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Architectures and Fundamentals

Poisson problem can be solved by a multigrid
Why worry about performance method in < 30 operations per unknown
- an illustrative example (known since late 70ies)
Fundamentals of computer architecture More general elliptic equations may need
. CPUs, pipelines, superscalarity 0O(100) operations per unknown
. Memory hierarchy A modern CPU can do 1-5 GFLOPS

Basic efficiency guidelines So we should be solving 10-50 million
Profiling unknowns per second

a Should need O(100) Mbytes of memory
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Often no more than 10,000 to 100,000 unknowns
possible before the code breaks

In a time of minutes to hours
Needing horrendous amounts of memory

Even state of the art codes
are often very inefficient

a Modern CPUs are
Superscalar: they can execute more than one
operation per clock cycle, typically:
4 integer operations per clock cycle plus
2 or 4 floating-point operations (multiply-add)
Pipelined:
Floating-point ops take O(10) clock cycles to complete
A set of ops can be started in each cycle
Load-store: all operations are done on data in
registers, all operands must be copied to/from
memory via load and store operations
a Code performance heavily dependent on compiler
(and manual) optimization

pipelined omd superscalor execution;

Compute Time in Seconds

(what got me started in this business ~ '95)
Geschwindigkeit verschiedener Iterationsverfahren
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EPIC (similar to VLIW) (IA64)
Multi-threaded architectures (Alpha?)
Multiple CPUs on a single chip (IBM Power 4)
Within the next decade
Billion transistor CPUs (today 200 million
transistors)
Potential to build TFLOPS on a chip
But no way to move the data in and out sufficiently
quickly!




Latency: time for memory to respond to a read (or
write) request is too long
CPU ~ 0.5 ns (light travels 15cm in vacuum)
Memory ~ 50 ns
Bandwidth: number of bytes which can be read
(written) per second
CPUs with 1 GFLOPS peak performance
standard: needs 24 Gbyte/sec bandwidth
Present CPUs have peak bandwidth <10
Gbyte/sec (6.4 Itanium Il) and much less in
practice

a Temporal locality: an item referenced now will be

referenced again soon

Spatial locality: an item referenced now indicates that
neighbors will be referenced soon

Cache lines are typically 32-128 bytes with 1024
being the longest currently. Lines, not words, are
moved between memory levels. Both principles are
satisfied. There is an optimal line size based on the
properties of the data bus and the memory
subsystem designs.

L1 Dara Cache . L1 st Cache

Interleaving (independent memory banks store
consecutive cells of the address space cyclically)

Improves bandwidth
But not latency

Caches (small but fast memory) holding frequently
used copies of the main memory

Improves latency and bandwidth
Usually comes with 2 or 3 levels nowadays
But only works when access to memory is local

Fast but small extra memory

Holding identical copies of main memory
Lower latency

Higher bandwidth

Usually several levels (2 or 3)

Same principle as virtual memory
Memory requests are satisfied from

Fast cache (if it holds the appropriate copy):
Cache Hit

Slow main memory (if data is not in cache):
Cache Miss

Uniqueness and transparency of the cache

Finding the working set (what data is kept in
cache)

Data consistency with main memory
Latency: time for memory to respond to a
read (or write) request

Bandwidth: number of bytes which can be
read (written) per second
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a Cache line size
Prefetching effect
False sharing (cf. associativity issues)
o Replacement strategy
Least Recently Used (LRU)
Least Frequently Used (LFU)
Random

u Translation lookaside buffer (TLB)
Stores virtual memory page translation entries
Has effect similar to another level of cache
TLB misses are very expensive

Hit ratios of 90% and better are needed
for good speedups |

o Direct mapped (associativity = 1)

» Each cache block can be stored in exactly one

cache line of the cache memory
a Fully associative
» A cache block can be stored in any cache line
o Set-associative (associativity = k)
» Each cache block can be stored in one of k
places in the cache

Direct mapped and set-associative caches give rise to
conflict misses.

