!*************************************** !* Module: HOMOGENIZATION * !*************************************** !* contains: * !* - _init * !* - materialpoint_stressAndItsTangent * !* - _partitionDeformation * !* - _updateState * !* - _averageStressAndItsTangent * !* - _postResults * !*************************************** MODULE homogenization !*** Include other modules *** use prec, only: pInt,pReal,p_vec implicit none ! **************************************************************** ! *** General variables for the homogenization at a *** ! *** material point *** ! **************************************************************** type(p_vec), dimension(:,:), allocatable :: homogenization_state0, & ! pointer array to homogenization state at start of FE increment homogenization_subState0, & ! pointer array to homogenization state at start of homogenization increment homogenization_state ! pointer array to current homogenization state (end of converged time step) integer(pInt), dimension(:,:), allocatable :: homogenization_sizeState, & ! size of state array per grain homogenization_sizePostResults ! size of postResults array per material point real(pReal), dimension(:,:,:,:,:,:), allocatable :: materialpoint_dPdF ! tangent of first P--K stress at IP real(pReal), dimension(:,:,:,:), allocatable :: materialpoint_F0, & ! def grad of IP at start of FE increment materialpoint_F, & ! def grad of IP to be reached at end of FE increment materialpoint_subF0, & ! def grad of IP at beginning of homogenization increment materialpoint_subF, & ! def grad of IP to be reached at end of homog inc materialpoint_P ! first P--K stress of IP real(pReal), dimension(:,:), allocatable :: materialpoint_Temperature, & ! temperature at IP materialpoint_subFrac, & materialpoint_subStep, & materialpoint_subdt real(pReal), dimension(:,:,:), allocatable :: materialpoint_results ! results array of material point logical, dimension(:,:), allocatable :: materialpoint_requested, & materialpoint_converged logical, dimension(:,:,:), allocatable :: materialpoint_doneAndHappy integer(pInt) homogenization_maxSizeState, & homogenization_maxSizePostResults CONTAINS !************************************** !* Module initialization * !************************************** subroutine homogenization_init(Temperature) use prec, only: pReal,pInt use math, only: math_I3 use IO, only: IO_error, IO_open_file use mesh, only: mesh_maxNips,mesh_NcpElems,mesh_element,FE_Nips use material use constitutive, only: constitutive_maxSizePostResults use crystallite, only: crystallite_Nresults use homogenization_isostrain use homogenization_RGC ! RGC homogenization added <<>> real(pReal) Temperature integer(pInt), parameter :: fileunit = 200 integer(pInt) e,i,g,myInstance,j if(.not. IO_open_file(fileunit,material_configFile)) call IO_error (100) ! corrupt config file call homogenization_isostrain_init(fileunit) ! parse all homogenizations of this type call homogenization_RGC_init(fileunit) ! RGC homogenization added <<>> close(fileunit) allocate(homogenization_state0(mesh_maxNips,mesh_NcpElems)) allocate(homogenization_subState0(mesh_maxNips,mesh_NcpElems)) allocate(homogenization_state(mesh_maxNips,mesh_NcpElems)) allocate(homogenization_sizeState(mesh_maxNips,mesh_NcpElems)); homogenization_sizeState = 0_pInt allocate(homogenization_sizePostResults(mesh_maxNips,mesh_NcpElems)); homogenization_sizePostResults = 0_pInt allocate(materialpoint_dPdF(3,3,3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_dPdF = 0.0_pReal allocate(materialpoint_F0(3,3,mesh_maxNips,mesh_NcpElems)); allocate(materialpoint_F(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_F = 0.0_pReal allocate(materialpoint_subF0(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_subF0 = 0.0_pReal allocate(materialpoint_subF(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_subF = 