! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced MAterial Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see .
!
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for isotropic (J2) plasticity
!> @details Isotropic (J2) Plasticity which resembles the phenopowerlaw plasticity without
!! resolving the stress on the slip systems. Will give the response of phenopowerlaw for an
!! untextured polycrystal
!--------------------------------------------------------------------------------------------------
module constitutive_j2
use prec, only: &
pReal,&
pInt
implicit none
private
character (len=*), parameter, public :: &
CONSTITUTIVE_J2_label = 'j2' !< label for this constitutive model
integer(pInt), dimension(:), allocatable, public :: &
constitutive_j2_sizeDotState, &
constitutive_j2_sizeState, &
constitutive_j2_sizePostResults
integer(pInt), dimension(:,:), allocatable, target, public :: &
constitutive_j2_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
constitutive_j2_output !< name of each post result output
character(len=32), dimension(:), allocatable, private :: &
constitutive_j2_structureName
integer(pInt), dimension(:), allocatable, private :: &
constitutive_j2_Noutput !< ??
real(pReal), dimension(:), allocatable, private :: &
constitutive_j2_fTaylor, & !< Taylor factor
constitutive_j2_tau0, & !< initial plastic stress
constitutive_j2_gdot0, & !< reference velocity
constitutive_j2_n, & !< Visco-plastic parameter
!--------------------------------------------------------------------------------------------------
! h0 as function of h0 = A + B log (gammadot)
constitutive_j2_h0, &
constitutive_j2_h0_slopeLnRate, &
constitutive_j2_tausat, & !< final plastic stress
constitutive_j2_a, &
constitutive_j2_aTolResistance, &
!--------------------------------------------------------------------------------------------------
! tausat += (asinh((gammadot / SinhFitA)**(1 / SinhFitD)))**(1 / SinhFitC) / (SinhFitB * (gammadot / gammadot0)**(1/n))
constitutive_j2_tausat_SinhFitA, & !< fitting parameter for normalized strain rate vs. stress function
constitutive_j2_tausat_SinhFitB, & !< fitting parameter for normalized strain rate vs. stress function
constitutive_j2_tausat_SinhFitC, & !< fitting parameter for normalized strain rate vs. stress function
constitutive_j2_tausat_SinhFitD !< fitting parameter for normalized strain rate vs. stress function
real(pReal), dimension(:,:,:), allocatable, private :: &
constitutive_j2_Cslip_66
public :: &
constitutive_j2_init, &
constitutive_j2_stateInit, &
constitutive_j2_aTolState, &
constitutive_j2_homogenizedC, &
constitutive_j2_microstructure, &
constitutive_j2_LpAndItsTangent, &
constitutive_j2_dotState, &
constitutive_j2_deltaState, &
constitutive_j2_dotTemperature, &
constitutive_j2_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine constitutive_j2_init(myFile)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use math, only: &
math_Mandel3333to66, &
math_Voigt66to3333
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_error, &
IO_timeStamp
use material
use debug, only: &
debug_level, &
debug_constitutive, &
debug_levelBasic
use lattice, only: &
lattice_symmetrizeC66
implicit none
integer(pInt), intent(in) :: myFile
integer(pInt), parameter :: MAXNCHUNKS = 7_pInt
integer(pInt), dimension(1_pInt+2_pInt*MAXNCHUNKS) :: positions
integer(pInt) :: section = 0_pInt, maxNinstance, i,o, mySize
character(len=65536) :: &
tag = '', &
line = '' ! to start initialized
write(6,'(/,a)') ' <<<+- constitutive_'//trim(CONSTITUTIVE_J2_label)//' init -+>>>'
write(6,'(a)') ' $Id$'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
maxNinstance = int(count(phase_plasticity == CONSTITUTIVE_J2_label),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(constitutive_j2_sizeDotState(maxNinstance))
constitutive_j2_sizeDotState = 0_pInt
