#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,sys,math,string import numpy as np from optparse import OptionParser import damask scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptID = ' '.join([scriptName,damask.version]) slipnormal_temp = [ [0,0,0,1], [0,0,0,1], [0,0,0,1], [0,1,-1,0], [-1,0,1,0], [1,-1,0,0], [0,1,-1,1], [-1,1,0,1], [-1,0,1,1], [0,-1,1,1], [1,-1,0,1], [1,0,-1,1], [0,1,-1,1], [0,1,-1,1], [-1,1,0,1], [-1,1,0,1], [-1,0,1,1], [-1,0,1,1], [0,-1,1,1], [0,-1,1,1], [1,-1,0,1], [1,-1,0,1], [1,0,-1,1], [1,0,-1,1], ] slipdirection_temp = [ [2,-1,-1,0], [-1,2,-1,0], [-1,-1,2,0], [2,-1,-1,0], [-1,2,-1,0], [-1,-1,2,0], [2,-1,-1,0], [1,1,-2,0], [-1,2,-1,0], [-2,1,1,0], [-1,-1,2,0], [1,-2,1,0], [-1,2,-1,3], [1,1,-2,3], [-2,1,1,3], [-1,2,-1,3], [-1,-1,2,3], [-2,1,1,3], [1,-2,1,3], [-1,-1,2,3], [2,-1,-1,3], [1,-2,1,3], [1,1,-2,3], [2,-1,-1,3], ] # slip normals and directions according to cpfem implementation Nslipsystems = {'fcc': 12, 'bcc': 24, 'hex': 24} slipnormal = { \ 'fcc': [ [1,1,1], [1,1,1], [1,1,1], [-1,-1,1], [-1,-1,1], [-1,-1,1], [1,-1,-1], [1,-1,-1], [1,-1,-1], [-1,1,-1], [-1,1,-1], [-1,1,-1], ], 'bcc': [ [0,1,1], [0,1,1], [0,-1,1], [0,-1,1], [1,0,1], [1,0,1], [-1,0,1], [-1,0,1], [1,1,0], [1,1,0], [-1,1,0], [-1,1,0], [2,1,1], [-2,1,1], [2,-1,1], [2,1,-1], [1,2,1], [-1,2,1], [1,-2,1], [1,2,-1], [1,1,2], [-1,1,2], [1,-1,2], [1,1,-2], ], 'hex': [ # these are dummy numbers and are recalculated based on the above hex real slip systems. [1,1,0], [1,1,0], [1,0,1], [1,0,1], [0,1,1], [0,1,1], [1,-1,0], [1,-1,0], [-1,0,1], [-1,0,1], [0,-1,1], [0,-1,1], [2,-1,1], [1,-2,-1], [1,1,2], [2,1,1], [1,2,-1], [1,-1,2], [2,1,-1], [1,2,1], [1,-1,-2], [2,-1,-1], [1,-2,1], [1,1,-2], ], } slipdirection = { \ 'fcc': [ [0,1,-1], [-1,0,1], [1,-1,0], [0,-1,-1], [1,0,1], [-1,1,0], [0,-1,1], [-1,0,-1], [1,1,0], [0,1,1], [1,0,-1], [-1,-1,0], ], 'bcc': [ [1,-1,1], [-1,-1,1], [1,1,1], [-1,1,1], [-1,1,1], [-1,-1,1], [1,1,1], [1,-1,1], [-1,1,1], [-1,1,-1], [1,1,1], [1,1,-1], [-1,1,1], [1,1,1], [1,1,-1], [1,-1,1], [1,-1,1], [1,1,-1], [1,1,1], [-1,1,1], [1,1,-1], [1,-1,1], [-1,1,1], [1,1,1], ], 'hex': [ # these are dummy numbers and are recalculated based on the above hex real slip systems. [-1,1,1], [1,-1,1], [-1,-1,1], [-1,1,1], [-1,-1,1], [1,-1,1], [1,1,1], [-1,-1,1], [1,-1,1], [1,1,1], [1,1,1], [-1,1,1], [1,1,-1], [1,1,-1], [1,1,-1], [1,-1,-1], [1,-1,-1], [1,-1,-1], [1,-1,1], [1,-1,1], [1,-1,1], [1,1,1], [1,1,1], [1,1,1], ], } def applyEulers(phi1,Phi,phi2,x): """ transform x given in crystal coordinates to xbar returned in lab coordinates for Euler angles phi1,Phi,phi2 """ eulerRot = [[ math.cos(phi1)*math.cos(phi2) - math.cos(Phi)*math.sin(phi1)*math.sin(phi2), -math.cos(phi1)*math.sin(phi2) - math.cos(Phi)*math.cos(phi2)*math.sin(phi1), math.sin(Phi)*math.sin(phi1) ], [ math.cos(phi2)*math.sin(phi1) + math.cos(Phi)*math.cos(phi1)*math.sin(phi2), math.cos(Phi)*math.cos(phi1)*math.cos(phi2) - math.sin(phi1)*math.sin(phi2), -math.sin(Phi)*math.cos(phi1) ], [ math.sin(Phi)*math.sin(phi2), math.sin(Phi)*math.cos(phi2), math.cos(Phi) ]] xbar = [0,0,0] if len(x) == 3: for i in range(3): xbar[i] = sum([eulerRot[i][j]*x[j] for j in range(3)]) return xbar def normalize(x): norm = math.sqrt(sum([x[i]*x[i] for i in range(len(x))])) return [x[i]/norm for i in range(len(x))] # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Add columns listing Schmid factors (and optional trace vector of selected system) for given Euler angles. """, version = scriptID) parser.add_option('-l','--lattice', dest='lattice', type='choice', choices=('fcc','bcc','hex'), metavar='string', help="type of lattice structure [%default] {fcc,bcc',hex}") parser.add_option('--direction', dest='forcedirection', type='int', nargs=3, metavar='int int int', help='force direction in lab coordinates %default') parser.add_option('-n','--normal', dest='stressnormal', type='int', nargs=3, metavar='int int int', help='stress plane normal in lab coordinates ') parser.add_option('--trace', dest='traceplane', type='int', nargs=3, metavar='int int int', help='normal (in lab coordinates) of plane on which the plane trace of the Schmid factor(s) is reported') parser.add_option('--covera', dest='CoverA', type='float', metavar='float', help='C over A ratio for hexagonal systems') parser.add_option('-r','--rank', dest='rank', type='int', nargs=3, metavar='int int int', help="report trace of r'th highest Schmid factor [%default]") parser.add_option('-e', '--eulers', dest='eulers', metavar='string', help='Euler angles label') parser.add_option('-d', '--degrees', dest='degrees', action='store_true', help='Euler angles are given in degrees [%default]') parser.set_defaults(lattice = 'fcc') parser.set_defaults(forcedirection = [0, 0, 1]) parser.set_defaults(stressnormal = None) parser.set_defaults(traceplane = None) parser.set_defaults(rank = 0) parser.set_defaults(CoverA = 1.587) parser.set_defaults(eulers = 'eulerangles') (options,filenames) = parser.parse_args() options.forcedirection = normalize(options.forcedirection) if options.stressnormal: if abs(sum([options.forcedirection[i] * options.stressnormal[i] for i in range(3)])) < 1e-3: options.stressnormal = normalize(options.stressnormal) else: parser.error('stress plane normal not orthogonal to force direction') else: options.stressnormal = options.forcedirection if options.traceplane: options.traceplane = normalize(options.traceplane) options.rank = min(options.rank,Nslipsystems[options.lattice]) datainfo = { # list of requested labels per datatype 'vector': {'len':3, 'label':[]}, } datainfo['vector']['label'] += [options.eulers] toRadians = math.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians if options.lattice=='hex': # Convert 4 Miller indices notation of hex to orthogonal 3 Miller indices notation for i in range(Nslipsystems[options.lattice]): slipnormal[options.lattice][i][0]=slipnormal_temp[i][0] slipnormal[options.lattice][i][1]=(slipnormal_temp[i][0]+2.0*slipnormal_temp[i][1])/math.sqrt(3.0) slipnormal[options.lattice][i][2]=slipnormal_temp[i][3]/options.CoverA slipdirection[options.lattice][i][0]=slipdirection_temp[i][0]*1.5 # direction [uvtw]->[3u/2 (u+2v)*sqrt(3)/2 w*(c/a)] , slipdirection[options.lattice][i][1]=(slipdirection_temp[i][0]+2.0*slipdirection_temp[i][1])*(0.5*math.sqrt(3.0)) slipdirection[options.lattice][i][2]=slipdirection_temp[i][3]*options.CoverA for i in range(Nslipsystems[options.lattice]): slipnormal[options.lattice][i]=normalize(slipnormal[options.lattice][i]) slipdirection[options.lattice][i]=normalize(slipdirection[options.lattice][i]) # --- loop over input files ------------------------------------------------------------------------- if filenames == []: filenames = [None] for name in filenames: try: table = damask.ASCIItable(name = name,buffered = False) except: continue damask.util.report(scriptName,name) table.head_read() # read ASCII header info table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) key = '1_%s'%datainfo['vector']['label'][0] if key not in table.labels: file['croak'].write('column %s not found...\n'%key) continue else: column = table.labels.index(key) # remember columns of requested data # ------------------------------------------ assemble header --------------------------------------- table.labels_append(['%i_S(%i_%i_%i)[%i_%i_%i]'%(i+1, slipnormal[options.lattice][i][0], slipnormal[options.lattice][i][1], slipnormal[options.lattice][i][2], slipdirection[options.lattice][i][0], slipdirection[options.lattice][i][1], slipdirection[options.lattice][i][2], ) for i in range(Nslipsystems[options.lattice])]) if options.traceplane: if options.rank > 0: table.labels_append('trace_x trace_y trace_z system') else: table.labels_append(['(%i)tx\tty\ttz'%(i+1) for i in range(Nslipsystems[options.lattice])]) table.head_write() # ------------------------------------------ process data ------------------------------------------ outputAlive = True while outputAlive and table.data_read(): # read next data line of ASCII table [phi1,Phi,phi2] = Eulers=toRadians*np.array(map(\ float,table.data[column:column+datainfo['vector']['len']])) S = [ sum( [applyEulers(phi1,Phi,phi2,normalize( \ slipnormal[options.lattice][slipsystem]))[i]*options.stressnormal[i] for i in range(3)] ) * \ sum( [applyEulers(phi1,Phi,phi2,normalize( \ slipdirection[options.lattice][slipsystem]))[i]*options.forcedirection[i] for i in range(3)] ) \ for slipsystem in range(Nslipsystems[options.lattice]) ] table.data_append(S) if options.traceplane: trace = [np.cross(options.traceplane,applyEulers(phi1,Phi,phi2,normalize(slipnormal[options.lattice][slipsystem]))) \ for slipsystem in range(Nslipsystems[options.lattice]) ] if options.rank == 0: table.data_append('\t'.join(map(lambda x:'%f\t%f\t%f'%(x[0],x[1],x[2]),trace))) elif options.rank > 0: SabsSorted = sorted([(abs(S[i]),i) for i in range(len(S))]) table.data_append('\t'.join(map(str,trace[SabsSorted[-options.rank][1]])) + '\t%i'%(1+SabsSorted[-options.rank][1])) outputAlive = table.data_write() # output processed line # ------------------------------------------ output finalization ----------------------------------- table.close() # close input ASCII table (works for stdin)