Direct mapped caches are faster, fully associative caches
are too expensive and slow (if reasonably large).
Set-associative caches are a compromise.
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The cache efficiency is characterized by the
cache hit ratio, the effective time for a data
access is

Number of cache levels

Set associativity

Physical or virtual addressing
Write-through/write-back policy
Replacement strategy (e.g., Random/LRU)
Cache line size

a IBM Power 3:
*L1=64KB, 128-way set associative
* L2 =4 MB, direct mapped, line size = 128, write back
a IBM Power 4:
*L1=32KB, 2way, linesize = 128
*L2=15MB, 8-way, linesize=128
*L.3=32MB, 8-way, linesize=512
a Compag EV6 (Alpha 21264):
*L1=64KB, 2-way associative, line size= 32
*L2=4MB (or larger), direct mapped, line size = 64
a HPPA:
« PA8500, PA8600: L1 =1.5MB, PA8700: L1=2.25MB
*no L2 cache




a AMD Athlon (from “Thunderbird” on):
*L1=64KB, L2=256KB
a Intel Pentium 4:
*L1=8KB, 4-way, linesize=64
* L2 =256 KB, 8-way, linesize= 128
a Intel Itanium:
*L1=16 KB, 4-way
*L2=96KB, 6-way
* L3: off-chip, size varies
a Intel Itanium2:
*L1=16 KB
*L2=256KB
*L3:1.5MBor3MB

Example: Solution of linear systems arising
from the discretization of a special PDE
Gaussian elimination (standard): n3/3 ops
Banded Gaussian elimination: 2n2 ops
SOR method: 10n!5 ops
Multigrid method: 30n ops

Good libraries often outperform own software
o Clever, sophisticated algorithms

o Optimized for target machine

o Machine-specific implementation

Choose the best algorithm
Use efficient libraries

Find good compiler options
Use suitable data layout

a For n large, the multigrid method will always
outperform the others, even if it is badly
implemented

a Frequently, however, two methods have
approximately the same complexity, and then
the better implemented one will win

o Vendor-independent
. Commercial: NAG, IMSL, etc.; only
available as binary, often optimized for
specific platform
. Free codes: e.g., NETLIB (LAPACK,
ODEPACK, etc.), usually as source code,
not specifically optimized
o Vendor-specific; e.g., cxml for Compag/Alpha
with highly tuned LAPACK routines, for
example
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o Modern compilers have numerous flags to select
o Many libraries are quasi-standards eyl optlmlzgtlon options .
BLAS - On: successively more aggressive

: optimizations, n=1,...,5

- LAPACK . -fast: may change round-off behavior

- etc. . -unroll
o Parallel libraries for supercomputers . -arch
o Specialists can sometimes outperform - Etc.

vendor-specific libraries o Learning about your compiler is usually worth it:
RTFM

Hints: Access memory in order! In C/C++, for a 2D
o Read man cc (man f77) matrix
a Look up compiler options documented in el G el [

www.specbench.org for specific platform the loops should be such that

. for (i...)
o Experiment and compare performance for (] )

afilljl...
In FORTRAN, it must be the other way round
Apply loop interchange, if necessary, see below

i e

a Subroutine-level profiling

. Compiler inserts timing calls at the
beginning and end of each subroutine

. Only suitable for coarse code analysis
- Profiling overhead can be significant
- E.g., prof, gprof

Other example: array merging

Three vectors accessed together (in C/C++):
doubl e a[n],b[n],c[n];

can often be handled more efficiently by using
doubl e abc[n][3];

In FORTRAN again indices permuted
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Dedicated CPU registers are used to count
various events at runtime:
Data cache misses (for different levels)
Instruction cache misses
TLB misses
Branch mispredictions
Floating-point and/or integer operations
Load/store instructions

a Tick-based profiling
. OS interrupts code execution regularly
. Profiling tool monitors code locations
. More detailed code analysis is possible
. Profiling overhead can still be significant
a Proﬂhng using hardware performance monitors
. Most popular approach
- Will therefore be discussed next in more detail

o PCL = Performance Counter Library o PAPI = Performance API
o R. Berrendorf et al., FZ Juelich, Germany a Available for many platforms (Portability!)
o Available for many platforms (Portability!) a Two interfaces:

