!-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief elasticity, plasticity, damage & thermal internal microstructure state !-------------------------------------------------------------------------------------------------- module phase use prec use constants use math use rotations use polynomials use IO use config use material use results use lattice use discretization use parallelization use HDF5 use HDF5_utilities implicit none private character(len=2), allocatable, dimension(:) :: phase_lattice real(pReal), allocatable, dimension(:) :: phase_cOverA real(pReal), allocatable, dimension(:) :: phase_rho type(tRotationContainer), dimension(:), allocatable :: & phase_O_0, & phase_O type :: tNumerics integer :: & iJacoLpresiduum, & !< frequency of Jacobian update of residuum in Lp nState, & !< state loop limit nStress !< stress loop limit real(pReal) :: & subStepMinCryst, & !< minimum (relative) size of sub-step allowed during cutback subStepSizeCryst, & !< size of first substep when cutback subStepSizeLp, & !< size of first substep when cutback in Lp calculation subStepSizeLi, & !< size of first substep when cutback in Li calculation stepIncreaseCryst, & !< increase of next substep size when previous substep converged rtol_crystalliteState, & !< relative tolerance in state loop rtol_crystalliteStress, & !< relative tolerance in stress loop atol_crystalliteStress !< absolute tolerance in stress loop end type tNumerics type(tNumerics) :: num ! numerics parameters. Better name? type :: tDebugOptions logical :: & basic, & extensive, & selective integer :: & element, & ip, & grain end type tDebugOptions type(tPlasticState), allocatable, dimension(:), public :: & plasticState type(tState), allocatable, dimension(:), public :: & damageState interface ! == cleaned:begin ================================================================================= module subroutine mechanical_init(phases) class(tNode), pointer :: phases end subroutine mechanical_init module subroutine damage_init end subroutine damage_init module subroutine thermal_init(phases) class(tNode), pointer :: phases end subroutine thermal_init module subroutine mechanical_results(group,ph) character(len=*), intent(in) :: group integer, intent(in) :: ph end subroutine mechanical_results module subroutine damage_results(group,ph) character(len=*), intent(in) :: group integer, intent(in) :: ph end subroutine damage_results module subroutine mechanical_forward() end subroutine mechanical_forward module subroutine damage_forward() end subroutine damage_forward module subroutine thermal_forward() end subroutine thermal_forward module subroutine mechanical_restore(ce,includeL) integer, intent(in) :: ce logical, intent(in) :: includeL end subroutine mechanical_restore module subroutine damage_restore(ce) integer, intent(in) :: ce end subroutine damage_restore module function phase_mechanical_dPdF(Delta_t,co,ce) result(dPdF) real(pReal), intent(in) :: Delta_t integer, intent(in) :: & co, & !< counter in constituent loop ce real(pReal), dimension(3,3,3,3) :: dPdF end function phase_mechanical_dPdF module subroutine mechanical_restartWrite(groupHandle,ph) integer(HID_T), intent(in) :: groupHandle integer, intent(in) :: ph end subroutine mechanical_restartWrite module subroutine thermal_restartWrite(groupHandle,ph) integer(HID_T), intent(in) :: groupHandle integer, intent(in) :: ph end subroutine thermal_restartWrite module subroutine mechanical_restartRead(groupHandle,ph) integer(HID_T), intent(in) :: groupHandle integer, intent(in) :: ph end subroutine mechanical_restartRead module subroutine thermal_restartRead(groupHandle,ph) integer(HID_T), intent(in) :: groupHandle integer, intent(in) :: ph end subroutine thermal_restartRead module function mechanical_S(ph,en) result(S) integer, intent(in) :: ph,en real(pReal), dimension(3,3) :: S end function mechanical_S module function mechanical_L_p(ph,en) result(L_p) integer, intent(in) :: ph,en real(pReal), dimension(3,3) :: L_p end function mechanical_L_p module function mechanical_F_e(ph,en) result(F_e) integer, intent(in) :: ph,en