0.0_pReal allocate(materialpoint_P(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_P = 0.0_pReal allocate(materialpoint_Temperature(mesh_maxNips,mesh_NcpElems)); materialpoint_Temperature = Temperature allocate(materialpoint_subFrac(mesh_maxNips,mesh_NcpElems)); materialpoint_subFrac = 0.0_pReal allocate(materialpoint_subStep(mesh_maxNips,mesh_NcpElems)); materialpoint_subStep = 0.0_pReal allocate(materialpoint_subdt(mesh_maxNips,mesh_NcpElems)); materialpoint_subdt = 0.0_pReal allocate(materialpoint_requested(mesh_maxNips,mesh_NcpElems)); materialpoint_requested = .false. allocate(materialpoint_converged(mesh_maxNips,mesh_NcpElems)); materialpoint_converged = .true. allocate(materialpoint_doneAndHappy(2,mesh_maxNips,mesh_NcpElems)); materialpoint_doneAndHappy = .true. forall (i = 1:mesh_maxNips,e = 1:mesh_NcpElems) materialpoint_F0(:,:,i,e) = math_I3 materialpoint_F(:,:,i,e) = math_I3 end forall do e = 1,mesh_NcpElems ! loop over elements myInstance = homogenization_typeInstance(mesh_element(3,e)) do i = 1,FE_Nips(mesh_element(2,e)) ! loop over IPs select case(homogenization_type(mesh_element(3,e))) !* isostrain case (homogenization_isostrain_label) if (homogenization_isostrain_sizeState(myInstance) > 0_pInt) then allocate(homogenization_state0(i,e)%p(homogenization_isostrain_sizeState(myInstance))) allocate(homogenization_subState0(i,e)%p(homogenization_isostrain_sizeState(myInstance))) allocate(homogenization_state(i,e)%p(homogenization_isostrain_sizeState(myInstance))) homogenization_state0(i,e)%p = homogenization_isostrain_stateInit(myInstance) homogenization_sizeState(i,e) = homogenization_isostrain_sizeState(myInstance) endif homogenization_sizePostResults(i,e) = homogenization_isostrain_sizePostResults(myInstance) !* RGC homogenization: added <<>> case (homogenization_RGC_label) if (homogenization_RGC_sizeState(myInstance) > 0_pInt) then allocate(homogenization_state0(i,e)%p(homogenization_RGC_sizeState(myInstance))) allocate(homogenization_subState0(i,e)%p(homogenization_RGC_sizeState(myInstance))) allocate(homogenization_state(i,e)%p(homogenization_RGC_sizeState(myInstance))) homogenization_state0(i,e)%p = homogenization_RGC_stateInit(myInstance) homogenization_sizeState(i,e) = homogenization_RGC_sizeState(myInstance) endif homogenization_sizePostResults(i,e) = homogenization_RGC_sizePostResults(myInstance) case default call IO_error(201,ext_msg=homogenization_type(mesh_element(3,e))) ! unknown type 201 is homogenization! end select enddo enddo homogenization_maxSizeState = maxval(homogenization_sizeState) homogenization_maxSizePostResults = maxval(homogenization_sizePostResults) allocate(materialpoint_results( 1+ 1+homogenization_maxSizePostResults + & ! grain count, homogSize, homogResult homogenization_maxNgrains*(1+crystallite_Nresults+constitutive_maxSizePostResults), mesh_maxNips,mesh_NcpElems)) ! *** Output to MARC output file *** !$OMP CRITICAL (write2out) write(6,*) write(6,*) '<<<+- homogenization init -+>>>' write(6,*) write(6,'(a32,x,7(i5,x))') 'homogenization_state0: ', shape(homogenization_state0) write(6,'(a32,x,7(i5,x))') 'homogenization_subState0: ', shape(homogenization_subState0) write(6,'(a32,x,7(i5,x))') 'homogenization_state: ', shape(homogenization_state) write(6,'(a32,x,7(i5,x))') 'homogenization_sizeState: ', shape(homogenization_sizeState) write(6,'(a32,x,7(i5,x))') 'homogenization_sizePostResults: ', shape(homogenization_sizePostResults) write(6,*) write(6,'(a32,x,7(i5,x))') 'materialpoint_dPdF: ', shape(materialpoint_dPdF) write(6,'(a32,x,7(i5,x))') 'materialpoint_F0: ', shape(materialpoint_F0) write(6,'(a32,x,7(i5,x))') 'materialpoint_F: ', shape(materialpoint_F) write(6,'(a32,x,7(i5,x))') 'materialpoint_subF0: ', shape(materialpoint_subF0) write(6,'(a32,x,7(i5,x))') 'materialpoint_subF: ', shape(materialpoint_subF) write(6,'(a32,x,7(i5,x))') 'materialpoint_P: ', shape(materialpoint_P) write(6,'(a32,x,7(i5,x))') 'materialpoint_Temperature: ', shape(materialpoint_Temperature) write(6,'(a32,x,7(i5,x))') 'materialpoint_subFrac: ', shape(materialpoint_subFrac) write(6,'(a32,x,7(i5,x))') 'materialpoint_subStep: ', shape(materialpoint_subStep) write(6,'(a32,x,7(i5,x))') 'materialpoint_subdt: ', shape(materialpoint_subdt) write(6,'(a32,x,7(i5,x))') 'materialpoint_requested: ', shape(materialpoint_requested) write(6,'(a32,x,7(i5,x))') 'materialpoint_converged: ', shape(materialpoint_converged) write(6,'(a32,x,7(i5,x))') 'materialpoint_doneAndHappy: ', shape(materialpoint_doneAndHappy) write(6,*) write(6,'(a32,x,7(i5,x))') 'materialpoint_results: ', shape(materialpoint_results) write(6,*) write(6,'(a32,x,7(i5,x))') 'maxSizeState: ', homogenization_maxSizeState write(6,'(a32,x,7(i5,x))') 'maxSizePostResults: ', homogenization_maxSizePostResults call flush(6) !$OMP END CRITICAL (write2out) return endsubroutine !******************************************************************** !* parallelized calculation of !* stress and corresponding tangent !* at material points !******************************************************************** subroutine materialpoint_stressAndItsTangent(& updateJaco,& ! flag to initiate Jacobian updating dt & ! time increment ) use prec, only: pInt, & pReal use numerics, only: subStepMin, & nHomog, & nMPstate use FEsolving, only: FEsolving_execElem, & FEsolving_execIP, & terminallyIll use mesh, only: mesh_element use material, only: homogenization_Ngrains use constitutive, only: constitutive_state0, & constitutive_partionedState0, & constitutive_state use crystallite, only: crystallite_Temperature, & crystallite_F0, & crystallite_Fp0, & crystallite_Fp, & crystallite_Lp0, & crystallite_Lp, & crystallite_Tstar0_v, & crystallite_Tstar_v, & crystallite_partionedTemperature0, & crystallite_partionedF0, & crystallite_partionedF, & crystallite_partionedFp0, & crystallite_partionedLp0, & crystallite_partionedTstar0_v, & crystallite_dt, & crystallite_requested, & crystallite_converged, & crystallite_stressAndItsTangent use debug, only: debugger, & debug_MaterialpointLoopDistribution, & debug_MaterialpointStateLoopDistribution implicit none real(pReal), intent(in) :: dt logical, intent(in) :: updateJaco integer(pInt) NiterationHomog,NiterationMPstate integer(pInt) g,i,e,myNgrains ! ------ initialize to starting condition ------ write (6,*) write (6,*) 'Material Point start' write (6,'(a,/,(f12.7,x))') 'Temp0 of 1 1' ,materialpoint_Temperature(1,1) write (6,'(a,/,3(3(f12.7,x)/))') 'F0 of 1 1',materialpoint_F0(1:3,:,1,1) write (6,'(a,/,3(3(f12.7,x)/))') 'F of 1 1',materialpoint_F(1:3,:,1,1) write (6,'(a,/,3(3(f12.7,x)/))') 'Fp0 of 1 1 1',crystallite_Fp0(1:3,:,1,1,1) write (6,'(a,/,3(3(f12.7,x)/))') 'Lp0 of 1 1 1',crystallite_Lp0(1:3,:,1,1,1) !$OMP PARALLEL DO do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed myNgrains = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed ! initialize restoration points of grain... forall (g = 1:myNgrains) constitutive_partionedState0(g,i,e)%p = constitutive_state0(g,i,e)%p ! ...microstructures crystallite_partionedTemperature0(1:myNgrains,i,e) = materialpoint_Temperature(i,e) ! ...temperatures crystallite_partionedFp0(:,:,1:myNgrains,i,e) = crystallite_Fp0(:,:,1:myNgrains,i,e) ! ...plastic def grads crystallite_partionedLp0(:,:,1:myNgrains,i,e) = crystallite_Lp0(:,:,1:myNgrains,i,e) ! ...plastic velocity grads crystallite_partionedF0(:,:,1:myNgrains,i,e) = crystallite_F0(:,:,1:myNgrains,i,e) ! ...def grads crystallite_partionedTstar0_v(:,1:myNgrains,i,e)= crystallite_Tstar0_v(:,1:myNgrains,i,e) ! ...2nd PK stress ! initialize restoration points of ... if (homogenization_sizeState(i,e) > 0_pInt) & homogenization_subState0(i,e)%p = homogenization_state0(i,e)%p ! ...internal homogenization state materialpoint_subF0(:,:,i,e) = materialpoint_F0(:,:,i,e) ! ...def grad materialpoint_subFrac(i,e) = 0.0_pReal materialpoint_subStep(i,e) = 2.0_pReal materialpoint_converged(i,e) = .false. ! pretend failed step of twice the required size materialpoint_requested(i,e) = .true. ! everybody requires calculation enddo enddo !