#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,sys,string import numpy as np from optparse import OptionParser from PIL import Image, ImageDraw import damask scriptID = string.replace('$Id$','\n','\\n') scriptName = os.path.splitext(scriptID.split()[1])[0] # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Generate PNG image from data in given column (or 2D data of overall table). """, version = scriptID) parser.add_option('-l','--label', dest='label', type='string', help='column containing data [all])') parser.add_option('-r','--range', dest='range', type='float', nargs=2, help='data range (min max) [auto]') parser.add_option('-d','--dimension', dest='dimension', type='int', nargs=2, help='data dimension (width height) [native]') parser.add_option('--abs', dest='abs', action='store_true', help='magnitude of values') parser.add_option('--log', dest='log', action='store_true', help='log10 of values') parser.add_option('--fliplr', dest='flipLR', action='store_true', help='flip around vertical axis') parser.add_option('--flipud', dest='flipUD', action='store_true', help='flip around horizontal axis') parser.add_option('--color', dest='color', type='string', help='color scheme') parser.add_option('--invert', dest='invert', action='store_true', help='invert color scheme') parser.add_option('--crop', dest='crop', type='int', nargs=4, metavar='LEFT RIGHT TOP BOTTOM', help='pixels cropped on left, right, top, bottom') parser.add_option('--show', dest='show', action='store_true', help='show resulting image') parser.add_option('-N','--pixelsize', dest='pixelsize', type='int', help='pixel per data point') parser.add_option('-x','--pixelsizex', dest='pixelsizex', type='int', help='pixel per data point along x') parser.add_option('-y','--pixelsizey', dest='pixelsizey', type='int', help='pixel per data point along y') parser.set_defaults(label = None, range = [0.0,0.0], dimension = [], abs = False, log = False, flipLR = False, flipUD = False, color = "gray", invert = False, crop = [0,0,0,0], pixelsize = 1, pixelsizex = 1, pixelsizey = 1, show = False, ) (options,filenames) = parser.parse_args() if options.pixelsize > 1: (options.pixelsizex,options.pixelsizey) = [options.pixelsize]*2 # --- color palette --------------------------------------------------------------------------------- theMap = damask.Colormap(predefined=options.color) if options.invert: theMap = theMap.invert() theColors = np.uint8(np.array(theMap.export(format='list',steps=256))*255) # --- loop over input files ------------------------------------------------------------------------- if filenames == []: filenames = ['STDIN'] for name in filenames: if name == 'STDIN': file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr} file['croak'].write('\033[1m'+scriptName+'\033[0m\n') else: if not os.path.exists(name): continue file = {'name':name, 'input':open(name), 'output':open(os.path.splitext(name)[0]+\ ('_%s'%(options.label) if options.label != None else '')+\ '.png','w'), 'croak':sys.stderr} file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n') table = damask.ASCIItable(file['input'],file['output'], buffered = False, # make unbuffered ASCII_table labels = options.label != None) # no labels when taking 2D dataset table.head_read() # read ASCII header info # --------------- figure out column to process ----------------------------------------------------- column = table.labels_index([options.label]) if np.any(np.array(column) == -1): file['croak'].write('column %s not found...\n'%options.label) table.close(dismiss = True) # close ASCIItable and remove empty file continue # ------------------------------------------ process data ------------------------------------------ table.data_readArray(column) # convert data to values between 0 and 1 and arrange according to given options if options.dimension != []: table.data = table.data.reshape(options.dimension[1],options.dimension[0]) if options.abs: table.data = np.abs(table.data) if options.log: table.data = np.log10(table.data);options.range = np.log10(options.range) if options.flipLR: table.data = np.fliplr(table.data) if options.flipUD: table.data = np.flipud(table.data) if np.all(np.array(options.range) == 0.0): options.range = [table.data.min(),table.data.max()] table.data = (table.data - min(options.range)) / \ (max(options.range) - min(options.range)) table.data = np.clip(table.data,0.0,1.0).\ repeat(options.pixelsizex,axis=1).\ repeat(options.pixelsizey,axis=0) (height,width) = table.data.shape im = Image.fromarray(theColors[np.array(255*table.data,dtype='i')], 'RGB').\ crop(( options.crop[0], options.crop[2], width -options.crop[1], height-options.crop[3])) # ------------------------------------------ output result ----------------------------------------- im.save(file['output'],format = "PNG") if options.show: im.show() table.input_close() # close input ASCII table table.output_close() # close output