real(pReal), dimension(3,3) :: F_e end function mechanical_F_e module function phase_F(co,ce) result(F) integer, intent(in) :: co, ce real(pReal), dimension(3,3) :: F end function phase_F module function phase_P(co,ce) result(P) integer, intent(in) :: co, ce real(pReal), dimension(3,3) :: P end function phase_P pure module function thermal_T(ph,en) result(T) integer, intent(in) :: ph,en real(pReal) :: T end function thermal_T module function thermal_dot_T(ph,en) result(dot_T) integer, intent(in) :: ph,en real(pReal) :: dot_T end function thermal_dot_T module function damage_phi(ph,en) result(phi) integer, intent(in) :: ph,en real(pReal) :: phi end function damage_phi module subroutine phase_set_F(F,co,ce) real(pReal), dimension(3,3), intent(in) :: F integer, intent(in) :: co, ce end subroutine phase_set_F module subroutine phase_thermal_setField(T,dot_T, co,ce) real(pReal), intent(in) :: T, dot_T integer, intent(in) :: co, ce end subroutine phase_thermal_setField module subroutine phase_set_phi(phi,co,ce) real(pReal), intent(in) :: phi integer, intent(in) :: co, ce end subroutine phase_set_phi module function phase_mu_phi(co,ce) result(mu) integer, intent(in) :: co, ce real(pReal) :: mu end function phase_mu_phi module function phase_K_phi(co,ce) result(K) integer, intent(in) :: co, ce real(pReal), dimension(3,3) :: K end function phase_K_phi module function phase_mu_T(co,ce) result(mu) integer, intent(in) :: co, ce real(pReal) :: mu end function phase_mu_T module function phase_K_T(co,ce) result(K) integer, intent(in) :: co, ce real(pReal), dimension(3,3) :: K end function phase_K_T ! == cleaned:end =================================================================================== module function phase_thermal_constitutive(Delta_t,ph,en) result(converged_) real(pReal), intent(in) :: Delta_t integer, intent(in) :: ph, en logical :: converged_ end function phase_thermal_constitutive module function phase_damage_constitutive(Delta_t,co,ip,el) result(converged_) real(pReal), intent(in) :: Delta_t integer, intent(in) :: co, ip, el logical :: converged_ end function phase_damage_constitutive module function phase_mechanical_constitutive(Delta_t,co,ip,el) result(converged_) real(pReal), intent(in) :: Delta_t integer, intent(in) :: co, ip, el logical :: converged_ end function phase_mechanical_constitutive !ToDo: Merge all the stiffness functions module function phase_homogenizedC66(ph,en) result(C) integer, intent(in) :: ph, en real(pReal), dimension(6,6) :: C end function phase_homogenizedC66 module function phase_damage_C66(C66,ph,en) result(C66_degraded) real(pReal), dimension(6,6), intent(in) :: C66 integer, intent(in) :: ph,en real(pReal), dimension(6,6) :: C66_degraded end function phase_damage_C66 module function phase_f_phi(phi,co,ce) result(f) integer, intent(in) :: ce,co real(pReal), intent(in) :: & phi !< damage parameter real(pReal) :: & f end function phase_f_phi module function phase_f_T(ph,en) result(f) integer, intent(in) :: ph, en real(pReal) :: f end function phase_f_T module subroutine plastic_nonlocal_updateCompatibility(orientation,ph,i,e) integer, intent(in) :: & ph, & i, & e type(tRotationContainer), dimension(:), intent(in) :: orientation end subroutine plastic_nonlocal_updateCompatibility module subroutine plastic_dependentState(co,ip,el) integer, intent(in) :: & co, & !< component-ID of integration point ip, & !< integration point el !< element end subroutine plastic_dependentState module subroutine damage_anisobrittle_LiAndItsTangent(Ld, dLd_dTstar, S, ph,en) integer, intent(in) :: ph, en real(pReal), intent(in), dimension(3,3) :: & S real(pReal), intent(out), dimension(3,3) :: & Ld !< damage velocity gradient real(pReal), intent(out), dimension(3,3,3,3) :: & dLd_dTstar !