allocate(constitutive_j2_sizeState(maxNinstance))
constitutive_j2_sizeState = 0_pInt
allocate(constitutive_j2_sizePostResults(maxNinstance))
constitutive_j2_sizePostResults = 0_pInt
allocate(constitutive_j2_sizePostResult(maxval(phase_Noutput), maxNinstance))
constitutive_j2_sizePostResult = 0_pInt
allocate(constitutive_j2_output(maxval(phase_Noutput), maxNinstance))
constitutive_j2_output = ''
allocate(constitutive_j2_Noutput(maxNinstance))
constitutive_j2_Noutput = 0_pInt
allocate(constitutive_j2_structureName(maxNinstance))
constitutive_j2_structureName = ''
allocate(constitutive_j2_Cslip_66(6,6,maxNinstance))
constitutive_j2_Cslip_66 = 0.0_pReal
allocate(constitutive_j2_fTaylor(maxNinstance))
constitutive_j2_fTaylor = 0.0_pReal
allocate(constitutive_j2_tau0(maxNinstance))
constitutive_j2_tau0 = 0.0_pReal
allocate(constitutive_j2_gdot0(maxNinstance))
constitutive_j2_gdot0 = 0.0_pReal
allocate(constitutive_j2_n(maxNinstance))
constitutive_j2_n = 0.0_pReal
allocate(constitutive_j2_h0(maxNinstance))
constitutive_j2_h0 = 0.0_pReal
allocate(constitutive_j2_h0_slopeLnRate(maxNinstance))
constitutive_j2_h0_slopeLnRate = 0.0_pReal
allocate(constitutive_j2_tausat(maxNinstance))
constitutive_j2_tausat = 0.0_pReal
allocate(constitutive_j2_a(maxNinstance))
constitutive_j2_a = 0.0_pReal
allocate(constitutive_j2_aTolResistance(maxNinstance))
constitutive_j2_aTolResistance = 0.0_pReal
allocate(constitutive_j2_tausat_SinhFitA(maxNinstance))
constitutive_j2_tausat_SinhFitA = 0.0_pReal
allocate(constitutive_j2_tausat_SinhFitB(maxNinstance))
constitutive_j2_tausat_SinhFitB = 0.0_pReal
allocate(constitutive_j2_tausat_SinhFitC(maxNinstance))
constitutive_j2_tausat_SinhFitC = 0.0_pReal
allocate(constitutive_j2_tausat_SinhFitD(maxNinstance))
constitutive_j2_tausat_SinhFitD = 0.0_pReal
rewind(myFile)
do while (trim(line) /= '#EOF#' .and. IO_lc(IO_getTag(line,'<','>')) /= 'phase') ! wind forward to
line = IO_read(myFile)
enddo
do while (trim(line) /= '#EOF#') ! read through sections of phase part
line = IO_read(myFile)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt ! advance section counter
cycle ! skip to next line
endif
if (section > 0_pInt ) then ! do not short-circuit here (.and. with next if-statement). It's not safe in Fortran
if (phase_plasticity(section) == CONSTITUTIVE_J2_label) then ! one of my sections
i = phase_plasticityInstance(section) ! which instance of my plasticity is present phase
positions = IO_stringPos(line,MAXNCHUNKS)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('plasticity','elasticity')
cycle
case ('(output)')
constitutive_j2_Noutput(i) = constitutive_j2_Noutput(i) + 1_pInt
constitutive_j2_output(constitutive_j2_Noutput(i),i) = &
IO_lc(IO_stringValue(line,positions,2_pInt))
case ('lattice_structure')
constitutive_j2_structureName(i) = IO_lc(IO_stringValue(line,positions,2_pInt))
case ('c11')
constitutive_j2_Cslip_66(1,1,i) = IO_floatValue(line,positions,2_pInt)
case ('c12')
constitutive_j2_Cslip_66(1,2,i) = IO_floatValue(line,positions,2_pInt)
case ('c13')
constitutive_j2_Cslip_66(1,3,i) = IO_floatValue(line,positions,2_pInt)
case ('c22')
constitutive_j2_Cslip_66(2,2,i) = IO_floatValue(line,positions,2_pInt)
case ('c23')
constitutive_j2_Cslip_66(2,3,i) = IO_floatValue(line,positions,2_pInt)
case ('c33')
constitutive_j2_Cslip_66(3,3,i) = IO_floatValue(line,positions,2_pInt)
case ('c44')
constitutive_j2_Cslip_66(4,4,i) = IO_floatValue(line,positions,2_pInt)
case ('c55')
constitutive_j2_Cslip_66(5,5,i) = IO_floatValue(line,positions,2_pInt)
case ('c66')
constitutive_j2_Cslip_66(6,6,i) = IO_floatValue(line,positions,2_pInt)
case ('tau0')
constitutive_j2_tau0(i) = IO_floatValue(line,positions,2_pInt)
case ('gdot0')
constitutive_j2_gdot0(i) = IO_floatValue(line,positions,2_pInt)
case ('n')
constitutive_j2_n(i) = IO_floatValue(line,positions,2_pInt)
case ('h0')
