! Copyright 2011 Max-Planck-Institut fuer Eisenforschung GmbH ! ! This file is part of DAMASK, ! the Duesseldorf Advanced Material Simulation Kit. ! ! DAMASK is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! DAMASK is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with DAMASK. If not, see . ! !############################################################## !* $Id$ !******************************************************************** ! Material subroutine for BVP solution using spectral method ! ! Run 'DAMASK_spectral.exe --help' to get usage hints ! ! written by P. Eisenlohr, ! F. Roters, ! L. Hantcherli, ! W.A. Counts, ! D.D. Tjahjanto, ! C. Kords, ! M. Diehl, ! R. Lebensohn ! ! MPI fuer Eisenforschung, Duesseldorf ! program DAMASK_spectral !******************************************************************** use DAMASK_interface use prec, only: pInt, pReal, DAMASK_NaN use IO use debug, only: debug_spectral, & debug_spectralGeneral, & debug_spectralDivergence, & debug_spectralRestart, & debug_spectralFFTW use math use kdtree2_module use mesh, only: mesh_ipCenterOfGravity use CPFEM, only: CPFEM_general, CPFEM_initAll use FEsolving, only: restartWrite, restartReadInc use numerics, only: err_div_tol, err_stress_tolrel , rotation_tol,& itmax, memory_efficient, DAMASK_NumThreadsInt, divergence_correction, & fftw_planner_flag, fftw_timelimit use homogenization, only: materialpoint_sizeResults, materialpoint_results !$ use OMP_LIB ! the openMP function library implicit none ! variables to read from loadcase and geom file real(pReal), dimension(9) :: temp_valueVector ! stores information temporarily from loadcase file logical, dimension(9) :: temp_maskVector integer(pInt), parameter :: maxNchunksLoadcase = & (1_pInt + 9_pInt)*3_pInt + & ! deformation, rotation, and stress (1_pInt + 1_pInt)*5_pInt + & ! time, (log)incs, temp, restartfrequency, and outputfrequency 1_pInt, & ! dropguessing maxNchunksGeom = 7_pInt, & ! 4 identifiers, 3 values myUnit = 234_pInt integer(pInt), dimension (1_pInt + maxNchunksLoadcase*2_pInt) :: positions ! this is longer than needed for geometry parsing integer(pInt) :: headerLength, N_l=0_pInt, N_t=0_pInt, N_n=0_pInt, N_Fdot=0_pInt character(len=1024) :: path, line, keyword logical :: gotResolution =.false., gotDimension =.false., gotHomogenization = .false. type bc_type real(pReal), dimension (3,3) :: deformation = 0.0_pReal, & ! applied velocity gradient or time derivative of deformation gradient stress = 0.0_pReal, & ! stress BC (if applicable) rotation = math_I3 ! rotation of BC (if applicable) real(pReal) :: time = 0.0_pReal, & ! length of increment temperature = 300_pReal ! isothermal starting conditions integer(pInt) :: incs = 0_pInt, & ! number of increments outputfrequency = 1_pInt, & ! frequency of result writes restartfrequency = 0_pInt, & ! frequency of restart writes logscale = 0_pInt ! linear/logaritmic time inc flag logical :: followFormerTrajectory = .true., & ! follow trajectory of former loadcase velGradApplied = .false. ! decide wether velocity gradient or fdot is given logical, dimension(3,3) :: maskDeformation = .false., & ! mask of deformation boundary conditions maskStress = .false. ! mask of stress boundary conditions logical, dimension(9) :: maskStressVector = .false. ! linear mask of boundary conditions end type type(bc_type), allocatable, dimension(:) :: bc character(len=6) :: loadcase_string ! variables storing information from geom file real(pReal) :: wgt real(pReal), dimension(3) :: geomdimension = 0.0_pReal ! physical dimension of volume element per direction integer(pInt) :: Npoints,& ! number of Fourier points homog ! homogenization scheme used integer(pInt), dimension(3) :: res = 1_pInt ! resolution (number of Fourier points) in each direction integer(pInt) :: res1_red ! stress, stiffness and compliance average etc. real(pReal), dimension(3,3) :: pstress, pstress_av, defgrad_av_lab, & defgradAim = math_I3, defgradAimOld= math_I3, defgradAimCorr= math_I3,& mask_stress, mask_defgrad, fDot, & pstress_av_lab, defgradAim_lab ! quantities rotated to other coordinate system real(pReal), dimension(3,3,3,3) :: dPdF, c0_reference, c_current = 0.0_pReal, s_prev, c_prev ! stiffness and compliance real(pReal), dimension(6) :: cstress ! cauchy stress real(pReal), dimension(6,6) :: dsde ! small strain stiffness real(pReal), dimension(9,9) :: s_prev99, c_prev99 ! compliance and stiffness in matrix notation real(pReal), dimension(:,:), allocatable :: s_reduced, c_reduced ! reduced compliance and stiffness (only for stress BC) integer(pInt) :: size_reduced = 0.0_pReal ! number of stress BCs ! pointwise data real(pReal), dimension(:,:,:,:,:), allocatable :: defgrad, defgradold real(pReal), dimension(:,:,:,:), allocatable :: coordinates real(pReal), dimension(:,:,:), allocatable :: temperature ! variables storing information for spectral method and FFTW real(pReal), dimension(3,3) :: xiDyad ! product of wave vectors real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat ! gamma operator (field) for spectral method real(pReal), dimension(:,:,:,:), allocatable :: xi ! wave vector field for divergence and for gamma operator integer(pInt), dimension(3) :: k_s type(C_PTR) :: data_fftw, fftw_stress, fftw_fluctuation