations[0] # take first as reference for i,(o,n) in enumerate(zip(orientations,multiplicity)): closest = o.equivalentOrientations(reference.disorientation(o,SST = False)[2])[0] # select sym orientation with lowest misorientation M = closest.quaternion.asM() * n if i == 0 else M + closest.quaternion.asM() * n # noqa add (multiples) of this orientation to average noqa eig, vec = np.linalg.eig(M/N) return Orientation(quaternion = Quaternion(quatArray = np.real(vec.T[eig.argmax()])), symmetry = reference.symmetry.lattice) def related(self, relationModel, direction, targetSymmetry = None): """ Orientation relationship positive number: fcc --> bcc negative number: bcc --> fcc """ if relationModel not in ['KS','GT','GTdash','NW','Pitsch','Bain']: return None if int(direction) == 0: return None # KS from S. Morito et al./Journal of Alloys and Compounds 5775 (2013) S587-S592 # for KS rotation matrices also check K. Kitahara et al./Acta Materialia 54 (2006) 1279-1288 # GT from Y. He et al./Journal of Applied Crystallography (2006). 39, 72-81 # GT' from Y. He et al./Journal of Applied Crystallography (2006). 39, 72-81 # NW from H. Kitahara et al./Materials Characterization 54 (2005) 378-386 # Pitsch from Y. He et al./Acta Materialia 53 (2005) 1179-1190 # Bain from Y. He et al./Journal of Applied Crystallography (2006). 39, 72-81 variant = int(abs(direction))-1 (me,other) = (0,1) if direction > 0 else (1,0) planes = {'KS': \ np.array([[[ 1, 1, 1],[ 0, 1, 1]], [[ 1, 1, 1],[ 0, 1, 1]], [[ 1, 1, 1],[ 0, 1, 1]], [[ 1, 1, 1],[ 0, 1, 1]], [[ 1, 1, 1],[ 0, 1, 1]], [[ 1, 1, 1],[ 0, 1, 1]], [[ 1, -1, 1],[ 0, 1, 1]], [[ 1, -1, 1],[ 0, 1, 1]], [[ 1, -1, 1],[ 0, 1, 1]], [[ 1, -1, 1],[ 0, 1, 1]], [[ 1, -1, 1],[ 0, 1, 1]], [[ 1, -1, 1],[ 0, 1, 1]], [[ -1, 1, 1],[ 0, 1, 1]], [[ -1, 1, 1],[ 0, 1, 1]], [[ -1, 1, 1],[ 0, 1, 1]], [[ -1, 1, 1],[ 0, 1, 1]], [[ -1, 1, 1],[ 0, 1, 1]], [[ -1, 1, 1],[ 0, 1, 1]], [[ 1, 1, -1],[ 0, 1, 1]], [[ 1, 1, -1],[ 0, 1, 1]], [[ 1, 1, -1],[ 0, 1, 1]], [[ 1, 1, -1],[ 0, 1, 1]], [[ 1, 1, -1],[ 0, 1, 1]], [[ 1, 1, -1],[ 0, 1, 1]]]), 'GT': \ np.array([[[ 1, 1, 1],[ 1, 0, 1]], [[ 1, 1, 1],[ 1, 1, 0]], [[ 1, 1, 1],[ 0, 1, 1]], [[ -1, -1, 1],[ -1, 0, 1]], [[ -1, -1, 1],[ -1, -1, 0]], [[ -1, -1, 1],[ 0, -1, 1]], [[ -1, 1, 1],[ -1, 0, 1]], [[ -1, 1, 1],[ -1, 1, 0]], [[ -1, 1, 1],[ 0, 1, 1]], [[ 1, -1, 1],[ 1, 0, 1]], [[ 1, -1, 1],[ 1, -1, 0]], [[ 1, -1, 1],[ 0, -1, 1]], [[ 1, 1, 1],[ 1, 1, 0]], [[ 1, 1, 1],[ 0, 1, 1]], [[ 1, 1, 1],[ 1, 0, 1]], [[ -1, -1, 1],[ -1, -1, 0]], [[ -1, -1, 1],[ 0, -1, 1]], [[ -1, -1, 1],[ -1, 0, 1]], [[ -1, 1, 1],[ -1, 1, 0]], [[ -1, 1, 1],[ 0, 1, 1]], [[ -1, 1, 1],[ -1, 0, 1]], [[ 1, -1, 1],[ 1, -1, 0]], [[ 1, -1, 1],[ 0, -1, 