o Usable from outside and from inside the code - High-level interface for simple

. measurements
(library calls, C, C++, Fortran, and Java .
interfaces) . Fully programmable low-level interface,

oo A (e W 6, G L based on thread-safe groups of hardware
B: 2 : events (EventSets)
- http:/ficl.cs.utk.edu/projects/papi

o DCPI = Compagq (Digital) Continuous Profiling 2D structured multigrid code written in C
Infrastructure (HP?) Double precision floating-point arithmetic
o Only for Alpha-based machines running 5-point stencils
Compaq Tru64 UNIX

o Code execution is watched by a profiling
daemon

Red/black Gauss-Seidel smoother
Full weighting, linear interpolation

Direct solver on coarsest grid (LU, LAPACK
o Can only be used from outside the code grid ( )

s http://ww. tru64uni x. conpaq. conf dcpi
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#i ncl ude <pcl . h>

int main(int argc, char **argv) {

Il Initialization
PCL_CNT_TYPE i _result[2];
PCL_FP_CNT_TYPE fp_result[2];

int counter_list[]= {PCL_FP_INSTR, PCL_M-LOPS},res;

unsi gned int flags= PCL_MODE_USER;
PCL_DESCR TYPE descr ;

a Alpha-based machines running Compaq
Tru64 UNIX

a  How to proceed when using DCPI
Start the DCPI daemon (dcpi d)
Run your code
Stop the DCPI daemon

Use DCPI tools to analyze the profiling
data

]

o Digital PWS 500au
Alpha 21164, 500 MHz, 1000 MFLOPS
peak
3 on-chip performance counters
a PCL Hardware performance monitor: hpm
% hpm —events PCL_CYCLES, PCL_MFLOPS ./ngy
hpm el apsed tinme: 5.172 s
hpm counter 0 : 2564941490 PCL_CYCLES
hpm counter 1 : 19. 635955 PCL_MFLOPS

PCLi ni t (&descr);

i f (PCLquery(descr, counter_list,2,flags)!=
PCL_SUCCESS)

I/ 1ssue error nessage ...
el se {
PCL_start (descr, counter_list, 2, flags);
/1 Do conputational work here ...
PCLst op(descr,i_result,fp_result,2);
printf(“% fp instructions, MFLOPS: %\n",
i_result[0], fp_result[1]);}
PCLexi t (descr);
return O;

}

P

dcpi what cg: Where have all the cycles
gone?

dcpi pr of : Breakdown of CPU time by
procedures

dcpi | i st: Code listing (source/assembler)
annotated with profiling data

dcpi t opst al | s: Ranking of instructions
causing stall cycles
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dcpi prof ./ng

Tot al Period (for events)

Call the DCPI analysis tool:
% dcpi whatcg ./ ng

Dynamic stalls are listed first:
% cunPe procedure | -cache (not |TB) 0.1%to 7.4%
33320 72.84% 72.84% ngSnooth . | TB/ | - cache mi ss 0.0%to 0.0%
10008 21.88% 94.72% ngRestriction . D-cache niss 24.2%to 27.6%
2411 5.27% 99.99% nyProl ongCorr . DTB mi ss 53.3%to 57. 7%
[.] Wite buffer 0.0%to 0.3%
Synchroni zati on 0.0%to 0.0%

Branch m spredi ct 0.0%to 0.0%
I MUL busy 0.0%to 0.0%
FDI V busy 0.0%to 0.5% Slotting 5%

O her 0.0%to 0.0% Ra dependency . 0%
Rb dependency . 6%
Rc dependency
FU dependency

Static stalls are listed next:

Unexpl ai ned stall 0.4%to 0.4%
Unexpl ai ned gain Q7%to- Q7%
Subtotal static

Subt ot al dynami c 85. 1%
Total stall 90. 7%

Useful cycles are listed in the end:

Usef ul 7.9%

Total execution . Optimization Techniques

Compare to the total percentage of stall cycles:
90.7% (cf. previous slide)

r_z. ST
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Use a fast algorithm (e.g., multigrid)
It does not make sense to optimize a bad
algorithm
However, sometimes a fairly simple
algorithm that is well implemented will
beat a very sophisticated, super method
that is poorly programmed

