!-------------------------------------------------------------------------------------------------- ! $Id: DAMASK_spectral_SolverAL.f90 1654 2012-08-03 09:25:48Z MPIE\m.diehl $ !-------------------------------------------------------------------------------------------------- !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief AL scheme solver !-------------------------------------------------------------------------------------------------- module DAMASK_spectral_SolverAL use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment) use prec, only: & pInt, & pReal use math, only: & math_I3 use DAMASK_spectral_Utilities, only: & solutionState implicit none character (len=*), parameter, public :: & DAMASK_spectral_SolverAL_label = 'AL' !-------------------------------------------------------------------------------------------------- ! derived types type solutionParams real(pReal), dimension(3,3) :: P_BC, rotation_BC real(pReal) :: timeinc end type solutionParams type(solutionParams), private :: params !-------------------------------------------------------------------------------------------------- ! PETSc data SNES, private :: snes DM, private :: da Vec, private :: x,r PetscMPIInt, private :: rank integer(pInt), private :: iter PetscInt, private :: xs,xm,gxs,gxm PetscInt, private :: ys,ym,gys,gym PetscInt, private :: zs,zm,gzs,gzm character(len=1024), private :: PetSc_options = '-snes_type ngmres -snes_ngmres_anderson -snes_monitor -snes_view' !-------------------------------------------------------------------------------------------------- ! common pointwise data real(pReal), private, dimension(:,:,:,:,:), allocatable :: F, F_lastInc, F_lambda, F_lambda_lastInc, P real(pReal), private, dimension(:,:,:,:), allocatable :: coordinates real(pReal), private, dimension(:,:,:), allocatable :: temperature !-------------------------------------------------------------------------------------------------- ! stress, stiffness and compliance average etc. real(pReal), private, dimension(3,3) :: & F_aim = math_I3, & F_aim_lastInc = math_I3, & P_av real(pReal), private, dimension(3,3,3,3) :: & C = 0.0_pReal, & S = 0.0_pReal, & C_scale = 0.0_pReal, & S_scale = 0.0_pReal real(pReal), private :: err_stress, err_f, err_p logical, private :: ForwardData real(pReal), private, dimension(3,3) :: & mask_stress = 0.0_pReal contains !-------------------------------------------------------------------------------------------------- !> @brief allocates all neccessary fields and fills them with data, potentially from restart info !-------------------------------------------------------------------------------------------------- subroutine AL_init() use IO, only: & IO_read_JobBinaryFile, & IO_write_JobBinaryFile use FEsolving, only: & restartInc use DAMASK_interface, only: & getSolverJobName use DAMASK_spectral_Utilities, only: & Utilities_init, & Utilities_constitutiveResponse, & Utilities_updateGamma, & debugrestart use mesh, only: & res, & geomdim implicit none integer(pInt) :: i,j,k real(pReal), dimension(3,3) :: temp33_Real PetscErrorCode ierr_psc call Utilities_init() write(6,'(a)') '' write(6,'(a)') ' <<<+- DAMASK_spectral_solverAL init -+>>>' write(6,'(a)') ' $Id: DAMASK_spectral_SolverAL.f90 1654 2012-08-03 09:25:48Z MPIE\m.diehl $' #include "compilation_info.f90" write(6,'(a)') '' allocate (F ( res(1), res(2),res(3),3,3), source = 0.0_pReal) allocate (F_lastInc ( res(1), res(2),res(3),3,3), source = 0.0_pReal) allocate (F_lambda ( res(1), res(2),res(3),3,3), source = 0.0_pReal) allocate (F_lambda_lastInc(res(1),res(2),res(3),3,3), source = 0.0_pReal) allocate (P ( res(1), res(2),res(3),3,3), source = 0.0_pReal) allocate (coordinates( res(1), res(2),res(3),3), source = 0.0_pReal) allocate (temperature( res(1), res(2),res(3)), source = 0.0_pReal) !