< derivative of Ld with respect to Tstar (4th-order tensor) end subroutine damage_anisobrittle_LiAndItsTangent end interface type(tDebugOptions) :: debugConstitutive #if __INTEL_COMPILER >= 1900 public :: & prec, & math, & rotations, & IO, & config, & material, & results, & lattice, & discretization, & HDF5_utilities #endif public :: & phase_init, & phase_homogenizedC66, & phase_f_phi, & phase_f_T, & phase_K_phi, & phase_K_T, & phase_mu_phi, & phase_mu_T, & phase_results, & phase_allocateState, & phase_forward, & phase_restore, & plastic_nonlocal_updateCompatibility, & converged, & crystallite_init, & phase_mechanical_constitutive, & phase_thermal_constitutive, & phase_damage_constitutive, & phase_mechanical_dPdF, & crystallite_orientations, & crystallite_push33ToRef, & phase_restartWrite, & phase_restartRead, & phase_thermal_setField, & phase_set_phi, & phase_P, & phase_set_F, & phase_F contains !-------------------------------------------------------------------------------------------------- !> @brief Initialize constitutive models for individual physics !-------------------------------------------------------------------------------------------------- subroutine phase_init integer :: & ph, ce, co, ma class (tNode), pointer :: & debug_constitutive, & materials, & phases, & phase print'(/,1x,a)', '<<<+- phase init -+>>>'; flush(IO_STDOUT) debug_constitutive => config_debug%get('phase', defaultVal=emptyList) debugConstitutive%basic = debug_constitutive%contains('basic') debugConstitutive%extensive = debug_constitutive%contains('extensive') debugConstitutive%selective = debug_constitutive%contains('selective') debugConstitutive%element = config_debug%get_asInt('element', defaultVal = 1) debugConstitutive%ip = config_debug%get_asInt('integrationpoint',defaultVal = 1) debugConstitutive%grain = config_debug%get_asInt('constituent', defaultVal = 1) materials => config_material%get('material') phases => config_material%get('phase') allocate(phase_lattice(phases%length)) allocate(phase_cOverA(phases%length),source=-1.0_pReal) allocate(phase_rho(phases%length)) allocate(phase_O_0(phases%length)) do ph = 1,phases%length phase => phases%get(ph) phase_lattice(ph) = phase%get_asString('lattice') if (all(phase_lattice(ph) /= ['cF','cI','hP','tI'])) & call IO_error(130,ext_msg='phase_init: '//phase%get_asString('lattice')) if (any(phase_lattice(ph) == ['hP','tI'])) & phase_cOverA(ph) = phase%get_asFloat('c/a') phase_rho(ph) = phase%get_asFloat('rho',defaultVal=0.0_pReal) allocate(phase_O_0(ph)%data(count(material_phaseID==ph))) end do do ce = 1, size(material_phaseID,2) ma = discretization_materialAt((ce-1)/discretization_nIPs+1) do co = 1,homogenization_Nconstituents(material_homogenizationID(ce)) ph = material_phaseID(co,ce) phase_O_0(ph)%data(material_phaseEntry(co,ce)) = material_O_0(ma)%data(co) end do end do allocate(phase_O(phases%length)) do ph = 1,phases%length phase_O(ph)%data = phase_O_0(ph)%data end do call mechanical_init(phases) call damage_init call thermal_init(phases) end subroutine phase_init !-------------------------------------------------------------------------------------------------- !> @brief Allocate the components of the state structure for a given phase !-------------------------------------------------------------------------------------------------- subroutine phase_allocateState(state, & NEntries,sizeState,sizeDotState,sizeDeltaState,offsetDeltaState) class(tState), intent(inout) :: & state integer, intent(in) :: & NEntries, & sizeState, & sizeDotState, & sizeDeltaState integer, intent(in), optional :: & offsetDeltaState state%sizeState = sizeState state%sizeDotState = sizeDotState state%sizeDeltaState = sizeDeltaState if (present(offsetDeltaState)) then state%offsetDeltaState = offsetDeltaState ! ToDo: this is a fix for broken nonlocal else state%offsetDeltaState = sizeState-sizeDeltaState ! deltaState occupies latter part of state by definition end if allocate(state%atol (sizeState), source=0.0_pReal) allocate(state%state0 (sizeState,NEntries), source=0.0_pReal) allocate(state%state (sizeState,NEntries), source=0.0_pReal) allocate(state%dotState (sizeDotState,NEntries), source=0.0_pReal) allocate(state%deltaState (sizeDeltaState,NEntries), source=0.0_pReal) end subroutine phase_allocateState !-------------------------------------------------------------------------------------------------- !> @brief Restore data after homog cutback. !