Use good coding practices

Use good data structures

Apply appropriate optimization techniques

Lo (Tl Simplest effect of loop unrolling: fewer test/jump
pu Ing instructions (fatter loop body, less loop overhead)

Fused‘MulltipIy—AQd (FMA) instruc?ions Fewer loads per flop
Exposing instruction-level parallelism (ILP) May lead to threaded code that uses multiple FP
Software pipelining (again: exploit [LP) units concurrently (instruction-level parallelism)
Aliasing

Special functions How are loops handled that have a trip count which is
Eliminating overheads not a multiple of the unrolling factor?

. if statements Already fat loops do hardly benefit from unrolling

. Loop overhead (instruction cache capacity!)

. Subroutine calling overhead Very short loops may suffer from unrolling or benefit

strongly
L pmemm
i ; wp'&,:;'

Example: DAXPY operation

do i=1,N
a(i)= a(i)+b(i)*c

enddo G0 = 1LN4 Analysis of the flop-to-load-ratio often unveils another

a(i)= a(i)+b(i)*c benefit of unrolling:
TT=Trod( N, 4)
doi=1ii a(i +1)= a(i +1) +b(i +1)*c
a(i)= a(i)+b(i)*c a(i+2) = a(i +2) +b(i +2)*c ‘
enddo; a(i +3)= a(i +3) +b(i +3) *c doj=1M Innermost loop: two loads and
G 1= A0, N4 enddo y(i)=y(i)+a(j,i)*x(j) two flops performed; i.e., we
a(i)= a(i)+b(i)*c enddo have one load per flop
a(i+1)= a(i+1)+b(i+1)*c
a(i+2)= a(i+2) +b(i +2)*c
a(i+3)= a(i+3)+b(i+3)*c
enddo

doi=1,N

Preconditioning loop handles enddo
cases when N is no multiple of 4




doi=1,N2

On many CPUs (e.g., IBM Power3/Power4)
there is an instruction which multiplies two
t2=0 .
6 Fe 02 operands and adds the result to a third
tl= tl+a(j,i) +a(j +1,1) [*x(j+1) Consider code
t2= t2+a(j,i+1) +a(j +1, i +1)[*x(j +1) a= b + c*d + f*g

tl= 0 Both loops unrolled twice

S versus
i =t1 Innermost loop: 8 loads and 8 flops!
y(i) P P a= c*d + f*g + b

y(i+1)=t2 Exposes instruction-level parallelism

How about unrolling by 42 Can reordering be done automatically?

program nrni program nrnR

I
:f:l OZén) :fi: Sfjg) Superscalar CPUs have a high degree of on-

tt2= 0do chip parallelism that should be exploited

_ _ dotjt ;:1{:i2+ a(j)*a(j) The optimized code uses temporary variables

en;; ti = &) = el tt2= tt2 + a(j +1)*a(j +1) to indicate independent instruction streams
enddo This is more than just loop unrolling!

print * tt tt=ttl + tt2 Can this be done automatically?

Z;id“‘ Yo il Change in rounding errors?

do j=1,n

Arranging instructions in groups that can be o Arrays (or other data) that refer to the same
executed together in one cycle memory locations

Again, the idea is to exploit instruction-level a Aliasing rules are different for various
parallelism (on-chip parallelism) programming Iang.uagefs.; e_-g-,

Often done by optimizing compilers, but not - FORTRAN forbids aliasing, unspec. result
always successfully - C/C++ permit aliasing

o This is one reason why FORTRAN compilers

Closely related to loop unrollin
.y bu "9 often produce faster code than C/C++
Less important on out-of-order CPUs compilers do
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Example:
subroutine sub(n, a, b, c, sum
doubl e precision sum a(n), b(n), c(n)

sum= 0dO
doi=1,n
a(i)= b(i) + 2.0d0*c(i)
enddo
return
end

FORTRAN rule: two variables cannot be aliased, when one or both
of them are modified in the subroutine