$OMP END PARALLEL DO NiterationHomog = 0_pInt ! ------ cutback loop ------ do while (any(materialpoint_subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMin)) ! cutback loop for material points ! write(6,'(a,/,125(8(f8.5,x),/))') 'mp_subSteps',materialpoint_subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) !$OMP PARALLEL DO do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed myNgrains = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed debugger = (e == 1 .and. i == 1) ! if our materialpoint converged then we are either finished or have to wind forward if (materialpoint_converged(i,e)) then if (debugger) then !$OMP CRITICAL (write2out) write(6,'(a21,f10.8,a34,f10.8,a37,/)') 'winding forward from ', & materialpoint_subFrac(i,e), ' to current materialpoint_subFrac ', & materialpoint_subFrac(i,e)+materialpoint_subStep(i,e),' in materialpoint_stressAndItsTangent' !$OMPEND CRITICAL (write2out) endif ! calculate new subStep and new subFrac materialpoint_subFrac(i,e) = materialpoint_subFrac(i,e) + materialpoint_subStep(i,e) materialpoint_subStep(i,e) = min(1.0_pReal-materialpoint_subFrac(i,e), 2.0_pReal * materialpoint_subStep(i,e)) ! still stepping needed if (materialpoint_subStep(i,e) > subStepMin) then ! wind forward grain starting point of... crystallite_partionedTemperature0(1:myNgrains,i,e) = crystallite_Temperature(1:myNgrains,i,e) ! ...temperatures crystallite_partionedF0(:,:,1:myNgrains,i,e) = crystallite_partionedF(:,:,1:myNgrains,i,e) ! ...def grads crystallite_partionedFp0(:,:,1:myNgrains,i,e) = crystallite_Fp(:,:,1:myNgrains,i,e) ! ...plastic def grads crystallite_partionedLp0(:,:,1:myNgrains,i,e) = crystallite_Lp(:,:,1:myNgrains,i,e) ! ...plastic velocity grads crystallite_partionedTstar0_v(:,1:myNgrains,i,e) = crystallite_Tstar_v(:,1:myNgrains,i,e) ! ...2nd PK stress forall (g = 1:myNgrains) constitutive_partionedState0(g,i,e)%p = constitutive_state(g,i,e)%p ! ...microstructures if (homogenization_sizeState(i,e) > 0_pInt) & homogenization_subState0(i,e)%p = homogenization_state(i,e)%p ! ...internal state of homog scheme materialpoint_subF0(:,:,i,e) = materialpoint_subF(:,:,i,e) ! ...def grad else ! already at final time !$OMP CRITICAL (distributionHomog) debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) = & debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) + 1 !$OMPEND CRITICAL (distributionHomog) endif ! materialpoint didn't converge, so we need a cutback here else materialpoint_subStep(i,e) = 0.5_pReal * materialpoint_subStep(i,e) if (debugger) then !$OMP CRITICAL (write2out) write(6,'(a82,f10.8,/)') 'cutback step in materialpoint_stressAndItsTangent with new materialpoint_subStep: ',& materialpoint_subStep(i,e) !$OMPEND CRITICAL (write2out) endif ! restore... crystallite_Temperature(1:myNgrains,i,e) = crystallite_partionedTemperature0(1:myNgrains,i,e) ! ...temperatures crystallite_Fp(:,:,1:myNgrains,i,e) = crystallite_partionedFp0(:,:,1:myNgrains,i,e) ! ...plastic def grads crystallite_Lp(:,:,1:myNgrains,i,e) = crystallite_partionedLp0(:,:,1:myNgrains,i,e) ! ...plastic velocity grads crystallite_Tstar_v(:,1:myNgrains,i,e) = crystallite_partionedTstar0_v(:,1:myNgrains,i,e) ! ...2nd PK stress forall (g = 1:myNgrains) constitutive_state(g,i,e)%p = constitutive_partionedState0(g,i,e)%p ! ...microstructures if (homogenization_sizeState(i,e) > 0_pInt) & homogenization_state(i,e)%p = homogenization_subState0(i,e)%p ! ...internal state of homog scheme endif materialpoint_requested(i,e) = materialpoint_subStep(i,e) > subStepMin if (materialpoint_requested(i,e)) then materialpoint_subF(:,:,i,e) = materialpoint_subF0(:,:,i,e) + & materialpoint_subStep(i,e) * (materialpoint_F(:,:,i,e) - materialpoint_F0(:,:,i,e)) materialpoint_subdt(i,e) = materialpoint_subStep(i,e) * dt materialpoint_doneAndHappy(:,i,e) = (/.false.,.true./) endif enddo enddo !