-------------------------------------------------------------------------------------------------- subroutine phase_restore(ce,includeL) logical, intent(in) :: includeL integer, intent(in) :: ce call mechanical_restore(ce,includeL) call damage_restore(ce) end subroutine phase_restore !-------------------------------------------------------------------------------------------------- !> @brief Forward data after successful increment. !-------------------------------------------------------------------------------------------------- subroutine phase_forward() call mechanical_forward() call damage_forward() call thermal_forward() end subroutine phase_forward !-------------------------------------------------------------------------------------------------- !> @brief writes constitutive results to HDF5 output file !-------------------------------------------------------------------------------------------------- subroutine phase_results() integer :: ph character(len=:), allocatable :: group call results_closeGroup(results_addGroup('/current/phase/')) do ph = 1, size(material_name_phase) group = '/current/phase/'//trim(material_name_phase(ph))//'/' call results_closeGroup(results_addGroup(group)) call mechanical_results(group,ph) call damage_results(group,ph) end do end subroutine phase_results !-------------------------------------------------------------------------------------------------- !> @brief allocates and initialize per grain variables !-------------------------------------------------------------------------------------------------- subroutine crystallite_init() integer :: & ce, & co, & !< counter in integration point component loop ip, & !< counter in integration point loop el, & !< counter in element loop cMax, & !< maximum number of integration point components iMax, & !< maximum number of integration points eMax !< maximum number of elements class(tNode), pointer :: & num_crystallite, & phases print'(/,1x,a)', '<<<+- crystallite init -+>>>' cMax = homogenization_maxNconstituents iMax = discretization_nIPs eMax = discretization_Nelems num_crystallite => config_numerics%get('crystallite',defaultVal=emptyDict) num%subStepMinCryst = num_crystallite%get_asFloat ('subStepMin', defaultVal=1.0e-3_pReal) num%subStepSizeCryst = num_crystallite%get_asFloat ('subStepSize', defaultVal=0.25_pReal) num%stepIncreaseCryst = num_crystallite%get_asFloat ('stepIncrease', defaultVal=1.5_pReal) num%subStepSizeLp = num_crystallite%get_asFloat ('subStepSizeLp', defaultVal=0.5_pReal) num%subStepSizeLi = num_crystallite%get_asFloat ('subStepSizeLi', defaultVal=0.5_pReal) num%rtol_crystalliteState = num_crystallite%get_asFloat ('rtol_State', defaultVal=1.0e-6_pReal) num%rtol_crystalliteStress = num_crystallite%get_asFloat ('rtol_Stress', defaultVal=1.0e-6_pReal) num%atol_crystalliteStress = num_crystallite%get_asFloat ('atol_Stress', defaultVal=1.0e-8_pReal) num%iJacoLpresiduum = num_crystallite%get_asInt ('iJacoLpresiduum', defaultVal=1) num%nState = num_crystallite%get_asInt ('nState', defaultVal=20) num%nStress = num_crystallite%get_asInt ('nStress', defaultVal=40) if (num%subStepMinCryst <= 0.0_pReal) call IO_error(301,ext_msg='subStepMinCryst') if (num%subStepSizeCryst <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeCryst') if (num%stepIncreaseCryst <= 0.0_pReal) call IO_error(301,ext_msg='stepIncreaseCryst') if (num%subStepSizeLp <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeLp') if (num%subStepSizeLi <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeLi') if (num%rtol_crystalliteState <= 0.0_pReal) call IO_error(301,ext_msg='rtol_crystalliteState') if (num%rtol_crystalliteStress <= 0.0_pReal) call IO_error(301,ext_msg='rtol_crystalliteStress') if (num%atol_crystalliteStress <= 0.0_pReal) call IO_error(301,ext_msg='atol_crystalliteStress') if (num%iJacoLpresiduum < 1) call IO_error(301,ext_msg='iJacoLpresiduum') if (num%nState < 1) call IO_error(301,ext_msg='nState') if (num%nStress< 1) call IO_error(301,ext_msg='nStress') phases => config_material%get('phase') print'(/,a42,1x,i10)', ' # of elements: ', eMax print'( a42,1x,i10)', ' # of integration points/element: ', iMax print'( a42,1x,i10)', 'max # of constituents/integration point: ', cMax flush(IO_STDOUT) !