constitutive_j2_h0(i) = IO_floatValue(line,positions,2_pInt)
case ('h0_slope','slopelnrate')
constitutive_j2_h0_slopeLnRate(i) = IO_floatValue(line,positions,2_pInt)
case ('tausat')
constitutive_j2_tausat(i) = IO_floatValue(line,positions,2_pInt)
case ('tausat_sinhfita')
constitutive_j2_tausat_SinhFitA(i) = IO_floatValue(line,positions,2_pInt)
case ('tausat_sinhfitb')
constitutive_j2_tausat_SinhFitB(i) = IO_floatValue(line,positions,2_pInt)
case ('tausat_sinhfitc')
constitutive_j2_tausat_SinhFitC(i) = IO_floatValue(line,positions,2_pInt)
case ('tausat_sinhfitd')
constitutive_j2_tausat_SinhFitD(i) = IO_floatValue(line,positions,2_pInt)
case ('a', 'w0')
constitutive_j2_a(i) = IO_floatValue(line,positions,2_pInt)
case ('taylorfactor')
constitutive_j2_fTaylor(i) = IO_floatValue(line,positions,2_pInt)
case ('atol_resistance')
constitutive_j2_aTolResistance(i) = IO_floatValue(line,positions,2_pInt)
case default
call IO_error(210_pInt,ext_msg=trim(tag)//' ('//CONSTITUTIVE_J2_label//')')
end select
endif
endif
enddo
sanityChecks: do i = 1_pInt,maxNinstance
if (constitutive_j2_structureName(i) == '') call IO_error(205_pInt,e=i)
if (constitutive_j2_tau0(i) < 0.0_pReal) call IO_error(211_pInt,ext_msg='tau0 (' &
//CONSTITUTIVE_J2_label//')')
if (constitutive_j2_gdot0(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='gdot0 (' &
//CONSTITUTIVE_J2_label//')')
if (constitutive_j2_n(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='n (' &
//CONSTITUTIVE_J2_label//')')
if (constitutive_j2_tausat(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='tausat (' &
//CONSTITUTIVE_J2_label//')')
if (constitutive_j2_a(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='a (' &
//CONSTITUTIVE_J2_label//')')
if (constitutive_j2_fTaylor(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='taylorfactor (' &
//CONSTITUTIVE_J2_label//')')
if (constitutive_j2_aTolResistance(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='aTol_resistance (' &
//CONSTITUTIVE_J2_label//')')
enddo sanityChecks
instancesLoop: do i = 1_pInt,maxNinstance
outputsLoop: do o = 1_pInt,constitutive_j2_Noutput(i)
select case(constitutive_j2_output(o,i))
case('flowstress')
mySize = 1_pInt
case('strainrate')
mySize = 1_pInt
case default
call IO_error(212_pInt,ext_msg=constitutive_j2_output(o,i)//' ('//CONSTITUTIVE_J2_label//')')
end select
if (mySize > 0_pInt) then ! any meaningful output found
constitutive_j2_sizePostResult(o,i) = mySize
constitutive_j2_sizePostResults(i) = &
constitutive_j2_sizePostResults(i) + mySize
endif
enddo outputsLoop
constitutive_j2_sizeDotState(i) = 1_pInt
constitutive_j2_sizeState(i) = 1_pInt
constitutive_j2_Cslip_66(1:6,1:6,i) = lattice_symmetrizeC66(constitutive_j2_structureName(i),&
constitutive_j2_Cslip_66(1:6,1:6,i))
constitutive_j2_Cslip_66(1:6,1:6,i) = &
math_Mandel3333to66(math_Voigt66to3333(constitutive_j2_Cslip_66(1:6,1:6,i))) ! Literature data is Voigt, DAMASK uses Mandel
enddo instancesLoop
end subroutine constitutive_j2_init
!--------------------------------------------------------------------------------------------------
!> @brief sets the initial microstructural state for a given instance of this plasticity
!> @details initial microstructural state is set to the value specified by tau0
!--------------------------------------------------------------------------------------------------
pure function constitutive_j2_stateInit(myInstance)
implicit none
real(pReal), dimension(1) :: constitutive_j2_stateInit
integer(pInt), intent(in) :: myInstance !< number specifying the instance of the plasticity
constitutive_j2_stateInit = constitutive_j2_tau0(myInstance)
end function constitutive_j2_stateInit
!--------------------------------------------------------------------------------------------------
!> @brief sets the relevant state values for a given instance of this plasticity