real(pReal), dimension(:,:,:,:,:), pointer :: data_real complex(pReal), dimension(:,:,:,:,:), pointer :: data_complex !debugging (proof of correct transformation) type(C_PTR) :: fftw_debug, fftw_debug_forward, fftw_debug_backward real(pReal), dimension(:,:,:), pointer :: fftw_debug_real complex(pReal), dimension(:,:,:), pointer :: fftw_debug_complex ! variables for regriding real(pReal), dimension(:,:,:,:) ,allocatable :: deformed_small real(pReal), dimension(:,:) ,allocatable :: deformed_large real(pReal), dimension(:,:,:,:) ,allocatable :: new_coordinates type(kdtree2), pointer :: tree real(pReal), dimension(3) :: shift ! loop variables, convergence etc. real(pReal) :: time = 0.0_pReal, time0 = 0.0_pReal, timeinc ! elapsed time, begin of interval, time interval real(pReal) :: guessmode, err_div, err_stress, err_stress_tol, p_hat_avg complex(pReal) :: err_div_avg_complex complex(pReal), parameter :: img = cmplx(0.0_pReal,1.0_pReal) real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal complex(pReal), dimension(3) :: temp3_Complex complex(pReal), dimension(3,3) :: temp33_Complex real(pReal), dimension(3,3) :: temp33_Real integer(pInt) :: i, j, k, l, m, n, p, errorID integer(pInt) :: N_Loadcases, loadcase, inc, iter, ielem, CPFEM_mode, & ierr, notConvergedCounter = 0_pInt, totalIncsCounter = 0_pInt logical :: errmatinv real(pReal) :: defgradDet, defgradDetMax, defgradDetMin real(pReal) :: correctionFactor integer(pInt), dimension(3) :: cutting_freq ! --- debugging variables type(C_PTR) :: divergence real(pReal), dimension(:,:,:,:), pointer :: divergence_real complex(pReal), dimension(:,:,:,:), pointer :: divergence_complex real(pReal) :: p_real_avg, err_div_max, err_real_div_avg, err_real_div_max logical :: debugGeneral, debugDivergence, debugRestart, debugFFTW type(C_PTR) :: fftw_divergence ! plan for fftw backward transform of divergence integer(pInt) :: row, column ! --- initializing model size independed parameters !$ call omp_set_num_threads(DAMASK_NumThreadsInt) ! set number of threads for parallel execution set by DAMASK_NUM_THREADS call DAMASK_interface_init() print '(a)', '' print '(a)', ' <<<+- DAMASK_spectral init -+>>>' print '(a)', ' $Id$' print '(a)', '' print '(a,a)', ' Working Directory: ',trim(getSolverWorkingDirectoryName()) print '(a,a)', ' Solver Job Name: ',trim(getSolverJobName()) print '(a)', '' ! Reading the loadcase file and allocate variables for loadcases path = getLoadcaseName() if (.not. IO_open_file(myUnit,path)) call IO_error(error_ID = 30_pInt,ext_msg = trim(path)) rewind(myUnit) do read(myUnit,'(a1024)',END = 100) line if (IO_isBlank(line)) cycle ! skip empty lines positions = IO_stringPos(line,maxNchunksLoadcase) do i = 1_pInt, maxNchunksLoadcase, 1_pInt ! reading compulsory parameters for loadcase select case (IO_lc(IO_stringValue(line,positions,i))) case('l','velocitygrad','velgrad','velocitygradient') N_l = N_l + 1_pInt case('fdot') N_Fdot = N_Fdot + 1_pInt case('t','time','delta') N_t = N_t + 1_pInt case('n','incs','increments','steps','logincs','logsteps') N_n = N_n + 1_pInt end select enddo ! count all identifiers to allocate memory and do sanity check enddo 100 N_Loadcases = N_n if ((N_l + N_Fdot /= N_n) .or. (N_n /= N_t)) & ! sanity check call IO_error(error_ID=37_pInt,ext_msg = trim(path)) ! error message for incomplete loadcase allocate (bc(N_Loadcases)) ! --- reading the loadcase and assign values to the allocated data structure rewind(myUnit) loadcase = 0_pInt do read(myUnit,'(a1024)',END = 101) line if (IO_isBlank(line)) cycle ! skip empty lines loadcase = loadcase + 1_pInt positions = IO_stringPos(line,maxNchunksLoadcase) do j = 1_pInt,maxNchunksLoadcase select case (IO_lc(IO_stringValue(line,positions,j))) case('fdot','l','velocitygrad','velgrad','velocitygradient') ! assign values for the deformation BC matrix bc(loadcase)%velGradApplied = (IO_lc(IO_stringValue(line,positions,j)) == 'l' .or. & ! in case of given L, set flag to true IO_lc(IO_stringValue(line,positions,j)) == 'velocitygrad' .or. & IO_lc(IO_stringValue(line,positions,j)) == 'velgrad' .or. & IO_lc(IO_stringValue(line,positions,j)) == 'velocitygradient') temp_valueVector = 0.0_pReal temp_maskVector = .false. forall (k = 1_pInt:9_pInt) temp_maskVector(k) = IO_stringValue(line,positions,j+k) /= '*' do k = 1_pInt,9_pInt if (temp_maskVector(k)) temp_valueVector(k) = IO_floatValue(line,positions,j+k) enddo bc(loadcase)%maskDeformation = transpose(reshape(temp_maskVector,(/3,3/))) bc(loadcase)%deformation = math_plain9to33(temp_valueVector) case('p','pk1','piolakirchhoff','stress') temp_valueVector = 0.0_pReal forall (k = 1_pInt:9_pInt) bc(loadcase)%maskStressVector(k) = IO_stringValue(line,positions,j+k) /= '*' do k = 1_pInt,9_pInt if (bc(loadcase)%maskStressVector(k)) temp_valueVector(k) = IO_floatValue(line,positions,j+k) ! assign values for the bc(loadcase)%stress matrix enddo bc(loadcase)%maskStress = transpose(reshape(bc(loadcase)%maskStressVector,(/3,3/))) bc(loadcase)%stress = math_plain9to33(temp_valueVector) case('t','time','delta') ! increment time bc(loadcase)%time = IO_floatValue(line,positions,j+1_pInt) case('temp','temperature') ! starting temperature bc(loadcase)%temperature = IO_floatValue(line,positions,j+1_pInt) case('n','incs','increments','steps') ! number of increments bc(loadcase)%incs = IO_intValue(line,positions,j+1_pInt) case('logincs','logincrements','logsteps') ! number of increments (switch to log time scaling) bc(loadcase)%incs = IO_intValue(line,positions,j+1_pInt) bc(loadcase)%logscale = 1_pInt case('f','freq','frequency','outputfreq') ! frequency of result writings bc(loadcase)%outputfrequency = IO_intValue(line,positions,j+1_pInt) case('r','restart','restartwrite') ! frequency of writing restart information bc(loadcase)%restartfrequency = max(0_pInt,IO_intValue(line,positions,j+1_pInt)) case('guessreset','dropguessing') bc(loadcase)%followFormerTrajectory = .false. ! do not continue to predict deformation along former trajectory case('euler') ! rotation of loadcase given in euler angles p = 0_pInt ! assuming values given in radians l = 1_pInt ! assuming keyword indicating degree/radians select case (IO_lc(IO_stringValue(line,positions,j+1_pInt))) case('deg','degree') p = 1_pInt ! for conversion from degree to radian case('rad','radian') case default l = 0_pInt ! immediately reading in angles, assuming radians end select forall(k = 1_pInt:3_pInt) temp33_Real(k,1) = IO_floatValue(line,positions,j+l+k) * real(p,pReal) * inRad bc(loadcase)%rotation = math_EulerToR(temp33_Real(:,1)) case('rotation','rot') ! assign values for the rotation of loadcase matrix temp_valueVector = 0.0_pReal forall (k = 1_pInt:9_pInt) temp_valueVector(k) = IO_floatValue(line,positions,j+k) bc(loadcase)%rotation = math_plain9to33(temp_valueVector) end select enddo; enddo 101 close(myUnit) ! --- read header of geom file to get the information needed before the complete geom file is intepretated by mesh.f90 path = getModelName() if (.not. IO_open_file(myUnit,trim(path)//InputFileExtension))& call IO_error(error_ID=101_pInt,ext_msg = trim(path)//InputFileExtension) rewind(myUnit) read(myUnit,'(a1024)') line positions = IO_stringPos(line,2_pInt) keyword = IO_lc(IO_StringValue(line,positions,2_pInt)) if (keyword(1:4) == 'head') then headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt else call IO_error(error_ID=42_pInt) endif rewind(myUnit) do i = 1_pInt, headerLength read(myUnit,'(a1024)') line positions = IO_stringPos(line,maxNchunksGeom) select case ( IO_lc(IO_StringValue(line,positions,1)) ) case ('dimension') gotDimension = .true. do j = 2_pInt,6_pInt,2_pInt select case (IO_lc(IO_stringValue(line,positions,j))) case('x') geomdimension(1) = IO_floatValue(line,positions,j+1_pInt) case('y') geomdimension(2) = IO_floatValue(line,positions,j+1_pInt) case('z') geomdimension(3) = IO_floatValue(line,positions,j+1_pInt) end select enddo case ('homogenization') gotHomogenization = .true. homog = IO_intValue(line,positions,2_pInt) case ('resolution') gotResolution = .true. do j = 2_pInt,6_pInt,2_pInt select case (IO_lc(IO_stringValue(line,positions,j))) case('a') res(1) = IO_intValue(line,positions,j+1_pInt) case('b') res(2) = IO_intValue(line,positions,j+1_pInt) case('c') res(3) = IO_intValue(line,positions,j+1_pInt) end select enddo end select enddo close(myUnit) if (.not.(gotDimension .and. gotHomogenization .and. gotResolution)) call IO_error(error_ID = 45_pInt) if(mod(res(1),2_pInt)/=0_pInt .or.& mod(res(2),2_pInt)/=0_pInt .or.& (mod(res(3),2_pInt)/=0_pInt .and. res(3)/= 1_pInt)) call IO_error(error_ID = 103_pInt) res1_red = res(1)/2_pInt + 1_pInt ! size of complex array in first dimension (c2r, r2c) Npoints = res(1)*res(2)*res(3) wgt = 1.0_pReal/real(Npoints, pReal) ! --- initialization of CPFEM_general (= constitutive law) call CPFEM_initAll(bc(1)%temperature,1_pInt,1_pInt) ! --- debugging parameters debugGeneral = iand(debug_spectral,debug_spectralGeneral) > 0_pInt debugDivergence = iand(debug_spectral,debug_spectralDivergence) > 0_pInt debugRestart = iand(debug_spectral,debug_spectralRestart) > 0_pInt debugFFTW = iand(debug_spectral,debug_spectralFFTW) > 0_pInt ! --- output of geometry print '(a)', '' print '(a)', '#############################################################' print '(a)', 'DAMASK spectral:' print '(a)', 'The spectral method boundary value problem solver for' print '(a)', 'the Duesseldorf Advanced Material Simulation Kit' print '(a)', '#############################################################' print '(a,a)', 'geometry file: ',trim(path)//'.geom' print '(a)', '=============================================================' print '(a,i12,i12,i12)','resolution a b c:', res print '(a,f12.5,f12.5,f12.5)','dimension x y z:', geomdimension print '(a,i5)','homogenization: ',homog print '(a)', '#############################################################' print '(a,a)', 'loadcase file: ',trim(getLoadcaseName()) bc(1)%followFormerTrajectory = .false. ! cannot guess along trajectory for first inc of first loadcase ! --- consistency checks and output of loadcase errorID = 0_pInt do loadcase = 1_pInt, N_Loadcases write (loadcase_string, '(i6)' ) loadcase print '(a)', '=============================================================' print '(a,i6)', 'loadcase: ', loadcase if (.not. bc(loadcase)%followFormerTrajectory) print '(a)', 'drop guessing along trajectory' if (bc(loadcase)%velGradApplied) then do j = 1_pInt, 3_pInt if (any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .true.) .and. & any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .false.)) errorID = 32_pInt ! each row should be either fully or not at all defined enddo print '(a)','velocity gradient:' else print '(a)','deformation gradient rate:' endif print '(3(3(f12.6,x)/)$)', merge(math_transpose3x3(bc(loadcase)%deformation),& reshape(spread(DAMASK_NaN,1,9),(/3,3/)),transpose(bc(loadcase)%maskDeformation)) print '(a,/,3(3(f12.6,x)/)$)','stress / GPa:',1e-9*merge(math_transpose3x3(bc(loadcase)%stress),& reshape(spread(DAMASK_NaN,1,9),(/3,3/)),& transpose(bc(loadcase)%maskStress)) if (any(bc(loadcase)%rotation /= math_I3)) & print '(a,3(3(f12.6,x)/)$)','rotation of loadframe:',math_transpose3x3(bc(loadcase)%rotation) print '(a,f12.6)','temperature:',bc(loadcase)%temperature print '(a,f12.6)','time: ',bc(loadcase)%time print '(a,i5)' ,'increments: ',bc(loadcase)%incs print '(a,i5)','output frequency: ',bc(loadcase)%outputfrequency print '(a,i5)','restart frequency: ',bc(loadcase)%restartfrequency if (any(bc(loadcase)%maskStress .eqv. bc(loadcase)%maskDeformation)) errorID = 31 ! exclusive or masking only if (any(bc(loadcase)%maskStress .and. transpose(bc(loadcase)%maskStress) .and. & reshape((/.false.,.true.,.true.,.true.,.false.,.true.,.true.,.true.,.false./),(/3,3/)))) & errorID = 38_pInt ! no rotation is allowed by stress BC if (any(abs(math_mul33x33(bc(loadcase)%rotation,math_transpose3x3(bc(loadcase)%rotation))-math_I3)& > reshape(spread(rotation_tol,1,9),(/3,3/)))& .or. abs(math_det3x3(bc(loadcase)%rotation)) > 1.0_pReal + rotation_tol) & errorID = 46_pInt ! given rotation matrix contains strain if (bc(loadcase)%time < 0.0_pReal) errorID = 34_pInt ! negative time increment if (bc(loadcase)%incs < 1_pInt) errorID = 35_pInt ! non-positive incs count if (bc(loadcase)%outputfrequency < 1_pInt) errorID = 36_pInt ! non-positive result frequency if (errorID > 0_pInt) call IO_error(error_ID = errorID, ext_msg = loadcase_string) enddo ! Initialization of fftw (see manual on fftw.org for more details) if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(error_ID=102) #ifdef _OPENMP if(DAMASK_NumThreadsInt > 0_pInt) then ierr = fftw_init_threads() if (ierr == 0_pInt) call IO_error(error_ID = 104_pInt) call fftw_plan_with_nthreads(DAMASK_NumThreadsInt) endif #endif call fftw_set_timelimit(fftw_timelimit) !************************************************************* ! Loop over loadcases defined in the loadcase file do loadcase = 1_pInt, N_Loadcases !************************************************************* time0 = time ! loadcase start time if (bc(loadcase)%followFormerTrajectory) then ! continue to guess along former trajectory where applicable guessmode = 1.0_pReal else guessmode = 0.0_pReal ! change of load case, homogeneous guess for the first inc endif mask_defgrad = merge(ones,zeroes,bc(loadcase)%maskDeformation) mask_stress = merge(ones,zeroes,bc(loadcase)%maskStress) size_reduced = count(bc(loadcase)%maskStressVector) allocate (c_reduced(size_reduced,size_reduced)); c_reduced = 0.0_pReal allocate (s_reduced(size_reduced,size_reduced)); s_reduced = 0.0_pReal timeinc = bc(loadcase)%time/bc(loadcase)%incs ! only valid for given linear time scale. will be overwritten later in case logarithmic scale is used fDot = bc(loadcase)%deformation ! only valid for given fDot. will be overwritten later in case L is given !************************************************************* ! loop oper incs defined in input file for current loadcase do inc = 1_pInt, bc(loadcase)%incs !************************************************************* ! forwarding time if (bc(loadcase)%logscale == 1_pInt) then ! logarithmic scale if (loadcase == 1_pInt) then ! 1st loadcase of logarithmic scale if (inc == 1_pInt) then ! 1st inc of 1st loadcase of logarithmic scale timeinc = bc(1)%time*(2.0_pReal**real( 1_pInt-bc(1)%incs ,pReal)) ! assume 1st inc is equal to 2nd else ! not-1st inc of 1st loadcase of logarithmic scale timeinc = bc(1)%time*(2.0_pReal**real(inc-1_pInt-bc(1)%incs ,pReal)) endif else ! not-1st loadcase of logarithmic scale timeinc = time0 *( (1.0_pReal + bc(loadcase)%time/time0 )**(real( inc,pReal)/real(bc(loadcase)%incs ,pReal)) & -(1.0_pReal + bc(loadcase)%time/time0 )**(real( (inc-1_pInt),pReal)/real(bc(loadcase)%incs ,pReal)) ) endif endif time = time + timeinc totalIncsCounter = totalIncsCounter + 1_pInt !************************************************************* ! Initialization Start !