!************************************ !* Module: MATERIAL * !************************************ !* contains: * !* - parsing of material.config * !************************************ MODULE material !*** Include other modules *** use prec, only: pReal,pInt implicit none character(len=64), parameter :: material_configFile = 'material.config' character(len=32), parameter :: material_partHomogenization = 'homogenization' character(len=32), parameter :: material_partMicrostructure = 'microstructure' character(len=32), parameter :: material_partPhase = 'phase' character(len=32), parameter :: material_partTexture = 'texture' !************************************* !* Definition of material properties * !************************************* !* Number of materials integer(pInt) material_Nhomogenization, & ! number of homogenizations material_Nmicrostructure, & ! number of microstructures material_Nphase, & ! number of phases material_Ntexture, & ! number of textures microstructure_maxNconstituents, & ! max number of constituents in any phase homogenization_maxNgrains, & ! max number of grains in any homogenization texture_maxNgauss, & ! max number of Gauss components in any texture texture_maxNfiber ! max number of Fiber components in any texture character(len=64), dimension(:), allocatable :: homogenization_name, & ! name of each homogenization homogenization_type, & ! type of each homogenization microstructure_name, & ! name of each microstructure phase_name, & ! name of each phase phase_constitution, & ! constitution of each phase texture_name ! name of each texture character(len=256),dimension(:), allocatable :: texture_ODFfile ! name of each ODF file integer(pInt), dimension(:), allocatable :: homogenization_Ngrains, & ! number of grains in each homogenization homogenization_typeInstance, & ! instance of particular type of each homogenization homogenization_Noutput, & ! number of '(output)' items per homogenization microstructure_Nconstituents, & ! number of constituents in each microstructure phase_constitutionInstance, & ! instance of particular constitution of each phase phase_Noutput, & ! number of '(output)' items per phase phase_localConstitution, & ! flag phases with local constitutive law texture_symmetry, & ! number of symmetric orientations per texture texture_Ngauss, & ! number of Gauss components per texture texture_Nfiber ! number of Fiber components per texture integer(pInt), dimension(:,:), allocatable :: microstructure_phase, & ! phase IDs of each microstructure microstructure_texture ! texture IDs of each microstructure real(pReal), dimension(:,:), allocatable :: microstructure_fraction ! vol fraction of each constituent in microstructure real(pReal), dimension(:,:,:), allocatable :: material_volume ! volume of each grain,IP,element integer(pInt), dimension(:,:,:), allocatable :: material_phase ! phase of each grain,IP,element real(pReal), dimension(:,:,:,:), allocatable :: material_EulerAngles ! initial orientation of each grain,IP,element real(pReal), dimension(:,:,:), allocatable :: texture_Gauss, & ! data of each Gauss component texture_Fiber ! data of each Fiber component CONTAINS !********************************************************************* subroutine material_init() !********************************************************************* !* Module initialization * !************************************** use prec, only: pReal,pInt use IO, only: IO_error, IO_open_file implicit none !