$OMP END PARALLEL DO !* Checks for cutback/substepping loops: added <<>> ! write (6,'(a,/,8(L,x))') 'MP exceeds substep min',materialpoint_subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMin ! write (6,'(a,/,8(L,x))') 'MP requested',materialpoint_requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) ! write (6,'(a,/,8(f6.4,x))') 'MP subFrac',materialpoint_subFrac(:,FEsolving_execELem(1):FEsolving_execElem(2)) ! write (6,'(a,/,8(f6.4,x))') 'MP subStep',materialpoint_subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) ! ------ convergence loop material point homogenization ------ NiterationMPstate = 0_pInt do while (any( materialpoint_requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) & .and. .not. materialpoint_doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) & ) .and. NiterationMPstate < nMPstate) ! convergence loop for materialpoint NiterationMPstate = NiterationMPstate + 1 ! write(6,'(a,/,125(8(l,x),/))') 'material point request and not done', & ! materialpoint_requested .and. .not. materialpoint_doneAndHappy(1,:,:) ! --+>> deformation partitioning <<+-- ! ! based on materialpoint_subF0,.._subF, ! crystallite_partionedF0, ! homogenization_state ! results in crystallite_partionedF !$OMP PARALLEL DO do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed myNgrains = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed if ( materialpoint_requested(i,e) .and. & ! process requested but... .not. materialpoint_doneAndHappy(1,i,e)) then ! ...not yet done material points call homogenization_partitionDeformation(i,e) ! partition deformation onto constituents crystallite_dt(1:myNgrains,i,e) = materialpoint_subdt(i,e) ! propagate materialpoint dt to grains crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents else crystallite_requested(1:myNgrains,i,e) = .false. ! calculation for constituents not required anymore endif enddo enddo !$OMP END PARALLEL DO ! write(6,'(a,/,125(8(8(l,x),2x),/))') 'crystallite request with updated partitioning', crystallite_requested ! --+>> crystallite integration <<+-- ! ! based on crystallite_partionedF0,.._partionedF ! incrementing by crystallite_dt call crystallite_stressAndItsTangent(updateJaco) ! request stress and tangent calculation for constituent grains ! write(6,'(a,/,125(8(8(l,x),2x),/))') 'crystallite converged', crystallite_converged ! --+>> state update <<+-- !$OMP PARALLEL DO do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed if ( materialpoint_requested(i,e) .and. & .not. materialpoint_doneAndHappy(1,i,e)) then if (.not. all(crystallite_converged(:,i,e))) then materialpoint_doneAndHappy(:,i,e) = (/.true.,.false./) else materialpoint_doneAndHappy(:,i,e) = homogenization_updateState(i,e) endif materialpoint_converged(i,e) = all(materialpoint_doneAndHappy(:,i,e)) ! converged if done and happy if (materialpoint_converged(i,e)) & ! added <<>> debug_MaterialpointStateLoopdistribution(NiterationMPstate) = & debug_MaterialpointStateLoopdistribution(NiterationMPstate) + 1 endif enddo enddo !$OMP END PARALLEL DO ! write(6,'(a,/,125(8(l,x),/))') 'material point done', materialpoint_doneAndHappy(1,:,:) ! write(6,'(a,/,125(8(l,x),/))') 'material point converged', materialpoint_converged enddo ! homogenization convergence loop NiterationHomog = NiterationHomog +1_pInt enddo ! cutback loop ! check for non-performer: any(.not. converged) ! replace everybody with odd response ? !$OMP PARALLEL DO elementLoop: do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed if (materialpoint_converged(i,e)) then call homogenization_averageStressAndItsTangent(i,e) call homogenization_averageTemperature(i,e) else terminallyIll = .true. exit elementLoop endif enddo enddo elementLoop !