!--------------------------------------------------------------------------------------------------
pure function constitutive_j2_aTolState(myInstance)
implicit none
integer(pInt), intent(in) :: myInstance !< number specifying the instance of the plasticity
real(pReal), dimension(constitutive_j2_sizeState(myInstance)) :: &
constitutive_j2_aTolState
constitutive_j2_aTolState = constitutive_j2_aTolResistance(myInstance)
end function constitutive_j2_aTolState
!--------------------------------------------------------------------------------------------------
!> @brief returns the homogenized elasticity matrix
!--------------------------------------------------------------------------------------------------
pure function constitutive_j2_homogenizedC(state,ipc,ip,el)
use prec, only: &
p_vec
use mesh, only: &
mesh_NcpElems, &
mesh_maxNips
use material, only: &
homogenization_maxNgrains,&
material_phase, &
phase_plasticityInstance
implicit none
real(pReal), dimension(6,6) :: &
constitutive_j2_homogenizedC
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
state !< microstructure state
constitutive_j2_homogenizedC = constitutive_j2_Cslip_66(1:6,1:6,&
phase_plasticityInstance(material_phase(ipc,ip,el)))
end function constitutive_j2_homogenizedC
!--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state
!> @details dummy subroutine, does nothing
!--------------------------------------------------------------------------------------------------
pure subroutine constitutive_j2_microstructure(temperature,state,ipc,ip,el)
use prec, only: &
p_vec
use mesh, only: &
mesh_NcpElems, &
mesh_maxNips
use material, only: &
homogenization_maxNgrains
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in) :: &
temperature !< temperature at IP
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
state !< microstructure state
end subroutine constitutive_j2_microstructure
!--------------------------------------------------------------------------------------------------
!> @brief calculates plastic velocity gradient and its tangent
!--------------------------------------------------------------------------------------------------
pure subroutine constitutive_j2_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,&
temperature,state,ipc,ip,el)
use prec, only: &
p_vec
use math, only: &
math_mul6x6, &
math_Mandel6to33, &
math_Plain3333to99, &
math_deviatoric33, &
math_mul33xx33
use mesh, only: &
mesh_NcpElems, &
mesh_maxNips
use material, only: &
homogenization_maxNgrains, &
material_phase, &
phase_plasticityInstance
implicit none
real(pReal), dimension(3,3), intent(out) :: &
Lp !< plastic velocity gradient
real(pReal), dimension(9,9), intent(out) :: &
dLp_dTstar99 !< derivative of Lp with respect to 2nd Piola Kirchhoff stress
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal), intent(in) :: &
temperature !< temperature at IP
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
state !< microstructure state
real(pReal), dimension(3,3) :: &
Tstar_dev_33 !< deviatoric part of the 2nd Piola Kirchhoff stress tensor as 2nd order tensor
real(pReal), dimension(3,3,3,3) :: &
dLp_dTstar_3333 !< derivative of Lp with respect to Tstar as 4th order tensor
real(pReal) :: &
gamma_dot, & !< strainrate
norm_Tstar_dev, & !< euclidean norm of Tstar_dev
squarenorm_Tstar_dev !< square of the euclidean norm of Tstar_dev
integer(pInt) :: &
matID, &
k, l, m, n
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
Tstar_dev_33 = math_deviatoric33(math_Mandel6to33(Tstar_v)) ! deviatoric part of 2nd Piola-Kirchhoff stress
squarenorm_Tstar_dev = math_mul33xx33(Tstar_dev_33,Tstar_dev_33)
norm_Tstar_dev = sqrt(squarenorm_Tstar_dev)
if (norm_Tstar_dev <= 0.0_pReal) then ! Tstar == 0 --> both Lp and dLp_dTstar are zero
Lp = 0.0_pReal
dLp_dTstar99 = 0.0_pReal
else
gamma_dot = constitutive_j2_gdot0(matID) * ( sqrt(1.5_pReal) * norm_Tstar_dev &