* Definition of variables integer(pInt), parameter :: fileunit = 200 integer(pInt) i if(.not. IO_open_file(fileunit,material_configFile)) call IO_error (100) ! corrupt config file call material_parseHomogenization(fileunit,material_partHomogenization) call material_parseMicrostructure(fileunit,material_partMicrostructure) call material_parseTexture(fileunit,material_partTexture) call material_parsePhase(fileunit,material_partPhase) close(fileunit) do i = 1,material_Nmicrostructure if (minval(microstructure_phase(1:microstructure_Nconstituents(i),i)) < 1 .or. & maxval(microstructure_phase(1:microstructure_Nconstituents(i),i)) > material_Nphase) call IO_error(150,i) if (minval(microstructure_texture(1:microstructure_Nconstituents(i),i)) < 1 .or. & maxval(microstructure_texture(1:microstructure_Nconstituents(i),i)) > material_Ntexture) call IO_error(160,i) if (sum(microstructure_fraction(:,i)) /= 1.0_pReal) call IO_error(170,i) enddo write (6,*) write (6,*) 'MATERIAL configuration' write (6,*) write (6,*) 'Homogenization' do i = 1,material_Nhomogenization write (6,'(a32,x,a16,x,i4)') homogenization_name(i),homogenization_type(i),homogenization_Ngrains(i) enddo write (6,*) write (6,*) 'Microstructure' do i = 1,material_Nmicrostructure write (6,'(a32,x,i4)') microstructure_name(i),microstructure_Nconstituents(i) enddo call material_populateGrains() endsubroutine !********************************************************************* subroutine material_parseHomogenization(file,myPart) !********************************************************************* use prec, only: pInt use IO implicit none character(len=*), intent(in) :: myPart integer(pInt), intent(in) :: file integer(pInt), parameter :: maxNchunks = 2 integer(pInt), dimension(1+2*maxNchunks) :: positions integer(pInt) Nsections, section, s character(len=64) tag character(len=1024) line Nsections = IO_countSections(file,myPart) material_Nhomogenization = Nsections write (6,*) 'homogenization sections found',material_Nhomogenization allocate(homogenization_name(Nsections)); homogenization_name = '' allocate(homogenization_type(Nsections)); homogenization_type = '' allocate(homogenization_typeInstance(Nsections)); homogenization_typeInstance = 0_pInt allocate(homogenization_Ngrains(Nsections)); homogenization_Ngrains = 0_pInt allocate(homogenization_Noutput(Nsections)); homogenization_Noutput = 0_pInt write(6,*) 'scanning for (output)',homogenization_Noutput homogenization_Noutput = IO_countTagInPart(file,myPart,'(output)',Nsections) write(6,*) 'count of (output)',homogenization_Noutput rewind(file) line = '' section = 0 do while (IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to myPart read(file,'(a1024)',END=100) line enddo do read(file,'(a1024)',END=100) line if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') exit ! stop at next part if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1 homogenization_name(section) = IO_getTag(line,'[',']') endif if (section > 0) then positions = IO_stringPos(line,maxNchunks) tag = IO_lc(IO_stringValue(line,positions,1)) ! extract key select case(tag) case ('type') homogenization_type(section) = IO_stringValue(line,positions,2) do s = 1,section if (homogenization_type(s) == homogenization_type(section)) & homogenization_typeInstance(section) = homogenization_typeInstance(section) + 1 ! count instances enddo case ('ngrains') homogenization_Ngrains(section) = IO_intValue(line,positions,2) end select endif enddo 100 homogenization_maxNgrains = maxval(homogenization_Ngrains) return endsubroutine !********************************************************************* subroutine material_parseMicrostructure(file,myPart) !