-------------------------------------------------------------------------------------------------- ! init fields if (restartInc == 1_pInt) then ! no deformation (no restart) do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) F(i,j,k,1:3,1:3) = math_I3 F_lastInc(i,j,k,1:3,1:3) = math_I3 F_lambda(i,j,k,1:3,1:3) = math_I3 F_lambda_lastInc(i,j,k,1:3,1:3) = math_I3 coordinates(i,j,k,1:3) = geomdim/real(res,pReal)*real([i,j,k],pReal) & - geomdim/real(2_pInt*res,pReal) enddo; enddo; enddo elseif (restartInc > 1_pInt) then ! using old values from file if (debugRestart) write(6,'(a,i6,a)') 'Reading values of increment ',& restartInc - 1_pInt,' from file' call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',& trim(getSolverJobName()),size(F)) read (777,rec=1) F close (777) call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad_lastInc',& trim(getSolverJobName()),size(F_lastInc)) read (777,rec=1) F_lastInc close (777) call IO_read_jobBinaryFile(777,'convergedSpectralDefgradLambda',& trim(getSolverJobName()),size(F_lambda)) read (777,rec=1) F close (777) call IO_read_jobBinaryFile(777,'convergedSpectralDefgradLambda_lastInc',& trim(getSolverJobName()),size(F_lambda_lastInc)) read (777,rec=1) F_lastInc close (777) call IO_read_jobBinaryFile(777,'F_aim',trim(getSolverJobName()),size(F_aim)) read (777,rec=1) F_aim close (777) call IO_read_jobBinaryFile(777,'F_aim_lastInc',trim(getSolverJobName()),size(F_aim_lastInc)) read (777,rec=1) F_aim_lastInc close (777) coordinates = 0.0 ! change it later!!! endif call constitutiveResponse(coordinates,F,F_lastInc,temperature,0.0_pReal,& P,C,P_av,.false.,math_I3) !-------------------------------------------------------------------------------------------------- ! reference stiffness if (restartInc == 1_pInt) then call IO_write_jobBinaryFile(777,'C_ref',size(C)) write (777,rec=1) C close(777) elseif (restartInc > 1_pInt) then call IO_read_jobBinaryFile(777,'C_ref',trim(getSolverJobName()),size(C)) read (777,rec=1) C close (777) endif call Utilities_updateGamma(C) C_scale = C S_scale = math_invSym3333(C) !-------------------------------------------------------------------------------------------------- ! PETSc Init call PetscInitialize(PETSC_NULL_CHARACTER,ierr_psc) call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr_psc) call SNESCreate(PETSC_COMM_WORLD,snes,ierr_psc) call DMDACreate3d(PETSC_COMM_WORLD, & DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE, & DMDA_STENCIL_BOX,res(1),res(2),res(3),PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE, & 18,1,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,da,ierr_psc) call DMCreateGlobalVector(da,x,ierr_psc) call VecDuplicate(x,r,ierr_psc) call DMDASetLocalFunction(da,AL_FormRHS,ierr_psc) call SNESSetDM(snes,da,ierr_psc) call SNESSetFunction(snes,r,SNESDMDAComputeFunction,da,ierr_psc) call SNESSetConvergenceTest(snes,AL_converged,dummy,PETSC_NULL_FUNCTION,ierr_psc) call PetscOptionsInsertString(PetSc_options,ierr_psc) call SNESSetFromOptions(snes,ierr_psc) call DMDAGetCorners(da,xs,ys,zs,xm,ym,zm,ierr_psc) call DMDAGetCorners(da,gxs,gys,gzs,gxm,gym,gzm,ierr_psc) xs = xs+1; gxs = gxs+1 xm = xm-1; gxm = gxm-1 ys = ys+1; gys = gys+1 ym = ym-1; gym = gym-1 zs = zs+1; gzs = gzs+1 zm = zm-1; gzm = gzm-1 end subroutine AL_init !-------------------------------------------------------------------------------------------------- !