$OMP END PARALLEL DO write (6,*) write (6,*) 'Material Point end' write (6,*) return endsubroutine !******************************************************************** !* parallelized calculation of !* result array at material points !******************************************************************** subroutine materialpoint_postResults(dt) use FEsolving, only: FEsolving_execElem, FEsolving_execIP use mesh, only: mesh_element use material, only: homogenization_Ngrains use constitutive, only: constitutive_sizePostResults, constitutive_postResults use crystallite implicit none real(pReal), intent(in) :: dt integer(pInt) g,i,e,c,d,myNgrains !$OMP PARALLEL DO do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed myNgrains = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed c = 0_pInt materialpoint_results(c+1,i,e) = myNgrains; c = c+1_pInt ! tell number of grains at materialpoint d = homogenization_sizePostResults(i,e) materialpoint_results(c+1,i,e) = d; c = c+1_pInt ! tell size of homogenization results if (d > 0_pInt) then ! any homogenization results to mention? materialpoint_results(c+1:c+d,i,e) = & ! tell homogenization results homogenization_postResults(i,e); c = c+d endif do g = 1,myNgrains ! d = crystallite_Nresults+constitutive_sizePostResults(g,i,e) materialpoint_results(c+1,i,e) = d; c = c+1_pInt ! tell size of crystallite results materialpoint_results(c+1:c+d,i,e) = & ! tell crystallite results crystallite_postResults(crystallite_Tstar_v(:,g,i,e),crystallite_Temperature(g,i,e),dt,g,i,e); c = c+d enddo enddo enddo !$OMP END PARALLEL DO endsubroutine !******************************************************************** ! partition material point def grad onto constituents !******************************************************************** subroutine homogenization_partitionDeformation(& ip, & ! integration point el & ! element ) use prec, only: pReal,pInt use mesh, only: mesh_element use material, only: homogenization_type, homogenization_maxNgrains use crystallite, only: crystallite_partionedF0,crystallite_partionedF use homogenization_isostrain use homogenization_RGC ! RGC homogenization added <<>> implicit none integer(pInt), intent(in) :: ip,el select case(homogenization_type(mesh_element(3,el))) case (homogenization_isostrain_label) !* isostrain call homogenization_isostrain_partitionDeformation(crystallite_partionedF(:,:,:,ip,el), & crystallite_partionedF0(:,:,:,ip,el),& materialpoint_subF(:,:,ip,el),& homogenization_state(ip,el), & ip, & el) !* RGC homogenization added <<>> case (homogenization_RGC_label) call homogenization_RGC_partitionDeformation(crystallite_partionedF(:,:,:,ip,el), & crystallite_partionedF0(:,:,:,ip,el),& materialpoint_subF(:,:,ip,el),& homogenization_state(ip,el), & ip, & el) end select endsubroutine !******************************************************************** ! update the internal state of the homogenization scheme ! and tell whether "done" and "happy" with result !******************************************************************** function homogenization_updateState(& ip, & ! integration point el & ! element ) use prec, only: pReal,pInt use mesh, only: mesh_element use material, only: homogenization_type, homogenization_maxNgrains use crystallite, only: crystallite_P,crystallite_dPdF,crystallite_partionedF,crystallite_partionedF0 ! modified <<>> use homogenization_isostrain use homogenization_RGC ! RGC homogenization added <<>> implicit none integer(pInt), intent(in) :: ip,el logical, dimension(2) :: homogenization_updateState select case(homogenization_type(mesh_element(3,el))) !* isostrain case (homogenization_isostrain_label) homogenization_updateState = homogenization_isostrain_updateState( homogenization_state(ip,el), & crystallite_P(:,:,:,ip,el), & crystallite_dPdF(:,:,:,:,:,ip,el), & ip, & el) !