********************************************************************* use prec, only: pInt use IO implicit none character(len=*), intent(in) :: myPart integer(pInt), intent(in) :: file integer(pInt), parameter :: maxNchunks = 7 integer(pInt), dimension(1+2*maxNchunks) :: positions integer(pInt) Nsections, section, constituent, i character(len=64) tag character(len=1024) line Nsections = IO_countSections(file,myPart) material_Nmicrostructure = Nsections allocate(microstructure_name(Nsections)); microstructure_name = '' allocate(microstructure_Nconstituents(Nsections)) microstructure_Nconstituents = IO_countTagInPart(file,myPart,'(constituent)',Nsections) microstructure_maxNconstituents = maxval(microstructure_Nconstituents) allocate(microstructure_phase (microstructure_maxNconstituents,Nsections)); microstructure_phase = 0_pInt allocate(microstructure_texture (microstructure_maxNconstituents,Nsections)); microstructure_texture = 0_pInt allocate(microstructure_fraction(microstructure_maxNconstituents,Nsections)); microstructure_fraction = 0.0_pReal rewind(file) line = '' section = 0 do while (IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to myPart read(file,'(a1024)',END=100) line enddo do read(file,'(a1024)',END=100) line if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') exit ! stop at next part if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1 constituent = 0 microstructure_name(section) = IO_getTag(line,'[',']') endif if (section > 0) then positions = IO_stringPos(line,maxNchunks) tag = IO_lc(IO_stringValue(line,positions,1)) ! extract key select case(tag) case ('(constituent)') constituent = constituent + 1 do i=2,6,2 tag = IO_lc(IO_stringValue(line,positions,i)) select case (tag) case('phase') microstructure_phase(constituent,section) = IO_intValue(line,positions,i+1) case('texture') microstructure_texture(constituent,section) = IO_intValue(line,positions,i+1) case('fraction') microstructure_fraction(constituent,section) = IO_floatValue(line,positions,i+1) end select enddo end select endif enddo 100 return endsubroutine !********************************************************************* subroutine material_parsePhase(file,myPart) !********************************************************************* use prec, only: pInt use IO implicit none character(len=*), intent(in) :: myPart integer(pInt), intent(in) :: file integer(pInt), parameter :: maxNchunks = 2 integer(pInt), dimension(1+2*maxNchunks) :: positions integer(pInt) Nsections, section, s character(len=64) tag character(len=1024) line Nsections = IO_countSections(file,myPart) material_Nphase = Nsections allocate(phase_name(Nsections)); phase_name = '' allocate(phase_constitution(Nsections)); phase_constitution = '' allocate(phase_constitutionInstance(Nsections)); phase_constitutionInstance = 0_pInt allocate(phase_Noutput(Nsections)) allocate(phase_localConstitution(Nsections)) phase_Noutput = IO_countTagInPart(file,myPart,'(output)',Nsections) phase_localConstitution = .not. IO_spotTagInPart(file,myPart,'/nonlocal/',Nsections) rewind(file) line = '' section = 0 do while (IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to myPart read(file,'(a1024)',END=100) line enddo do read(file,'(a1024)',END=100) line if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') exit ! stop at next part if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1 phase_name(section) = IO_getTag(line,'[',']') endif if (section > 0) then positions = IO_stringPos(line,maxNchunks) tag = IO_lc(IO_stringValue(line,positions,1)) ! extract key select case(tag) case ('constitution') phase_constitution(section) = IO_lc(IO_stringValue(line,positions,2)) do s = 1,section if (phase_constitution(s) == phase_constitution(section)) & phase_constitutionInstance(section) = phase_constitutionInstance(section) + 1 ! count instances enddo end select endif enddo 100 return endsubroutine !********************************************************************* subroutine material_parseTexture(file,myPart) !