1]], [[ 1, -1, 1],[ 1, 0, 1]]]), 'GTdash': \ np.array([[[ 7, 17, 17],[ 12, 5, 17]], [[ 17, 7, 17],[ 17, 12, 5]], [[ 17, 17, 7],[ 5, 17, 12]], [[ -7,-17, 17],[-12, -5, 17]], [[-17, -7, 17],[-17,-12, 5]], [[-17,-17, 7],[ -5,-17, 12]], [[ 7,-17,-17],[ 12, -5,-17]], [[ 17, -7,-17],[ 17,-12, -5]], [[ 17,-17, -7],[ 5,-17,-12]], [[ -7, 17,-17],[-12, 5,-17]], [[-17, 7,-17],[-17, 12, -5]], [[-17, 17, -7],[ -5, 17,-12]], [[ 7, 17, 17],[ 12, 17, 5]], [[ 17, 7, 17],[ 5, 12, 17]], [[ 17, 17, 7],[ 17, 5, 12]], [[ -7,-17, 17],[-12,-17, 5]], [[-17, -7, 17],[ -5,-12, 17]], [[-17,-17, 7],[-17, -5, 12]], [[ 7,-17,-17],[ 12,-17, -5]], [[ 17, -7,-17],[ 5, -12,-17]], [[ 17,-17, 7],[ 17, -5,-12]], [[ -7, 17,-17],[-12, 17, -5]], [[-17, 7,-17],[ -5, 12,-17]], [[-17, 17, -7],[-17, 5,-12]]]), 'NW': \ np.array([[[ 1, 1, 1],[ 0, 1, 1]], [[ 1, 1, 1],[ 0, 1, 1]], [[ 1, 1, 1],[ 0, 1, 1]], [[ -1, 1, 1],[ 0, 1, 1]], [[ -1, 1, 1],[ 0, 1, 1]], [[ -1, 1, 1],[ 0, 1, 1]], [[ 1, -1, 1],[ 0, 1, 1]], [[ 1, -1, 1],[ 0, 1, 1]], [[ 1, -1, 1],[ 0, 1, 1]], [[ -1, -1, 1],[ 0, 1, 1]], [[ -1, -1, 1],[ 0, 1, 1]], [[ -1, -1, 1],[ 0, 1, 1]]]), 'Pitsch': \ np.array([[[ 0, 1, 0],[ -1, 0, 1]], [[ 0, 0, 1],[ 1, -1, 0]], [[ 1, 0, 0],[ 0, 1, -1]], [[ 1, 0, 0],[ 0, -1, -1]], [[ 0, 1, 0],[ -1, 0, -1]], [[ 0, 0, 1],[ -1, -1, 0]], [[ 0, 1, 0],[ -1, 0, -1]], [[ 0, 0, 1],[ -1, -1, 0]], [[ 1, 0, 0],[ 0, -1, -1]], [[ 1, 0, 0],[ 0, -1, 1]], [[ 0, 1, 0],[ 1, 0, -1]], [[ 0, 0, 1],[ -1, 1, 0]]]), 'Bain': \ np.array([[[ 1, 0, 0],[ 1, 0, 0]], [[ 0, 1, 0],[ 0, 1, 0]], [[ 0, 0, 1],[ 0, 0, 1]]]), } normals = {'KS': \ np.array([[[ -1, 0, 1],[ -1, -1, 1]], [[ -1, 0, 1],[ -1, 1, -1]], [[ 0, 1, -1],[ -1, -1, 1]], [[ 0, 1, -1],[ -1, 1, -1]], [[ 1, -1, 0],[ -1, -1, 1]], [[ 1, -1, 0],[ -1, 1, -1]], [[ 1, 0, -1],[ -1, -1, 1]], [[ 1, 0, -1],[ -1, 1, -1]], [[ -1, -1, 0],[ -1, -1, 1]], [[ -1, -1, 0],[ -1, 1, -1]], [[ 0, 1, 1],[ -1, -1, 1]], [[ 0, 1, 1],[ -1, 1, -1]], [[ 0, -1, 1],[ -1, -1, 1]], [[ 0, -1, 1],[ -1, 1, -1]], [[ -1, 0, -1],[ -1, -1, 1]], [[ -1, 0, -1],[ -1, 1, -1]], [[ 1, 1, 0],[ -1, -1, 1]], [[ 1, 1, 0],[ -1, 1, -1]], [[ -1, 1, 0],[ -1, -1, 1]], [[ -1, 1, 0],[ -1, 1, -1]], [[ 0, -1, -1],[ -1, -1, 1]], [[ 0, -1, -1],[ -1, 1, -1]], [[ 1, 0, 1],[ -1, -1, 1]], [[ 1, 0, 1],[ -1, 1, -1]]]), 'GT': \ np.array([[[ -5,-12, 17],[-17, -7, 17]], [[ 17, -5,-12],[ 17,-17, -7]], [[-12, 17, -5],[ -7, 17,-17]], [[ 5, 12, 17],[ 17, 7, 17]], [[-17, 5,-12],[-17, 17, -7]], [[ 12,-17, -5],[ 7,-17,-17]], [[ -5, 12,-17],[-17, 7,-17]], [[ 17, 5, 12],[ 17, 17, 7]], [[-12,-17, 5],[ -7,-17, 17]], [[ 5,-12,-17],[ 17, -7,-17]], [[-17, -5, 12],[-17,-17, 7]], [[ 12, 17, 5],[ 7, 17, 17]], [[ -5, 17,-12],[-17, 17, -7]], [[-12, -5, 17],[ -7,-17, 