$OMP PARALLEL DO PRIVATE(ce) do el = 1, eMax do ip = 1, iMax ce = (el-1)*discretization_nIPs + ip do co = 1,homogenization_Nconstituents(material_homogenizationID(ce)) call crystallite_orientations(co,ip,el) call plastic_dependentState(co,ip,el) ! update dependent state variables to be consistent with basic states end do end do end do !$OMP END PARALLEL DO end subroutine crystallite_init !-------------------------------------------------------------------------------------------------- !> @brief calculates orientations !-------------------------------------------------------------------------------------------------- subroutine crystallite_orientations(co,ip,el) integer, intent(in) :: & co, & !< counter in integration point component loop ip, & !< counter in integration point loop el !< counter in element loop integer :: ph, en ph = material_phaseID(co,(el-1)*discretization_nIPs + ip) en = material_phaseEntry(co,(el-1)*discretization_nIPs + ip) call phase_O(ph)%data(en)%fromMatrix(transpose(math_rotationalPart(mechanical_F_e(ph,en)))) if (plasticState(material_phaseAt(1,el))%nonlocal) & call plastic_nonlocal_updateCompatibility(phase_O,material_phaseAt(1,el),ip,el) end subroutine crystallite_orientations !-------------------------------------------------------------------------------------------------- !> @brief Map 2nd order tensor to reference config !-------------------------------------------------------------------------------------------------- function crystallite_push33ToRef(co,ce, tensor33) real(pReal), dimension(3,3), intent(in) :: tensor33 integer, intent(in):: & co, & ce real(pReal), dimension(3,3) :: crystallite_push33ToRef real(pReal), dimension(3,3) :: T integer :: ph, en ph = material_phaseID(co,ce) en = material_phaseEntry(co,ce) T = matmul(phase_O_0(ph)%data(en)%asMatrix(),transpose(math_inv33(phase_F(co,ce)))) ! ToDo: initial orientation correct? crystallite_push33ToRef = matmul(transpose(T),matmul(tensor33,T)) end function crystallite_push33ToRef !-------------------------------------------------------------------------------------------------- !> @brief determines whether a point is converged !-------------------------------------------------------------------------------------------------- logical pure function converged(residuum,state,atol) real(pReal), intent(in), dimension(:) ::& residuum, state, atol real(pReal) :: & rTol rTol = num%rTol_crystalliteState converged = all(abs(residuum) <= max(atol, rtol*abs(state))) end function converged !-------------------------------------------------------------------------------------------------- !> @brief Write restart data to file. !-------------------------------------------------------------------------------------------------- subroutine phase_restartWrite(fileHandle) integer(HID_T), intent(in) :: fileHandle integer(HID_T), dimension(2) :: groupHandle integer :: ph groupHandle(1) = HDF5_addGroup(fileHandle,'phase') do ph = 1, size(material_name_phase) groupHandle(2) = HDF5_addGroup(groupHandle(1),material_name_phase(ph)) call mechanical_restartWrite(groupHandle(2),ph) call thermal_restartWrite(groupHandle(2),ph) call HDF5_closeGroup(groupHandle(2)) end do call HDF5_closeGroup(groupHandle(1)) end subroutine phase_restartWrite !-------------------------------------------------------------------------------------------------- !> @brief Read restart data from file. !-------------------------------------------------------------------------------------------------- subroutine phase_restartRead(fileHandle) integer(HID_T), intent(in) :: fileHandle integer(HID_T), dimension(2) :: groupHandle integer :: ph groupHandle(1) = HDF5_openGroup(fileHandle,'phase') do ph = 1, size(material_name_phase) groupHandle(2) = HDF5_openGroup(groupHandle(1),material_name_phase(ph)) call mechanical_restartRead(groupHandle(2),ph) call thermal_restartRead(groupHandle(2),ph) call HDF5_closeGroup(groupHandle(2)) end do call HDF5_closeGroup(groupHandle(1)) end subroutine phase_restartRead end module phase