********************************************************************* use prec, only: pInt, pReal use IO use math, only: inRad implicit none character(len=*), intent(in) :: myPart integer(pInt), intent(in) :: file integer(pInt), parameter :: maxNchunks = 13 integer(pInt), dimension(1+2*maxNchunks) :: positions integer(pInt) Nsections, section, gauss, fiber, i character(len=64) tag character(len=1024) line Nsections = IO_countSections(file,myPart) material_Ntexture = Nsections allocate(texture_name(Nsections)); texture_name = '' allocate(texture_ODFfile(Nsections)); texture_ODFfile = '' allocate(texture_symmetry(Nsections)); texture_symmetry = 1_pInt allocate(texture_Ngauss(Nsections)); texture_Ngauss = 0_pInt allocate(texture_Nfiber(Nsections)); texture_Nfiber = 0_pInt texture_Ngauss = IO_countTagInPart(file,myPart,'(gauss)',Nsections) texture_Nfiber = IO_countTagInPart(file,myPart,'(fiber)',Nsections) texture_maxNgauss = maxval(texture_Ngauss) texture_maxNfiber = maxval(texture_Nfiber) allocate(texture_Gauss (5,texture_maxNgauss,Nsections)); texture_Gauss = 0.0_pReal allocate(texture_Fiber (6,texture_maxNfiber,Nsections)); texture_Fiber = 0.0_pReal rewind(file) line = '' section = 0 do while (IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to myPart read(file,'(a1024)',END=100) line enddo do read(file,'(a1024)',END=100) line if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') exit ! stop at next part if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1 gauss = 0 fiber = 0 texture_name(section) = IO_getTag(line,'[',']') endif if (section > 0) then positions = IO_stringPos(line,maxNchunks) tag = IO_lc(IO_stringValue(line,positions,1)) ! extract key select case(tag) case ('hybridia') texture_ODFfile(section) = IO_stringValue(line,positions,2) case ('symmetry') tag = IO_lc(IO_stringValue(line,positions,2)) select case (tag) case('orthotropic') texture_symmetry(section) = 4 case('monoclinic') texture_symmetry(section) = 2 case default texture_symmetry(section) = 1 end select case ('(gauss)') gauss = gauss + 1 do i = 2,10,2 tag = IO_lc(IO_stringValue(line,positions,i)) select case (tag) case('phi1') texture_Gauss(1,gauss,section) = IO_floatValue(line,positions,i+1)*inRad case('phi') texture_Gauss(2,gauss,section) = IO_floatValue(line,positions,i+1)*inRad case('phi2') texture_Gauss(3,gauss,section) = IO_floatValue(line,positions,i+1)*inRad case('scatter') texture_Gauss(4,gauss,section) = IO_floatValue(line,positions,i+1)*inRad case('fraction') texture_Gauss(5,gauss,section) = IO_floatValue(line,positions,i+1) end select enddo case ('(fiber)') fiber = fiber + 1 do i = 2,12,2 tag = IO_lc(IO_stringValue(line,positions,i)) select case (tag) case('alpha1') texture_Fiber(1,fiber,section) = IO_floatValue(line,positions,i+1)*inRad case('alpha2') texture_Fiber(2,fiber,section) = IO_floatValue(line,positions,i+1)*inRad case('beta1') texture_Fiber(3,fiber,section) = IO_floatValue(line,positions,i+1)*inRad case('beta2') texture_Fiber(4,fiber,section) = IO_floatValue(line,positions,i+1)*inRad case('scatter') texture_Fiber(5,fiber,section) = IO_floatValue(line,positions,i+1)*inRad case('fraction') texture_Fiber(6,fiber,section) = IO_floatValue(line,positions,i+1) end select enddo end select endif enddo 100 return endsubroutine !********************************************************************* subroutine material_populateGrains() !