************************************************************* if(totalIncsCounter == restartReadInc) then ! Initialize values guessmode = 0.0_pReal ! no old values allocate (defgrad ( res(1), res(2),res(3),3,3)); defgrad = 0.0_pReal allocate (defgradold ( res(1), res(2),res(3),3,3)); defgradold = 0.0_pReal allocate (coordinates(3,res(1), res(2),res(3))); coordinates = 0.0_pReal allocate (temperature( res(1), res(2),res(3))); temperature = bc(1)%temperature ! start out isothermally allocate (xi (3,res1_red,res(2),res(3))); xi = 0.0_pReal data_fftw = fftw_alloc_complex(int(res1_red*res(2)*res(3)*9_pInt,C_SIZE_T)) !C_SIZE_T is of type integer(8) call c_f_pointer(data_fftw, data_real, [ res(1)+2_pInt,res(2),res(3),3,3]) call c_f_pointer(data_fftw, data_complex, [ res1_red, res(2),res(3),3,3]) if (debugDivergence) then divergence = fftw_alloc_complex(int(res1_red*res(2)*res(3)*3_pInt,C_SIZE_T)) !C_SIZE_T is of type integer(8) call c_f_pointer(divergence, divergence_real, [ res(1)+2_pInt,res(2),res(3),3]) call c_f_pointer(divergence, divergence_complex, [ res1_red, res(2),res(3),3]) endif if (debugFFTW) then fftw_debug = fftw_alloc_complex(int(res1_red*res(2)*res(3),C_SIZE_T)) !C_SIZE_T is of type integer(8) call c_f_pointer(fftw_debug, fftw_debug_real, [ res(1)+2_pInt,res(2),res(3)]) call c_f_pointer(fftw_debug, fftw_debug_complex, [ res1_red, res(2),res(3)]) endif fftw_stress = fftw_plan_many_dft_r2c(3,(/res(3),res(2) ,res(1)/),9,& ! dimensions , length in each dimension in reversed order data_real,(/res(3),res(2) ,res(1)+2_pInt/),& ! input data , physical length in each dimension in reversed order 1, res(3)*res(2)*(res(1)+2_pInt),& ! striding , product of physical lenght in the 3 dimensions data_complex,(/res(3),res(2) ,res1_red/),& 1, res(3)*res(2)* res1_red,fftw_planner_flag) fftw_fluctuation = fftw_plan_many_dft_c2r(3,(/res(3),res(2) ,res(1)/),9,& data_complex,(/res(3),res(2) ,res1_red/),& 1, res(3)*res(2)* res1_red,& data_real,(/res(3),res(2) ,res(1)+2_pInt/),& 1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag) if (debugDivergence) & fftw_divergence = fftw_plan_many_dft_c2r(3,(/res(3),res(2) ,res(1)/),3,& divergence_complex,(/res(3),res(2) ,res1_red/),& 1, res(3)*res(2)* res1_red,& divergence_real,(/res(3),res(2) ,res(1)+2_pInt/),& 1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag) if (debugFFTW) fftw_debug_forward = fftw_plan_dft_r2c_3d(res(3),res(2),res(1),fftw_debug_real,fftw_debug_complex,fftw_planner_flag) !reversed order if (debugFFTW) fftw_debug_backward= fftw_plan_dft_c2r_3d(res(3),res(2),res(1),fftw_debug_complex,fftw_debug_real,fftw_planner_flag) !reversed order if (debugGeneral) then write (6,*) 'FFTW initialized' endif if (restartReadInc==1_pInt) then ! not restarting, no deformation at the beginning do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) defgrad(i,j,k,1:3,1:3) = math_I3 defgradold(i,j,k,1:3,1:3) = math_I3 enddo; enddo; enddo else ! using old values if (IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',trim(getSolverJobName()),size(defgrad))) then read (777,rec=1) defgrad close (777) endif defgradold = defgrad defgradAim = 0.0_pReal do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) defgradAim = defgradAim + defgrad(i,j,k,1:3,1:3) ! calculating old average deformation enddo; enddo; enddo defgradAim = defgradAim * wgt defgradAimOld = defgradAim guessmode=0.0_pInt endif ielem = 0_pInt do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) ielem = ielem + 1_pInt coordinates(1:3,i,j,k) = mesh_ipCenterOfGravity(1:3,1,ielem) ! set to initial coordinates ToDo: SHOULD BE UPDATED TO CURRENT POSITION IN FUTURE REVISIONS!!! But do we know them? I don't think so. Otherwise we don't need geometry reconstruction call CPFEM_general(2_pInt,coordinates(1:3,i,j,k),math_I3,math_I3,temperature(i,j,k),& 0.0_pReal,ielem,1_pInt,cstress,dsde,pstress,dPdF) c_current = c_current + dPdF enddo; enddo; enddo c0_reference = c_current * wgt ! linear reference material stiffness if (debugGeneral) then write (6,*) 'first call to CPFEM_general finished' endif do k = 1_pInt, res(3) ! calculation of discrete angular frequencies, ordered as in FFTW (wrap around) k_s(3) = k - 1_pInt if(k > res(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - res(3) do j = 1_pInt, res(2) k_s(2) = j - 1_pInt if(j > res(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - res(2) do i = 1, res1_red k_s(1) = i - 1_pInt xi(3,i,j,k) = 0.0_pReal ! 2D case if(res(3) > 1_pInt) xi(3,i,j,k) = real(k_s(3), pReal)/geomdimension(3) ! 3D case xi(2,i,j,k) = real(k_s(2), pReal)/geomdimension(2) ! 2D and 3D case xi(1,i,j,k) = real(k_s(1), pReal)/geomdimension(1) ! 2D and 3D case enddo; enddo; enddo !remove the given highest frequencies for calculation of the gamma operator cutting_freq = (/0_pInt,0_pInt,0_pInt/) ! for 0,0,0, just the highest freq. is removed do k = 1_pInt ,res(3); do j = 1_pInt ,res(2); do i = 1_pInt, res1_red if((k > res(3)/2_pInt - cutting_freq(3)).and.(k <= res(3)/2_pInt + 1_pInt + cutting_freq(3))) xi(3,i,j,k)= 0.0_pReal if((j > res(2)/2_pInt - cutting_freq(2)).and.(j <= res(2)/2_pInt + 1_pInt + cutting_freq(2))) xi(2,i,j,k)= 0.0_pReal if((i > res(1)/2_pInt - cutting_freq(1)).and.(i <= res(1)/2_pInt + 1_pInt + cutting_freq(1))) xi(1,i,j,k)= 0.0_pReal enddo; enddo; enddo if(memory_efficient) then ! allocate just single fourth order tensor allocate (gamma_hat(1,1,1,3,3,3,3)); gamma_hat = 0.0_pReal else ! precalculation of gamma_hat field allocate (gamma_hat(res1_red ,res(2),res(3),3,3,3,3)); gamma_hat = 0.0_pReal do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red if (any(xi(1:3,i,j,k) /= 0.0_pReal)) then do l = 1_pInt ,3_pInt; do m = 1_pInt,3_pInt xiDyad(l,m) = xi(l,i,j,k)*xi(m,i,j,k) enddo; enddo temp33_Real = math_inv3x3(math_mul3333xx33(c0_reference, xiDyad)) else xiDyad = 0.0_pReal temp33_Real = 0.0_pReal endif do l=1_pInt,3_pInt; do m=1_pInt,3_pInt; do n=1_pInt,3_pInt; do p=1_pInt,3_pInt gamma_hat(i,j,k, l,m,n,p) = - 0.25*(temp33_Real(l,n)+temp33_Real(n,l)) *& (xiDyad(m,p)+xiDyad(p,m)) enddo; enddo; enddo; enddo enddo; enddo; enddo endif if (divergence_correction) then if (res(3) == 1_pInt) then correctionFactor = minval(geomdimension(1:2))*wgt**(-1.0_pReal/4.0_pReal) ! 