* RGC homogenization added <<>> case (homogenization_RGC_label) homogenization_updateState = homogenization_RGC_updateState( homogenization_state(ip,el), & crystallite_P(:,:,:,ip,el), & crystallite_partionedF(:,:,:,ip,el), & crystallite_partionedF0(:,:,:,ip,el),& materialpoint_subF(:,:,ip,el),& crystallite_dPdF(:,:,:,:,:,ip,el), & ip, & el) end select return endfunction !******************************************************************** ! derive average stress and stiffness from constituent quantities !******************************************************************** subroutine homogenization_averageStressAndItsTangent(& ip, & ! integration point el & ! element ) use prec, only: pReal,pInt use mesh, only: mesh_element use material, only: homogenization_type, homogenization_maxNgrains use crystallite, only: crystallite_P,crystallite_dPdF use homogenization_RGC ! RGC homogenization added <<>> use homogenization_isostrain implicit none integer(pInt), intent(in) :: ip,el select case(homogenization_type(mesh_element(3,el))) !* isostrain case (homogenization_isostrain_label) call homogenization_isostrain_averageStressAndItsTangent( materialpoint_P(:,:,ip,el), & materialpoint_dPdF(:,:,:,:,ip,el),& crystallite_P(:,:,:,ip,el), & crystallite_dPdF(:,:,:,:,:,ip,el), & ip, & el) !* RGC homogenization added <<>> case (homogenization_RGC_label) call homogenization_RGC_averageStressAndItsTangent( materialpoint_P(:,:,ip,el), & materialpoint_dPdF(:,:,:,:,ip,el),& crystallite_P(:,:,:,ip,el), & crystallite_dPdF(:,:,:,:,:,ip,el), & ip, & el) end select return endsubroutine !******************************************************************** ! derive average stress and stiffness from constituent quantities !******************************************************************** subroutine homogenization_averageTemperature(& ip, & ! integration point el & ! element ) use prec, only: pReal,pInt use mesh, only: mesh_element use material, only: homogenization_type, homogenization_maxNgrains use crystallite, only: crystallite_Temperature use homogenization_isostrain use homogenization_RGC ! RGC homogenization added <<>> implicit none integer(pInt), intent(in) :: ip,el select case(homogenization_type(mesh_element(3,el))) !* isostrain case (homogenization_isostrain_label) materialpoint_Temperature(ip,el) = homogenization_isostrain_averageTemperature(crystallite_Temperature(:,ip,el), ip, el) !* RGC homogenization added <<>> case (homogenization_RGC_label) materialpoint_Temperature(ip,el) = homogenization_RGC_averageTemperature(crystallite_Temperature(:,ip,el), ip, el) end select return endsubroutine !******************************************************************** ! return array of homogenization results for post file inclusion ! call only, if homogenization_sizePostResults(ip,el) > 0 !! !******************************************************************** function homogenization_postResults(& ip, & ! integration point el & ! element ) use prec, only: pReal,pInt use mesh, only: mesh_element use material, only: homogenization_type use homogenization_isostrain use homogenization_RGC ! RGC homogenization added <<>> implicit none !* Definition of variables integer(pInt), intent(in) :: ip,el real(pReal), dimension(homogenization_sizePostResults(ip,el)) :: homogenization_postResults homogenization_postResults = 0.0_pReal select case (homogenization_type(mesh_element(3,el))) !* isostrain case (homogenization_isostrain_label) homogenization_postResults = homogenization_isostrain_postResults(homogenization_state(ip,el),ip,el) !* RGC homogenization added <<>> case (homogenization_RGC_label) homogenization_postResults = homogenization_RGC_postResults(homogenization_state(ip,el),ip,el) end select return endfunction END MODULE