Correct call: call sub(n,a,b,c, sum
Incorrect call: call sub(n,a,a, c, sum

/ (divide)
sqrt
exp, log
sin, cos, ...
Etc.
are expensive (up to several dozen cycles)

o Use math. identities; e.g., log(x) + log(y) = log(x*y)
o Use special libraries that

vectorize when many of the same functions
must be evaluated

trade accuracy for speed, when appropriate

subroutine threshO(n, a,threshh,ic)

di nensi on a(n)

ic= 0

tt= 0.d0

do j=1,n . . Ao

tt=tt +a(j) * a(j) a Avoid sqrt in condition!

if (sgrt(tt).ge.thresh) then o Addtt in blocks of 128
es | for example (without

return .
ez £ condition) and repeat

enddo last block when

return condition is violated
end

r_z. ST
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a Aliasing is legal in C/C++: compiler must
produce conservative code

a More complicagted aliasing is possible; e.g.,
a(i) with a(i +2)

a C/C++ keyword restrict or compiler option
-noal i as

i f statements ...
o Prohibit some optimizations
(e.g., loop unrolling in some cases)
o Evaluating the condition expression takes time
o CPU pipeline may be interrupted
o (dynamic jump prediction)
Goal: avoid i f statements in the innermost loops
No generally applicable technique exists ®

o For starting a loop, the CPU must free certain
registers: loop counter, address, etc.

a This may be significant for a short loop!

a Example: for n>m

doi=1,n

doj=1m

is less efficient than
doj=1,m
doi=1,n

a However, data access optimizations are even more
important, see below




gtlsltj)é?ﬁrtér&esrn(gg&tltgfg%;;er%ﬁr%émportant i a Inlining: i nl i ne declaration in C++ (see below), or

Subroutine calls are expensive (on the order of up to EClE aultomatlcally 2y e Eamalier
100 cycles) a Macros in C or any other language
Passing value arguments (copying data) can be #define sare(a) (a)*(a)

extremely expensive, when used inappropriately What can go wrong:

Passing reference arguments (as in FORTRAN) may sqare(x+y) > x+y*x+y

be dangerous from a point of view of correct software sqre(f(x)) = f(x) * f(x)
Reference arguments (as in C++) with const What if f has side effects?
declaration

Generally, in tight loops, no subroutine calls should
be used

What if f has no side effects, but the compiler cannot
deduce that?

Array transpose to get stride-1 access
Building cache-aware data structures by
array merging

Array padding

Etc.

o Stride-1 access is usually fastest for several Stride-1 access: innermost loop iterates over first index

reasons; particularly the reuse of cache line 2 tE'ther by choosing the right data layout (array
contents ranspose) or

a By arranging nested loops in the right order (loop
o Data layout for multidimensional arrays in interchange):

FORTRAN: column-major order
do i=1,N do j=1,M
E:;n;gf: do j=1,M do i=1,N

y . .

AL D) ALDRRAEL) a(i,i)=a(i,i)#b(i.j) ——  a(i,i)=a(i,})+b(i.])
A(l,Z) A(212) enddo enddo

A(1,3) | A(2,3) enddo enddo
address

Stride-N access Stride-1 access
This will usually be done by the compiler!
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Better transpose matrix b so

do i=1,N that inner loop gets stride 1

do j=1,M
s(i)=s(i)+b(i,j)*c(j)
enddo

enddo

L
I F

How about loop interchange in this case?

o Example (cont'd): right-hand side and
coefficients are accessed simultaneously,
reuse cache line contents by array merging
O enhance spatial locality

typedef struct {
doubl e f;
double ¢c_N, c_E, c¢_S, c_W c_C
} equationData; // Data nerged in nenory

double U[N[N]; /1 Sol ution vector

equationData rhsAndCoeff[NJ[N]; // Right-hand side
/1 and coefficients

a C.-W. Tseng et al. (UMD):
Research on cache modeling and compiler-
based array padding:
- Intra-variable padding: pad within arrays
p Avoid self-interference misses
- Inter-variable padding: pad between
different arrays
p Avoid cross-interference misses