2D case, ToDo: correct? else correctionFactor = minval(geomdimension(1:3))*wgt**(-1.0_pReal/4.0_pReal) ! multiplying by minimum dimension to get rid of dimension dependency and phenomenologigal factor wgt**(-1/4) to get rid of resolution dependency endif else correctionFactor = 1.0_pReal endif ! write header of output file !$OMP CRITICAL (write2out) open(538,file=trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())& //'.spectralOut',form='UNFORMATTED',status='REPLACE') write(538), 'load', trim(getLoadcaseName()) write(538), 'workingdir', trim(getSolverWorkingDirectoryName()) write(538), 'geometry', trim(getSolverJobName())//InputFileExtension write(538), 'resolution', res write(538), 'dimension', geomdimension write(538), 'materialpoint_sizeResults', materialpoint_sizeResults write(538), 'loadcases', N_Loadcases write(538), 'frequencies', bc(1:N_Loadcases)%outputfrequency ! one entry per loadcase write(538), 'times', bc(1:N_Loadcases)%time ! one entry per loadcase write(538), 'logscales', bc(1:N_Loadcases)%logscale bc(1)%incs = bc(1)%incs + 1_pInt write(538), 'increments', bc(1:N_Loadcases)%incs ! one entry per loadcase bc(1)%incs = bc(1)%incs - 1_pInt write(538), 'startingIncrement', restartReadInc -1_pInt ! start with writing out the previous inc write(538), 'eoh' ! end of header write(538), materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! initial (non-deformed) results !$OMP END CRITICAL (write2out) endif !************************************************************* ! Initialization End !************************************************************* if(totalIncsCounter >= restartReadInc) then ! Do calculations (otherwise just forwarding) if(bc(loadcase)%restartFrequency>0_pInt) & restartWrite = ( mod(inc - 1_pInt,bc(loadcase)%restartFrequency)==0_pInt) ! at frequency of writing restart information ! setting restart parameter for FEsolving (first call to CPFEM_general will write ToDo: true?) if (bc(loadcase)%velGradApplied) & ! calculate fDot from given L and current F fDot = math_mul33x33(bc(loadcase)%deformation, defgradAim) !winding forward of deformation aim in loadcase system temp33_Real = defgradAim defgradAim = defgradAim & + guessmode * mask_stress * (defgradAim - defgradAimOld) & + mask_defgrad * fDot * timeinc defgradAimOld = temp33_Real ! update local deformation gradient if (any(bc(loadcase)%rotation/=math_I3)) then ! lab and loadcase coordinate system are NOT the same do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) temp33_Real = defgrad(i,j,k,1:3,1:3) if (bc(loadcase)%velGradApplied) & ! use velocity gradient to calculate new deformation gradient (if not guessing) fDot = math_mul33x33(bc(loadcase)%deformation,& math_rotate_forward3x3(defgradold(i,j,k,1:3,1:3),bc(loadcase)%rotation)) defgrad(i,j,k,1:3,1:3) = defgrad(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon + guessmode * (defgrad(i,j,k,1:3,1:3) - defgradold(i,j,k,1:3,1:3))& ! guessing... + math_rotate_backward3x3((1.0_pReal-guessmode) * mask_defgrad * fDot,& bc(loadcase)%rotation) *timeinc ! apply the prescribed value where deformation is given if not guessing defgradold(i,j,k,1:3,1:3) = temp33_Real enddo; enddo; enddo else ! one coordinate system for lab and loadcase, save some multiplications do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) temp33_Real = defgrad(i,j,k,1:3,1:3) if (bc(loadcase)%velGradApplied) & ! use velocity gradient to calculate new deformation gradient (if not guessing) fDot = math_mul33x33(bc(loadcase)%deformation,defgradold(i,j,k,1:3,1:3)) defgrad(i,j,k,1:3,1:3) = defgrad(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon + guessmode * (defgrad(i,j,k,1:3,1:3) - defgradold(i,j,k,1:3,1:3))& ! guessing... + (1.0_pReal-guessmode) * mask_defgrad * fDot * timeinc ! apply the prescribed value where deformation is given if not guessing defgradold(i,j,k,1:3,1:3) = temp33_Real enddo; enddo; enddo endif guessmode = 1.0_pReal ! keep guessing along former trajectory during same loadcase CPFEM_mode = 1_pInt ! winding forward iter = 0_pInt err_div = 2.0_pReal * err_div_tol ! go into loop c_prev = math_rotate_forward3x3x3x3(c_current*wgt,bc(loadcase)%rotation) ! calculate stiffness from former inc if(size_reduced > 0_pInt) then ! calculate compliance in case stress BC is applied c_prev99 = math_Plain3333to99(c_prev) k = 0_pInt ! build reduced stiffness do n = 1_pInt,9_pInt if(bc(loadcase)%maskStressVector(n)) then k = k + 1_pInt j = 0_pInt do m = 1_pInt,9_pInt if(bc(loadcase)%maskStressVector(m)) then j = j + 1_pInt c_reduced(k,j) = c_prev99(n,m) endif; enddo; endif; enddo call math_invert(size_reduced, c_reduced, s_reduced, i, errmatinv) ! invert reduced stiffness if(errmatinv) call IO_error(error_ID=800) s_prev99 = 0.0_pReal ! build full compliance k = 0_pInt do n = 1_pInt,9_pInt if(bc(loadcase)%maskStressVector(n)) then k = k + 1_pInt j = 0_pInt do m = 1_pInt,9_pInt if(bc(loadcase)%maskStressVector(m)) then j = j + 1_pInt s_prev99(n,m) = s_reduced(k,j) endif; enddo; endif; enddo s_prev = (math_Plain99to3333(s_prev99)) endif print '(a)', '#############################################################' print '(A,I5.5,A,es12.6)', 'Increment ', totalIncsCounter, ' Time ',time if (restartWrite ) then print '(A)', 'writing converged results of previous increment for restart' if(IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(defgrad))) then ! and writing deformation gradient field to file write (777,rec=1) defgrad close (777) endif endif !