********************************************************************* use prec, only: pInt, pReal use math, only: math_sampleRandomOri, math_sampleGaussOri, math_sampleFiberOri, math_symmetricEulers use mesh, only: mesh_element, mesh_maxNips, mesh_NcpElems, mesh_ipVolume, FE_Nips use IO, only: IO_error, IO_hybridIA implicit none integer(pInt), dimension (:,:), allocatable :: Ngrains integer(pInt), dimension (microstructure_maxNconstituents) :: NgrainsOfConstituent real(pReal), dimension (:), allocatable :: volumeOfGrain, phaseOfGrain real(pReal), dimension (:,:), allocatable :: orientationOfGrain real(pReal), dimension (3) :: orientation real(pReal), dimension (3,3) :: symOrientation integer(pInt) t,e,i,g,j,m,homog,micro,sgn integer(pInt) phaseID,textureID,dGrains,myNgrains,myNorientations, & grain,constituentGrain,symExtension real(pReal) extreme,rnd allocate(material_volume(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; material_volume = 0.0_pReal allocate(material_phase(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; material_phase = 0_pInt allocate(material_EulerAngles(3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; material_EulerAngles = 0.0_pReal allocate(Ngrains(material_Nhomogenization,material_Nmicrostructure)); Ngrains = 0_pInt ! count grains per homog/micro pair do e = 1,mesh_NcpElems homog = mesh_element(3,e) micro = mesh_element(4,e) if (homog < 1 .or. homog > material_Nhomogenization) & ! out of bounds call IO_error(130,e,0,0) if (micro < 1 .or. micro > material_Nmicrostructure) & ! out of bounds call IO_error(140,e,0,0) Ngrains(homog,micro) = Ngrains(homog,micro) + homogenization_Ngrains(homog) * FE_Nips(mesh_element(2,e)) enddo allocate(volumeOfGrain(maxval(Ngrains))) ! reserve memory for maximum case allocate(phaseOfGrain(maxval(Ngrains))) ! reserve memory for maximum case allocate(orientationOfGrain(3,maxval(Ngrains))) ! reserve memory for maximum case write (6,*) write (6,*) 'MATERIAL grain population' do homog = 1,material_Nhomogenization ! loop over homogenizations dGrains = homogenization_Ngrains(homog) ! grain number per material point do micro = 1,material_Nmicrostructure ! all pairs of homog and micro if (Ngrains(homog,micro) > 0) then ! an active pair of homog and micro myNgrains = Ngrains(homog,micro) ! assign short name write (6,*) write (6,'(a32,x,a32,x,i6)') homogenization_name(homog),microstructure_name(micro),myNgrains ! ---------------------------------------------------------------------------- volumeOfGrain = 0.0_pReal grain = 0_pInt ! microstructure grain index do e = 1,mesh_NcpElems ! check each element if (mesh_element(3,e) == homog .and. mesh_element(4,e) == micro) then ! my combination of homog and micro forall (i = 1:FE_Nips(mesh_element(2,e))) & ! loop over IPs volumeOfGrain(grain+(i-1)*dGrains+1:grain+i*dGrains) = & mesh_ipVolume(i,e)/dGrains ! assign IPvolume/Ngrains to grains grain = grain + FE_Nips(mesh_element(2,e)) * dGrains ! wind forward by Nips*NgrainsPerIP endif enddo ! ---------------------------------------------------------------------------- NgrainsOfConstituent = 0_pInt forall (i = 1:microstructure_Nconstituents(micro)) & NgrainsOfConstituent(i) = nint(microstructure_fraction(i,micro) * myNgrains, pInt) do while (sum(NgrainsOfConstituent) /= myNgrains) ! total grain count over constituents wrong? sgn = sign(1_pInt, myNgrains - sum(NgrainsOfConstituent)) ! direction of required change extreme = 0.0_pReal t = 0_pInt do i = 1,microstructure_Nconstituents(micro) ! find largest deviator if (sgn*log(NgrainsOfConstituent(i)/myNgrains/microstructure_fraction(i,micro)) > extreme) then extreme = sgn*log(NgrainsOfConstituent(i)/myNgrains/microstructure_fraction(i,micro)) t = i endif enddo NgrainsOfConstituent(t) = NgrainsOfConstituent(t) + sgn ! change that by one enddo ! ---------------------------------------------------------------------------- phaseOfGrain = 0_pInt orientationOfGrain = 0.0_pReal grain = 0_pInt ! reset microstructure grain index do i = 1,microstructure_Nconstituents(micro) ! loop over constituents phaseID = microstructure_phase(i,micro) textureID = microstructure_texture(i,micro) phaseOfGrain(grain+1:grain+NgrainsOfConstituent(i)) = phaseID ! assign resp. phase myNorientations = ceiling(float(NgrainsOfConstituent(i))/texture_symmetry(textureID)) ! max