ﬁ_F ST

Data layout optimizations:
Cache-aware data structures

o ldea: Merge data which are needed together
to increase spatial locality: cache lines
contain several data items

a Example: Gauss-Seidel iteration, determine
data items needed simultaneously

k+1 3
]

- .
k+1 — -1 2 2 c
U; _ai.igfi -a Uy - a Uz

j<i j>i

o ldea: Allocate arrays larger than necessary
e Change relative memory distances
» Avoid severe cache thrashing effects

o Example (FORTRAN: column-major order):
Replace
doubl e precision u(1024, 1024)

by
doubl e precision u(1024+pad, 1024)

a How to choose pad?

P

o Padding in 2D; e.g., FORTRANT77:

doubl e precision u(0: 1024+pad, 0: 1024)




Loop unrolling (see above)

Loop interchange

Loop fusion

Loop split = loop fission = loop distribution
Loop skewing

Loop blocking

Idea: Transform successive loops into a Before: ﬁ)ft?r: N
i A do i=1,N = i
single loop to enhgnce temporal locality ) ST a(i)= (a(i)+b(i))*c(i)
Reduces cache misses and enhances cache anile enddo
reuse (exploit temporal locality) doi=1,N

Often applicable when data sets are )= &i)=eny

processed repeatedly (e.g., in the case of enddo _ Gl .
iterative methods) * ais loaded into the a is loaded into the

cache twice (if cache only once
sufficiently large)

i e

Example: red/black Gauss-Seidel iteration in 2D

Code before applying loop fusion technique
(standard implementation w/ efficient loop

ordering, Fortran semantics: row major order):
for it=1 to nuniter do
/1 Red nodes
for i=1to n-1 do
for j= 1+(i+1)% to n-1 by 2 do
relax(u(j,i))
end for
end for
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/1 Bl ack nodes
for i=1to n-1 do
for j= 1+i9% to n-1 by 2 do
relax(u(j,i))
end for
end for
end for

This requires two sweeps through the whole
data set per single GS iteration!

Code after applying loop fusion technique:

for it=1to numter do
// Update red nodes in first grid row
for j=1ton-1by 2 do
relax(u(j, 1))
end for

P
HES

/1 Update black nodes in last grid row
for j=2ton 1by 2 do
relax(u(j,n 1)
end for

Solution vector u passes through the
cache only once instead of twice per GS
iteration!

.'.r_z‘. :FE "

How the fusion technique works:

// Update red and bl ack nodes in pairs
for i=1to n-1do
for j= 1+(i+1)% to n-1 by 2 do
relax(u(j,i))
relax(u(j,i-1))
end for
end for

o The inverse transformation of loop fusion

o Divide work of one loop into two to make
body less complicated

. Leverage compiler optimizations
. Enhance instruction cache utlization
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Example: 1D blocking for red/black GS, respect
Loop blocking = loop tiling the data dependencies!
Divide the data set into subsets (blocks)
which are small enough to fit in cache
Perform as much work as possible on the
data in cache before moving to the next block
This is not always easy to accomplish
because of data dependencies

,Lw %FL.

/1 Inner part of the 2D grid
a Code after applying 1D blocking technique for k= 2*Bto A 1ldo

a B = number of GS iterations to be for i=k to k 2B+l by -2 do
blocked/combined for j= 1+(k+1)% to n 1by 2 do
relax(u(j,i))
for it=1 to nuniter/B do relax(u(j,i 1)
// Special handling: rows 1, ., 2B-1
/1 Not shown here ...

end for
end for
end for

/| Special handling: rows n-2B+1, .. n- o More complicated blocking schemes exist

00 03 SED BEFS o a lllustration: 2D square blocking
end for

o Result: Data is loaded once into the cache
per B Gauss-Seidel iterations, if 2*B+2 grid
rows fit in the cache simultaneously

a If grid rows are too large, 2D blocking can be
applied

e




Two common multigrid
algorithms

a lllustration: 2D skewed blocking W G RE A =,

Smooth A,u,=f,. Setf;=Rqr,. Set u, = u, + | 3u;. Smooth A u,=f,.
Smooth Agu=f,. Set f, = Ry 5. Set U = Ug + I,U,. Smooth Agu=.