/ &!----------------------------------------------------------------------------------
(constitutive_j2_fTaylor(matID) * state(ipc,ip,el)%p(1)) ) **constitutive_j2_n(matID)
Lp = Tstar_dev_33/norm_Tstar_dev * gamma_dot/constitutive_j2_fTaylor(matID)
!--------------------------------------------------------------------------------------------------
! Calculation of the tangent of Lp
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dTstar_3333(k,l,m,n) = (constitutive_j2_n(matID)-1.0_pReal) * &
Tstar_dev_33(k,l)*Tstar_dev_33(m,n) / squarenorm_Tstar_dev
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLp_dTstar_3333(k,l,k,l) = dLp_dTstar_3333(k,l,k,l) + 1.0_pReal
dLp_dTstar99 = math_Plain3333to99(gamma_dot / constitutive_j2_fTaylor(matID) * &
dLp_dTstar_3333 / norm_Tstar_dev)
end if
end subroutine constitutive_j2_LpAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of microstructure
!--------------------------------------------------------------------------------------------------
pure function constitutive_j2_dotState(Tstar_v,temperature,state,ipc,ip,el)
use prec, only: &
p_vec
use math, only: &
math_mul6x6
use mesh, only: &
mesh_NcpElems, &
mesh_maxNips
use material, only: &
homogenization_maxNgrains, &
material_phase, &
phase_plasticityInstance
implicit none
real(pReal), dimension(1) :: &
constitutive_j2_dotState
real(pReal), dimension(6), intent(in):: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal), intent(in) :: &
temperature !< temperature at integration point
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
state !< microstructure state
real(pReal), dimension(6) :: &
Tstar_dev_v !< deviatoric part of the 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal) :: &
gamma_dot, & !< strainrate
hardening, & !< hardening coefficient
saturation, & !< saturation resistance
norm_Tstar_dev !< euclidean norm of Tstar_dev
integer(pInt) :: &
matID
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
!--------------------------------------------------------------------------------------------------
! norm of deviatoric part of 2nd Piola-Kirchhoff stress
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
Tstar_dev_v(4:6) = Tstar_v(4:6)
norm_Tstar_dev = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v))
!--------------------------------------------------------------------------------------------------
! strain rate
gamma_dot = constitutive_j2_gdot0(matID) * ( sqrt(1.5_pReal) * norm_Tstar_dev &
/ &!-----------------------------------------------------------------------------------
(constitutive_j2_fTaylor(matID) * state(ipc,ip,el)%p(1)) ) ** constitutive_j2_n(matID)
!--------------------------------------------------------------------------------------------------
! hardening coefficient
if (abs(gamma_dot) > 1e-12_pReal) then
if (constitutive_j2_tausat_SinhFitA(matID) == 0.0_pReal) then
saturation = constitutive_j2_tausat(matID)
else
saturation = ( constitutive_j2_tausat(matID) &
+ ( log( ( gamma_dot / constitutive_j2_tausat_SinhFitA(matID)&
)**(1.0_pReal / constitutive_j2_tausat_SinhFitD(matID))&
+ sqrt( ( gamma_dot / constitutive_j2_tausat_SinhFitA(matID) &
)**(2.0_pReal / constitutive_j2_tausat_SinhFitD(matID)) &
+ 1.0_pReal ) &
) & ! asinh(K) = ln(K + sqrt(K^2 +1))
)**(1.0_pReal / constitutive_j2_tausat_SinhFitC(matID)) &
/ ( constitutive_j2_tausat_SinhFitB(matID) &
* (gamma_dot / constitutive_j2_gdot0(matID))**(1.0_pReal / constitutive_j2_n(matID)) &
) &
)
endif
hardening = ( constitutive_j2_h0(matID) + constitutive_j2_h0_slopeLnRate(matID) * log(gamma_dot) ) &
* abs( 1.0_pReal - state(ipc,ip,el)%p(1)/saturation )**constitutive_j2_a(matID) &
* sign(1.0_pReal, 1.0_pReal - state(ipc,ip,el)%p(1)/saturation)
else
hardening = 0.0_pReal
endif
constitutive_j2_dotState = hardening * gamma_dot
end function constitutive_j2_dotState