number of unique orientations (excl. symmetry) constituentGrain = 0_pInt ! constituent grain index ! --------- if (texture_ODFfile(textureID) == '') then ! dealing with texture components ! --------- do t = 1,texture_Ngauss(textureID) ! loop over Gauss components do g = 1,int(myNorientations*texture_Gauss(5,t,textureID)) ! loop over required grain count orientationOfGrain(:,grain+constituentGrain+g) = & math_sampleGaussOri(texture_Gauss(1:3,t,textureID),& texture_Gauss( 4,t,textureID)) enddo constituentGrain = constituentGrain + int(myNorientations*texture_Gauss(5,t,textureID)) enddo do t = 1,texture_Nfiber(textureID) ! loop over fiber components do g = 1,int(myNorientations*texture_Fiber(6,t,textureID)) ! loop over required grain count orientationOfGrain(:,grain+constituentGrain+g) = & math_sampleFiberOri(texture_Fiber(1:2,t,textureID),& texture_Fiber(3:4,t,textureID),& texture_Fiber( 5,t,textureID)) enddo constituentGrain = constituentGrain + int(myNorientations*texture_fiber(6,t,textureID)) enddo do j = constituentGrain+1,myNorientations ! fill remainder with random orientationOfGrain(:,grain+j) = math_sampleRandomOri() enddo ! --------- else ! hybrid IA ! --------- orientationOfGrain(:,grain+1:grain+myNorientations) = IO_hybridIA(myNorientations,texture_ODFfile(textureID)) if (all(orientationOfGrain(:,grain+1) == -1.0_pReal)) call IO_error(105) constituentGrain = constituentGrain + myNorientations endif ! ---------------------------------------------------------------------------- symExtension = texture_symmetry(textureID) - 1_pInt if (symExtension > 0_pInt) then ! sample symmetry constituentGrain = NgrainsOfConstituent(i)-myNorientations ! calc remainder of array do j = 1,myNorientations ! loop over each "real" orientation symOrientation = math_symmetricEulers(texture_symmetry(textureID),orientationOfGrain(:,j)) ! get symmetric equivalents e = min(symExtension,constituentGrain) ! are we at end of constituent grain array? if (e > 0_pInt) then orientationOfGrain(:,grain+myNorientations+1+(j-1)*symExtension:& grain+myNorientations+e+(j-1)*symExtension) = & symOrientation(:,1:e) constituentGrain = constituentGrain - e ! remainder shrinks by e endif enddo endif grain = grain + NgrainsOfConstituent(i) ! advance microstructure grain index enddo ! constituent ! ---------------------------------------------------------------------------- do i=1,myNgrains-1 ! walk thru grains call random_number(rnd) t = nint(rnd*(myNgrains-i)+i+0.5_pReal,pInt) ! select a grain in remaining list m = phaseOfGrain(t) ! exchange current with random phaseOfGrain(t) = phaseOfGrain(i) phaseOfGrain(i) = m orientation = orientationOfGrain(:,t) orientationOfGrain(:,t) = orientationOfGrain(:,i) orientationOfGrain(:,i) = orientation enddo !calc fraction after weighing with volumePerGrain !exchange in MC steps to improve result... ! ---------------------------------------------------------------------------- grain = 0_pInt ! microstructure grain index do e = 1,mesh_NcpElems ! check each element if (mesh_element(3,e) == homog .and. mesh_element(4,e) == micro) then ! my combination of homog and micro forall (i = 1:FE_Nips(mesh_element(2,e)), g = 1:dGrains) ! loop over IPs and grains material_volume(g,i,e) = volumeOfGrain(grain+(i-1)*dGrains+g) material_phase(g,i,e) = phaseOfGrain(grain+(i-1)*dGrains+g) material_EulerAngles(:,g,i,e) = orientationOfGrain(:,grain+(i-1)*dGrains+g) end forall ! write (6,*) e ! write (6,*) material_phase(:,:,e) ! write (6,*) material_EulerAngles(:,:,:,e) grain = grain + FE_Nips(mesh_element(2,e)) * dGrains ! wind forward by Nips*NgrainsPerIP endif enddo endif ! active homog,micro pair enddo enddo deallocate(volumeOfGrain) deallocate(phaseOfGrain) deallocate(orientationOfGrain) return endsubroutine END MODULE