Smooth A,u,=f,. Set f, = Ryr,.
ZrmrTm AT e Set U, = U, + |,U;. Smooth A,u,=F,.

Solve A,u,=f, directly.

L e B B B B e e e

DFG project DIME: Data-local iterative methods C++ interface, fast Fortran77 subroutines

Fast algorithm + fast implementation Direct solution of the problems on the
Correction scheme: V-cycles, FMG coarsest grid (LAPACK: LU, Cholesky)
Single/double precision floating-point
arithmetic

Various array padding heuristics (Tseng)
http://www10.informatik.uni-erlangen.de/dime

Rectangular domains
Constant 5-/9-point stencils
Dirichlet/Neumann boundary conditions

For what

Standard 5-pt. Operator

Cache optimized (loop orderings, data
merging, simple blocking)

Constant coeff. + skewed blocking +
padding

Eliminating rhs if O everywhere but
boundary




o Array padding
o Standard padding in 3D; e.g., FORTRANT77:

doubl e precision u(0: 1024, 0: 1024, 0: 1024)
becomes:
doubl e precision u(0: 1024+pad1, 0: 1024+pad2, 0: 1024)

o Non-standard padding in 3D:
a Array merging

Bandwise Data Layout

nted Data Layout

U, U,
FuN,E.S.W.C../F.N, E,.S. W.C

doubl e preci sion u(0:1024+padl, 0: 1024, 0: 1024) o ST o

u(i +k*pad2, j, k)
(or use hand-made index linearization — performance effect?)

F e

o 1-way blocking with loop-interchange b 2-way blocking and 3-way blacking




a 4-way blocking

o Stream: read distribution functions from

Mainly used in CFD applications neighbors

Employs a regular grid structure (2D, 3D) o Collide: re-compute own distribution functions
Particle-oriented approach based on a i T

microscopic model of the moving fluid

particles

Jacobi-like cell update pattern: a single time
step of the LBM consits of

. stream step and
. collide step

Layout 2: Grid Compression: save memory, enhance locality

Data layout optimization

Layout 1:
Two separate grids

(standard approach)




Data access 3-way blocking (cont'd):
tl mizations

Access pattern 1: atternl way blocking:

Efficient Programming 121 — ! 1-N 07/2003 Efficient Programming

Access pattern 2: 4-way blocking: 4-way blocking (cont'd):
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lllustration of the combination of layout + access optimizations
Layout: separate grids, access pattern: 3-way-blocking:

Layout: Grid compression, access pattern: 3-way blocking:
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Layout: grid compression, access pattern: 4-way blocking:

LY e
e - T ]

MFLOPS for 2D GS, const. coeff.s, 5-pt.,
DEC PWS 500au, Alpha 21164 CPU, 500 MHz

o Standard implementation of red/black GS,

. without array padding
Digital PWS 500au, Alpha 21164 CPU

L1=8KB, L2 =96 KB, L3 =4 MB Size +/- L1 L3 Mem.
We use DCPI to obtain the performance data 45 63.6 0.0 0.0

We measure the percentage of accesses which are 0.5 757 02 0.0
satisfied by each individual level of the memory 02 761 3 148 00

hierarchy _ , 53 551 145 00
Comparison: standard implementation of red/black
3.9 377 124 0.8

GS (efficient loop ordering) vs. 2D skewed blocking
(with and without padding) 51 278 99 7.2

45 303 130 7.2

o 2D skewed blocking with appropriate array
padding, 4 iterations blocked (B = 4)

Size +/- L1 L2 L3 Mem.