17]], [[ 17,-12, -5],[ 17, -7,-17]], [[ 5,-17,-12],[ 17,-17, -7]], [[ 12, 5, 17],[ 7, 17, 17]], [[-17, 12, -5],[-17, 7,-17]], [[ -5,-17, 12],[-17,-17, 7]], [[-12, 5,-17],[ -7, 17,-17]], [[ 17, 12, 5],[ 17, 7, 17]], [[ 5, 17, 12],[ 17, 17, 7]], [[ 12, -5,-17],[ 7,-17,-17]], [[-17,-12, 5],[-17, 7, 17]]]), 'GTdash': \ np.array([[[ 0, 1, -1],[ 1, 1, -1]], [[ -1, 0, 1],[ -1, 1, 1]], [[ 1, -1, 0],[ 1, -1, 1]], [[ 0, -1, -1],[ -1, -1, -1]], [[ 1, 0, 1],[ 1, -1, 1]], [[ 1, -1, 0],[ 1, -1, -1]], [[ 0, 1, -1],[ -1, 1, -1]], [[ 1, 0, 1],[ 1, 1, 1]], [[ -1, -1, 0],[ -1, -1, 1]], [[ 0, -1, -1],[ 1, -1, -1]], [[ -1, 0, 1],[ -1, -1, 1]], [[ -1, -1, 0],[ -1, -1, -1]], [[ 0, -1, 1],[ 1, -1, 1]], [[ 1, 0, -1],[ 1, 1, -1]], [[ -1, 1, 0],[ -1, 1, 1]], [[ 0, 1, 1],[ -1, 1, 1]], [[ -1, 0, -1],[ -1, -1, -1]], [[ -1, 1, 0],[ -1, 1, -1]], [[ 0, -1, 1],[ -1, -1, 1]], [[ -1, 0, -1],[ -1, 1, -1]], [[ 1, 1, 0],[ 1, 1, 1]], [[ 0, 1, 1],[ 1, 1, 1]], [[ 1, 0, -1],[ 1, -1, -1]], [[ 1, 1, 0],[ 1, 1, -1]]]), 'NW': \ np.array([[[ 2, -1, -1],[ 0, -1, 1]], [[ -1, 2, -1],[ 0, -1, 1]], [[ -1, -1, 2],[ 0, -1, 1]], [[ -2, -1, -1],[ 0, -1, 1]], [[ 1, 2, -1],[ 0, -1, 1]], [[ 1, -1, 2],[ 0, -1, 1]], [[ 2, 1, -1],[ 0, -1, 1]], [[ -1, -2, -1],[ 0, -1, 1]], [[ -1, 1, 2],[ 0, -1, 1]], [[ -1, 2, 1],[ 0, -1, 1]], [[ -1, 2, 1],[ 0, -1, 1]], [[ -1, -1, -2],[ 0, -1, 1]]]), 'Pitsch': \ np.array([[[ 1, 0, 1],[ 1, -1, 1]], [[ 1, 1, 0],[ 1, 1, -1]], [[ 0, 1, 1],[ -1, 1, 1]], [[ 0, 1, -1],[ -1, 1, -1]], [[ -1, 0, 1],[ -1, -1, 1]], [[ 1, -1, 0],[ 1, -1, -1]], [[ 1, 0, -1],[ 1, -1, -1]], [[ -1, 1, 0],[ -1, 1, -1]], [[ 0, -1, 1],[ -1, -1, 1]], [[ 0, 1, 1],[ -1, 1, 1]], [[ 1, 0, 1],[ 1, -1, 1]], [[ 1, 1, 0],[ 1, 1, -1]]]), 'Bain': \ np.array([[[ 0, 1, 0],[ 0, 1, 1]], [[ 0, 0, 1],[ 1, 0, 1]], [[ 1, 0, 0],[ 1, 1, 0]]]), } myPlane = [float(i) for i in planes[relationModel][variant,me]] # map(float, planes[...]) does not work in python 3 myPlane /= np.linalg.norm(myPlane) myNormal = [float(i) for i in normals[relationModel][variant,me]] # map(float, planes[...]) does not work in python 3 myNormal /= np.linalg.norm(myNormal) myMatrix = np.array([myNormal,np.cross(myPlane,myNormal),myPlane]).T otherPlane = [float(i) for i in planes[relationModel][variant,other]] # map(float, planes[...]) does not work in python 3 otherPlane /= np.linalg.norm(otherPlane) otherNormal = [float(i) for i in normals[relationModel][variant,other]] # map(float, planes[...]) does not work in python 3 otherNormal /= np.linalg.norm(otherNormal) otherMatrix = np.array([otherNormal,np.cross(otherPlane,otherNormal),otherPlane]).T rot=np.dot(otherMatrix,myMatrix.T) return Orientation(matrix=np.dot(rot,self.asMatrix())) # no symmetry information ??