************************************************************* ! convergence loop do while(iter < itmax .and. & (err_div > err_div_tol .or. & err_stress > err_stress_tol)) iter = iter + 1_pInt !************************************************************* print '(a)', '' print '(a)', '=============================================================' print '(5(a,i6.6))', 'Loadcase ',loadcase,' Increment ',inc,'/',bc(loadcase)%incs,' @ Iteration ',iter,'/',itmax do n = 1_pInt,3_pInt; do m = 1_pInt,3_pInt defgrad_av_lab(m,n) = sum(defgrad(1:res(1),1:res(2),1:res(3),m,n)) * wgt enddo; enddo print '(a,/,3(3(f12.7,x)/)$)', 'deformation gradient:',& math_transpose3x3(math_rotate_forward3x3(defgrad_av_lab,bc(loadcase)%rotation)) print '(a)', '' print '(a)', '... update stress field P(F) ................................' ielem = 0_pInt do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) ielem = ielem + 1_pInt call CPFEM_general(3_pInt,& ! collect cycle coordinates(1:3,i,j,k), defgradold(i,j,k,1:3,1:3), defgrad(i,j,k,1:3,1:3),& temperature(i,j,k),timeinc,ielem,1_pInt,& cstress,dsde, pstress, dPdF) enddo; enddo; enddo data_real = 0.0_pReal ! needed because of the padding for FFTW c_current = 0.0_pReal ielem = 0_pInt if (debugFFTW) then row = (mod(totalIncsCounter+iter-2_pInt,9_pInt))/3_pInt + 1_pInt ! go through the elements of the tensors, controlled by totalIncsCounter and iter, starting at 1 column = (mod(totalIncsCounter+iter-2_pInt,3_pInt)) + 1_pInt endif do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) ielem = ielem + 1_pInt call CPFEM_general(CPFEM_mode,& ! first element in first iteration retains CPFEM_mode 1, coordinates(1:3,i,j,k),& defgradold(i,j,k,1:3,1:3), defgrad(i,j,k,1:3,1:3),& ! others get 2 (saves winding forward effort) temperature(i,j,k),timeinc,ielem,1_pInt,& cstress,dsde, pstress,dPdF) CPFEM_mode = 2_pInt data_real(i,j,k,1:3,1:3) = pstress if (debugFFTW) fftw_debug_real(i,j,k) = pstress(row,column) ! choose an arbitrary component c_current = c_current + dPdF enddo; enddo; enddo do n = 1_pInt,3_pInt; do m = 1_pInt,3_pInt pstress_av_lab(m,n) = sum(data_real(1:res(1),1:res(2),1:res(3),m,n)) * wgt enddo; enddo print '(a)', '' print '(a)', '... calculating equilibrium with spectral method ............' call fftw_execute_dft_r2c(fftw_stress,data_real,data_complex) ! FFT of pstress if (debugFFTW) then call fftw_execute_dft_r2c(fftw_debug_forward,fftw_debug_real,fftw_debug_complex) print '(a,i1,x,i1)', 'checking FT results of compontent ', row, column print '(a,2(es10.4,x))', 'max FT relative error ',& maxval( real((fftw_debug_complex(1:res1_red,1:res(2),1:res(3))- data_complex(1:res1_red,1:res(2),1:res(3),row,column))/fftw_debug_real(1:res1_red,1:res(2),1:res(3)))), & maxval(aimag((fftw_debug_complex(1:res1_red,1:res(2),1:res(3))- data_complex(1:res1_red,1:res(2),1:res(3),row,column))/fftw_debug_real(1:res1_red,1:res(2),1:res(3)))) fftw_debug_complex = 0.0_pReal endif p_hat_avg = sqrt(maxval (math_eigenvalues3x3(math_mul33x33(real(data_complex(1,1,1,1:3,1:3)),& ! L_2 norm of average stress (freq 0,0,0) in fourier space, math_transpose3x3(real(data_complex(1,1,1,1:3,1:3))))))) ! ignore imaginary part as it is always zero for real only input err_div_avg_complex = 0.0_pReal err_div_max = 0.0_pReal ! only important if debugDivergence == .true. divergence_complex = 0.0_pReal ! - '' - do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red temp3_Complex = math_mul33x3_complex(data_complex(i,j,k,1:3,1:3),xi(1:3,i,j,k)) ! calculate divergence without factor of 2*pi*img if(debugDivergence) then ! need divergence NOT squared divergence_complex(i,j,k,1:3) = temp3_Complex *img !ToDo negativ img? endif temp3_Complex = temp3_Complex**2.0_pReal ! all criteria need divergence squared if(i==1_pInt .or. i == res1_red) then ! We are on one of the two slides without conjg. complex counterpart err_div_avg_complex = err_div_avg_complex + sum(temp3_Complex) ! RMS of L_2 norm of div(stress) in fourier space (Suquet small strain) else ! Has somewhere a conj. complex counterpart. Therefore count it twice. err_div_avg_complex = err_div_avg_complex +2.0*real(sum(temp3_Complex) ) ! Ignore img part (conjg. complex sum will end up 0). This and the different order endif ! compared to c2c transform results in slight numerical deviations. if(debugDivergence) then err_div_max = max(err_div_max,abs(sqrt(sum(temp3_Complex)))) ! maximum of L two norm of div(stress) in fourier space (Suquet large strain) endif enddo; enddo; enddo err_div = abs(sqrt (err_div_avg_complex*wgt)) ! weighting by and taking square root (RMS). abs(...) because result is a complex number err_div = err_div *correctionFactor/p_hat_avg ! weighting by average stress and multiplying with correction factor err_div_max = err_div_max*correctionFactor/p_hat_avg ! - '' - only