> @brief solution for the AL scheme with internal iterations !-------------------------------------------------------------------------------------------------- type(solutionState) function AL_solution(guessmode,timeinc,timeinc_old,P_BC,F_BC,temperature_bc,rotation_BC) use numerics, only: & update_gamma use math, only: & math_mul33x33 ,& math_rotate_backward33, & deformed_fft use mesh, only: & res,& geomdim use IO, only: & IO_write_JobBinaryFile use DAMASK_spectral_Utilities, only: & boundaryCondition, & Utilities_forwardField, & Utilities_maskedCompliance, & Utilities_updateGamma use FEsolving, only: & restartWrite implicit none !-------------------------------------------------------------------------------------------------- ! input data for solution real(pReal), intent(in) :: timeinc, timeinc_old, temperature_bc, guessmode type(boundaryCondition), intent(in) :: P_BC,F_BC real(pReal), dimension(3,3), intent(in) :: rotation_BC real(pReal), dimension(3,3) :: deltaF_aim, & F_aim_lab, & F_aim_lab_lastIter !-------------------------------------------------------------------------------------------------- ! loop variables, convergence etc. real(pReal) :: err_div, err_stress integer(pInt) :: iter, row, column, i, j, k real(pReal) :: defgradDet, defgradDetMax, defgradDetMin real(pReal), dimension(3,3) :: temp33_Real !-------------------------------------------------------------------------------------------------- ! PetscScalar, pointer :: xx_psc(:) PetscErrorCode ierr_psc !-------------------------------------------------------------------------------------------------- ! restart information for spectral solver if (restartWrite) then write(6,'(a)') 'writing converged results for restart' call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(F_lastInc)) write (777,rec=1) F_LastInc close (777) call IO_write_jobBinaryFile(777,'C',size(C)) write (777,rec=1) C close(777) endif !-------------------------------------------------------------------------------------------------- ! winding forward of deformation aim in loadcase system if (F_BC%myType=='l') then ! calculate deltaF_aim from given L and current F deltaF_aim = timeinc * F_BC%maskFloat * math_mul33x33(F_BC%values, F_aim) elseif(F_BC%myType=='fdot') then ! deltaF_aim = fDot *timeinc where applicable deltaF_aim = timeinc * F_BC%maskFloat * F_BC%values endif temp33_Real = F_aim F_aim = F_aim & + guessmode * P_BC%maskFloat * (F_aim - F_aim_lastInc)*timeinc/timeinc_old & + deltaF_aim F_aim_lastInc = temp33_Real F_aim_lab = math_rotate_backward33(F_aim,rotation_BC) ! boundary conditions from load frame into lab (Fourier) frame !-------------------------------------------------------------------------------------------------- ! update local deformation gradient and coordinates deltaF_aim = math_rotate_backward33(deltaF_aim,rotation_BC) call Utilities_forwardField(deltaF_aim,timeinc,timeinc_old,guessmode,F_lastInc,F) call Utilities_forwardField(deltaF_aim,timeinc,timeinc_old,guessmode,F_lambda_lastInc,F_lambda) call deformed_fft(res,geomdim,math_rotate_backward33(F_aim,rotation_BC),1.0_pReal,F_lastInc,coordinates) !