!--------------------------------------------------------------------------------------------------
!> @brief (instantaneous) incremental change of microstructure
!> @details dummy function, returns 0.0
!--------------------------------------------------------------------------------------------------
pure function constitutive_j2_deltaState(Tstar_v,temperature,state,ipc,ip,el)
use prec, only: &
p_vec
use mesh, only: &
mesh_NcpElems, &
mesh_maxNips
use material, only: &
homogenization_maxNgrains, &
material_phase, &
phase_plasticityInstance
implicit none
real(pReal), dimension(6), intent(in):: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal), intent(in) :: &
Temperature !< temperature at integration point
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
state !< microstructure state
real(pReal), dimension(constitutive_j2_sizeDotState(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
constitutive_j2_deltaState
constitutive_j2_deltaState = 0.0_pReal
end function constitutive_j2_deltaState
!--------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of temperature
!> @details dummy function, returns 0.0
!--------------------------------------------------------------------------------------------------
real(pReal) pure function constitutive_j2_dotTemperature(Tstar_v,temperature,state,ipc,ip,el)
use prec, only: &
p_vec
use mesh, only: &
mesh_NcpElems, &
mesh_maxNips
use material, only: &
homogenization_maxNgrains
implicit none
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal), intent(in) :: &
temperature !< temperature at integration point
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
state !< microstructure state
constitutive_j2_dotTemperature = 0.0_pReal
end function constitutive_j2_dotTemperature
!--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results
!--------------------------------------------------------------------------------------------------
pure function constitutive_j2_postResults(Tstar_v,temperature,dt,state,ipc,ip,el)
use prec, only: &
p_vec
use math, only: &
math_mul6x6
use mesh, only: &
mesh_NcpElems, &
mesh_maxNips
use material, only: &
homogenization_maxNgrains, &
material_phase, &
phase_plasticityInstance, &
phase_Noutput
implicit none
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal), intent(in) :: &
temperature, & !< temperature at integration point
dt
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
state !< microstructure state
real(pReal), dimension(constitutive_j2_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
constitutive_j2_postResults
real(pReal), dimension(6) :: &
Tstar_dev_v ! deviatoric part of the 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal) :: &
norm_Tstar_dev ! euclidean norm of Tstar_dev
integer(pInt) :: &
matID, &
o, &
c
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
!--------------------------------------------------------------------------------------------------
! calculate deviatoric part of 2nd Piola-Kirchhoff stress and its norm
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
Tstar_dev_v(4:6) = Tstar_v(4:6)
norm_Tstar_dev = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v))
c = 0_pInt
constitutive_j2_postResults = 0.0_pReal
outputsLoop: do o = 1_pInt,phase_Noutput(material_phase(ipc,ip,el))
select case(constitutive_j2_output(o,matID))
case ('flowstress')
constitutive_j2_postResults(c+1_pInt) = state(ipc,ip,el)%p(1)
c = c + 1_pInt
case ('strainrate')
constitutive_j2_postResults(c+1_pInt) = &
constitutive_j2_gdot0(matID) * ( sqrt(1.5_pReal) * norm_Tstar_dev &
/ &!----------------------------------------------------------------------------------
(constitutive_j2_fTaylor(matID) * state(ipc,ip,el)%p(1)) ) ** constitutive_j2_n(matID)
c = c + 1_pInt
end select
enddo outputsLoop
end function constitutive_j2_postResults
end module constitutive_j2