Size +- L1 L2 L3 Mem. 33 282 664 53 00 00
33 201 01 0.0 65 343 557 9.1 09 0.0
65 195 09 0.0 375 517 90 1.9 00
191 17 00 378 528 7.0 23 00

;3:(1) 2:; 8:2 384 527 62 24 03

— — 367 543 61 20 09

0.4 0.9 359 552 6.0 19 09

a 2D skewed blocking without array padding,
4 iterations blocked (B = 4)




3D MG, F77, var. coeff.s, 7-pt., Intel Pentium4, 2D LBM (D2Q9), C(++), AMD Athlon XP 2400+,
2.4 GHz, Intel ifc V7.0 compiler 2.0 GHz, Linux, gcc V3.2.1 compiler

rd wio paddi
axd W pad

I
Blocking with loopinterchang
Way Blocking hand-oplimiz

? 200° 300° 400° 500° 600" 700° 800" 900” 1000]
grid size

Cache behavior (left: L1, right: L2) for previous 3D LBM (D3Q19), C, AMD Opteron, 1.6 GHz,
experiment, measured with PAPI Linux, gcc V3.2.2 compiler (preliminary!)

” 1007 2007 300° 400

We will (briefly) address the following issues:
a Inlining

a Virtual functions

a Expression templates




Macro-like code expansion: replace function
call by the body of the function to be inlined
How to accomplish inlining:

. Use C++ keyword i nl i ne, or

. Define the method within the declaration

In any case: the method to be inlined needs
to be defined in the header file

However: inlining is just a suggestion to the
compiler!

Member functions may be declared to be virtual
(C++ keyword vi rt ual )

This mechanism becomes relevant when base class
pointers are used to point to instances of derived
classes

Actual member function to be called can often be
determined only at runtime (polymorphism)

Requires virtual function table lookup (at runtime!)
Can be very time-consuming!

o C++ technique for passing expressions as
function arguments

o Expression can be inlined into the function
body using (nested) C++ templates

o Avoid the use of temporaries and therefore
multiple passes of the data through the
memory subsystem; particularly the cache
hierarchy

e

o Advantages:
- Reduce function call overhead (see above)

- Leverage cross-call optimizations: optimize
the code after expanding the loop body

o Disadvantage:

Size of the machine code increases (instruction
cache capacity!)

a Virtual functions are often not compatible with
inlining where function calls are replaced by
function bodies at compile time.

a If the type of the object can be deduced at
compile time, the compiler can even inline
virtual functions (at least theoretically ...)

Define a simple vector class in the beginning:

class vector {
private:
int |ength;
doubl e a[];
public:
vector(int |);
doubl e conponent (int i) { return a[i]; }

SN
e




Want to efficiently compute vector sums like

c= a+tb+d;

LEfficiently” implies

o Avoiding the generation of temporary objects

o ,Pumping“ data through the memory
hierarchy several times. This is actually the

time-consuming part. Moving data is more
expensive than processing datal

Need an expression template class to represent sums
of expressions

tenpl ate<cl ass A, class B>
cl ass DExpr Sum {
A va;
B vb;
public:
DExpr Sum(const A& a, const B& b) : va(a), vb(b) {}
doubl e conmponent (int i) {
return va. conponent (i) + vb.conponent (i);

a The vect or class must contain a member
function oper at or =(const A& ea), where Ais
an expression template class.

a Only when this member function is called, the
actual computation (vector sum) takes place.

o References: T. Veldhuizen, C. Pflaum

=

Need a wrapper class for all expressions:

tenpl at e<cl ass A>
class DExpr { // doubl e precision expression
private:
A wa;
public:
DExpr(const A& a) : wa(a) {}
doubl e conponent (int i) { return wa.conponent(i);

Need overloaded oper at or +() variants for all
possible return types, for example:

tenpl ate<cl ass A, class B>

DExpr <DExpr Sunm<DExpr <A>, DExpr <B>>>

oper at or +(const DExpr<A>& a, const DExpr<B>& b) {
typedef DExpr Sum<DExpr <A>, DExpr<B>> ExprT;
return DExpr<Expr T>(ExprT(a, b));

See C.C. Douglas et.al.
http://www.ccs.uky.edu/~douglas/ccd-kfcs.html

}




How unstructured is the grid?

Sparse matrices and data flow analysis
Grid processing

Algorithm processing

Examples

Efficient Programming

We are exploiting similar structuresin the
KONWIHR project Gridlib
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Case Studies (G. Hager)