-------------------------------------------------------------------------------------------------- ! update stiffness (and gamma operator) S = Utilities_maskedCompliance(rotation_BC,P_BC%maskLogical,C) if (update_gamma) call Utilities_updateGamma(C) iter = 0_pInt ForwardData = .True. mask_stress = P_BC%maskFloat params%P_BC = P_BC%values params%rotation_BC = rotation_BC params%timeinc = timeinc call VecGetArrayF90(x,xx_psc,ierr_psc) call AL_InitialGuess(xx_psc) call VecRestoreArrayF90(x,xx_psc,ierr_psc) call SNESSolve(snes,PETSC_NULL_OBJECT,x,ierr_psc) end function AL_solution ! ------------------------------------------------------------------- subroutine AL_InitialGuess(xx_psc) implicit none #include ! Input/output variables: PetscScalar xx_psc(0:17,gxs:(gxs+gxm),gys:(gys+gym),gxs:(gzs+gzm)) integer(pInt) :: i, j, k ! Compute function over the locally owned part of the grid do k=gzs,gzs+gzm; do j=gys,gys+gym; do i=gxs,gxs+gxm xx_psc(0,i,j,k) = F(i,j,k,1,1) xx_psc(1,i,j,k) = F(i,j,k,1,2) xx_psc(2,i,j,k) = F(i,j,k,1,3) xx_psc(3,i,j,k) = F(i,j,k,2,1) xx_psc(4,i,j,k) = F(i,j,k,2,2) xx_psc(5,i,j,k) = F(i,j,k,2,3) xx_psc(6,i,j,k) = F(i,j,k,3,1) xx_psc(7,i,j,k) = F(i,j,k,3,2) xx_psc(8,i,j,k) = F(i,j,k,3,3) xx_psc(9,i,j,k) = F_lambda(i,j,k,1,1) xx_psc(10,i,j,k) = F_lambda(i,j,k,1,2) xx_psc(11,i,j,k) = F_lambda(i,j,k,1,3) xx_psc(12,i,j,k) = F_lambda(i,j,k,2,1) xx_psc(13,i,j,k) = F_lambda(i,j,k,2,2) xx_psc(14,i,j,k) = F_lambda(i,j,k,2,3) xx_psc(15,i,j,k) = F_lambda(i,j,k,3,1) xx_psc(16,i,j,k) = F_lambda(i,j,k,3,2) xx_psc(17,i,j,k) = F_lambda(i,j,k,3,3) enddo; enddo; enddo return end subroutine AL_InitialGuess ! --------------------------------------------------------------------- ! ! Input Parameter: ! x - local vector data ! ! Output Parameters: ! f - local vector data, f(x) ! ierr - error code ! ! Notes: ! This routine uses standard Fortran-style computations over a 3-dim array. ! subroutine AL_FormRHS(in,x_scal,f_scal,dummy,ierr_psc) use numerics, only: & itmax, & itmin use math, only: & math_rotate_backward33, & math_transpose33, & math_mul3333xx33 use mesh, only: & res use DAMASK_spectral_Utilities, only: & field_real, & Utilities_forwardFFT, & Utilities_fourierConvolution, & Utilities_backwardFFT, & Utilities_constitutiveResponse implicit none #include integer(pInt) :: i,j,k Input/output variables: DMDALocalInfo in(DMDA_LOCAL_INFO_SIZE) PetscScalar x_scal(0:17,XG_RANGE,YG_RANGE,ZG_RANGE) PetscScalar f_scal(0:17,X_RANGE,Y_RANGE,Z_RANGE) real(pReal), dimension (3,3) :: temp33_real PetscObject dummy PetscErrorCode ierr_psc iter = iter + 1_pInt !-------------------------------------------------------------------------------------------------- ! report begin of new iteration write(6,'(a)') '' write(6,'(a)') '==================================================================' write(6,'(3(a,i6.6))') ' @ Iter. ',itmin,' < ',iter,' < ',itmax write(6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'deformation gradient aim =',& math_transpose33(F_aim) do k=gzs,gzs+gzm; do j=gys,gys+gym; do i=gxs,gxs+gxm F(i,j,k,1,1) = x_scal(0,i,j,k) F(i,j,k,1,2) = x_scal(1,i,j,k) F(i,j,k,1,3) = x_scal(2,i,j,k) F(i,j,k,2,1) = x_scal(3,i,j,k) F(i,j,k,2,2) = x_scal(4,i,j,k) F(i,j,k,2,3) = x_scal(5,i,j,k) F(i,j,k,3,1) = x_scal(6,i,j,k) F(i,j,k,3,2) = x_scal(7,i,j,k) F(i,j,k,3,3) = x_scal(8,i,j,k) F_lambda(i,j,k,1,1) = x_scal(9,i,j,k) F_lambda(i,j,k,1,2) = x_scal(10,i,j,k) F_lambda(i,j,k,1,3) = x_scal(11,i,j,k) F_lambda(i,j,k,2,1) = x_scal(12,i,j,k) F_lambda(i,j,k,2,2) = x_scal(13,i,j,k) F_lambda(i,j,k,2,3) = x_scal(14,i,j,k) F_lambda(i,j,k,3,1) = x_scal(15,i,j,k) F_lambda(i,j,k,3,2) = x_scal(16,i,j,k) F_lambda(i,j,k,3,3) = x_scal(17,i,j,k) enddo; enddo; enddo !-------------------------------------------------------------------------------------------------- ! evaluate constitutive response call constitutiveResponse(coordinates,F,F_lastInc,temperature,params%timeinc,& P,C,P_av,ForwardData,params%rotation_BC) ForwardData = .False. !-------------------------------------------------------------------------------------------------- ! stress BC handling F_aim = F_aim - math_mul3333xx33(S, ((P_av - params%P_BC))) !S = 0.0 for no bc err_stress = maxval(mask_stress * (P_av - params%P_BC)) ! mask = 0.0 for no bc F_aim_lab = math_rotate_backward33(F_aim,params%rotation_BC) ! boundary conditions from load frame into lab (Fourier) frame !-------------------------------------------------------------------------------------------------- ! doing Fourier transform field_real = 0.0_pReal do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) field_real(i,j,k,1:3,1:3) = math_mul3333xx33(C_scale,F_lambda(i,j,k,1:3,1:3)-F(i,j,k,1:3,1:3)) enddo; enddo; enddo call Utilities_forwardFFT() call Utilities_fourierConvolution(F_aim_lab) call Utilities_backwardFFT() err_f = 0.0_pReal err_p = 0.0_pReal do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) temp33_real = field_real(i,j,k,1:3,1:3) - F(i,j,k,1:3,1:3) err_f = err_f + sum(temp33_real*temp33_real) temp33_real = F_lambda(i,j,k,1:3,1:3) - & math_mul3333xx33(S_scale,P(i,j,k,1:3,1:3)) + math_I3 err_p = err_p + sum(temp33_real*temp33_real) enddo; enddo; enddo err_f = wgt*sqrt(err_f)/sum((F_aim-math_I3)*(F_aim-math_I3))) err_p = wgt*sqrt(err_p)/sum((F_aim-math_I3)*(F_aim-math_I3))) do k=zs,ze; do j=ys,ye; do i=xs,xe temp33_real = math_mul3333xx33(S_scale,P(i,j,k,1:3,1:3)) + math_I3 - F_lambda(i,j,k,1:3,1:3) & + F(i,j,k,1:3,1:3) - field_real(i,j,k,1:3,1:3) f_scal(0,i,j,k) = temp33_real(1,1) f_scal(1,i,j,k) = temp33_real(1,2) f_scal(2,i,j,k) = temp33_real(1,3) f_scal(3,i,j,k) = temp33_real(2,1) f_scal(4,i,j,k) = temp33_real(2,2) f_scal(5,i,j,k) = temp33_real(2,3) f_scal(6,i,j,k) = temp33_real(3,1) f_scal(7,i,j,k) = temp33_real(3,2) f_scal(8,i,j,k) = temp33_real(3,3) f_scal(9,i,j,k) = F(i,j,k,1,1) - field_real(i,j,k,1,1) f_scal(10,i,j,k) = F(i,j,k,1,2) - field_real(i,j,k,1,2) f_scal(11,i,j,k) = F(i,j,k,1,3) - field_real(i,j,k,1,3) f_scal(12,i,j,k) = F(i,j,k,2,1) - field_real(i,j,k,2,1) f_scal(13,i,j,k) = F(i,j,k,2,2) - field_real(i,j,k,2,2) f_scal(14,i,j,k) = F(i,j,k,2,3) - field_real(i,j,k,2,3) f_scal(15,i,j,k) = F(i,j,k,3,1) - field_real(i,j,k,3,1) f_scal(16,i,j,k) = F(i,j,k,3,2) - field_real(i,j,k,3,2) f_scal(17,i,j,k) = F(i,j,k,3,3) - field_real(i,j,k,3,3) enddo; enddo; enddo return end subroutine AL_FormRHS ! --------------------------------------------------------------------- ! User defined convergence check ! subroutine AL_converged(snes,it,xnorm,snorm,fnorm,reason,dummy,ierr_psc) use numerics, only: & itmax, & itmin, & err_f_tol, & err_p_tol, & err_stress_tolrel, & err_stress_tolabs implicit none #include ! Input/output variables: SNES snes PetscInt it PetscReal xnorm, snorm, fnorm SNESConvergedReason reason PetscObject dummy PetscErrorCode ierr_psc logical :: Converged Converged = (iter < itmax) .and. (iter > itmin) .and. & all([ err_f/sqrt(sum((F_aim-math_I3)*(F_aim-math_I3)))/err_f_tol, & err_p/sqrt(sum((F_aim-math_I3)*(F_aim-math_I3)))/err_p_tol, & err_stress/min(maxval(abs(P_av))*err_stress_tolrel,err_stress_tolabs)] < 1.0_pReal) if (Converged) then reason = 1 else reason = 0 endif write(6,'(a,es14.7)') 'error stress BC = ', err_stress/min(maxval(abs(P_av))*err_stress_tolrel,err_stress_tolabs) write(6,'(a,es14.7)') 'error F = ', err_f/sqrt(sum((F_aim-math_I3)*(F_aim-math_I3)))/err_f_tol write(6,'(a,es14.7)') 'error P = ', err_p/sqrt(sum((F_aim-math_I3)*(F_aim-math_I3)))/err_p_tol return end subroutine AL_converged subroutine AL_destroy() implicit none call VecDestroy(x,ierr_psc) call VecDestroy(r,ierr_psc) call SNESDestroy(snes,ierr_psc) call DMDestroy(da,ierr_psc) call PetscFinalize(ierr_psc) call Utilities_destroy() end subroutine AL_destroy end module DAMASK_spectral_SolverAL