if debugDivergence == .true. of importance ! calculate additional divergence criteria and report ------------- if(debugDivergence) then call fftw_execute_dft_c2r(fftw_divergence,divergence_complex,divergence_real) divergence_real = divergence_real *pi*2.0_pReal* wgt !pointwise factor 2*pi from differentation and weighting from FT err_real_div_avg = 0.0_pReal err_real_div_max = 0.0_pReal do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) err_real_div_avg = err_real_div_avg + sum(divergence_real(i,j,k,1:3)**2.0_pReal) ! avg of L_2 norm of div(stress) in real space err_real_div_max = max(err_real_div_max, sqrt(sum(divergence_real(i,j,k,1:3)**2.0_pReal))) ! maximum of L two norm of div(stress) in real space enddo; enddo; enddo p_real_avg = sqrt(maxval (math_eigenvalues3x3(math_mul33x33(pstress_av_lab,& ! L_2 norm of average stress in real space, math_transpose3x3(pstress_av_lab))))) err_real_div_avg = sqrt(wgt*err_real_div_avg)*correctionFactor/p_real_avg ! RMS in real space err_real_div_max = err_real_div_max *correctionFactor/p_real_avg print '(a,es10.4,a,f6.2)', 'error divergence FT avg = ',err_div, ', ', err_div/err_div_tol print '(a,es10.4)', 'error divergence FT max = ',err_div_max print '(a,es10.4)', 'error divergence Real avg = ',err_real_div_avg print '(a,es10.4)', 'error divergence Real max = ',err_real_div_max else print '(a,es10.4,a,f6.2)', 'error divergence = ',err_div, ', ', err_div/err_div_tol endif ! -------------------------- if(memory_efficient) then ! memory saving version, on-the-fly calculation of gamma_hat do k = 1_pInt, res(3); do j = 1_pInt, res(2) ;do i = 1_pInt, res1_red if (any(xi(1:3,i,j,k) /= 0.0_pReal)) then do l = 1_pInt,3_pInt; do m = 1_pInt,3_pInt xiDyad(l,m) = xi(l,i,j,k)*xi(m,i,j,k) enddo; enddo temp33_Real = math_inv3x3(math_mul3333xx33(c0_reference, xiDyad)) else xiDyad = 0.0_pReal temp33_Real = 0.0_pReal endif do l=1_pInt,3_pInt; do m=1_pInt,3_pInt; do n=1_pInt,3_pInt; do p=1_pInt,3_pInt gamma_hat(1,1,1, l,m,n,p) = - 0.25_pReal*(temp33_Real(l,n)+temp33_Real(n,l))*& (xiDyad(m,p) +xiDyad(p,m)) enddo; enddo; enddo; enddo do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt temp33_Complex(m,n) = sum(gamma_hat(1,1,1, m,n, 1:3,1:3) * data_complex(i,j,k,1:3,1:3)) enddo; enddo data_complex(i,j,k,1:3,1:3) = temp33_Complex if (debugFFTW) fftw_debug_complex(i,j,k) = temp33_Complex(row,column) enddo; enddo; enddo else ! use precalculated gamma-operator do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt temp33_Complex(m,n) = sum(gamma_hat(i,j,k, m,n, 1:3,1:3) * data_complex(i,j,k,1:3,1:3)) enddo; enddo data_complex(i,j,k,1:3,1:3) = temp33_Complex if (debugFFTW) fftw_debug_complex(i,j,k) = temp33_Complex(row,column) enddo; enddo; enddo endif data_complex(1,1,1,1:3,1:3) = defgrad_av_lab - math_I3 ! assign zero frequency (real part) with average displacement gradient if (debugFFTW) fftw_debug_complex(1,1,1) = data_complex(1,1,1,row,column) call fftw_execute_dft_c2r(fftw_fluctuation,data_complex,data_real) ! back transform of fluct deformation gradient if (debugFFTW) then print '(a,i1,x,i1)', 'checking iFT results of compontent ', row, column call fftw_execute_dft_c2r(fftw_debug_backward,fftw_debug_complex,fftw_debug_real) print '(a,es10.4)', 'max iFT relative error ',& maxval((fftw_debug_real(1:res(1),1:res(2),1:res(3))- data_real(1:res(1),1:res(2),1:res(3),row,column))/fftw_debug_real(1:res(1),1:res(2),1:res(3))) endif defgrad = defgrad + data_real(1:res(1),1:res(2),1:res(3),1:3,1:3)*wgt ! F(x)^(n+1) = F(x)^(n) + correction; *wgt: correcting for missing normalization do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt defgrad_av_lab(m,n) = sum(defgrad(1:res(1),1:res(2),1:res(3),m,n))*wgt ! ToDo: check whether this needs recalculation or is equivalent to former defgrad_av enddo; enddo ! stress boundary condition check ------------- pstress_av = math_rotate_forward3x3(pstress_av_lab,bc(loadcase)%rotation) print '(a,/,3(3(f12.7,x)/)$)', 'Piola-Kirchhoff stress / MPa: ',math_transpose3x3(pstress_av)/1.e6 if(size_reduced > 0_pInt) then ! calculate stress BC if applied err_stress = maxval(abs(mask_stress * (pstress_av - bc(loadcase)%stress))) ! maximum deviaton (tensor norm not applicable) err_stress_tol = maxval(abs(pstress_av)) * err_stress_tolrel ! don't use any tensor norm because the comparison should be coherent print '(a)', '' print '(a,es10.4,a,f6.2)', 'error stress = ',err_stress, ', ', err_stress/err_stress_tol print '(a)', '... correcting deformation gradient to fulfill BCs ..........' defgradAimCorr = - math_mul3333xx33(s_prev, ((pstress_av - bc(loadcase)%stress))) ! residual on given stress components defgradAim = defgradAim + defgradAimCorr print '(a,/,3(3(f12.7,x)/)$)', 'new deformation aim: ', math_transpose3x3(defgradAim) print '(a,x,es10.4)' , 'with determinant: ', math_det3x3(defgradAim) else err_stress_tol = 0.0_pReal endif ! ------------------------------ ! homogeneous correction towards avg deformation gradient ------------- defgradAim_lab = math_rotate_backward3x3(defgradAim,bc(loadcase)%rotation) ! boundary conditions from load frame into lab (Fourier) frame do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt defgrad(1:res(1),1:res(2),1:res(3),m,n) = & defgrad(1:res(1),1:res(2),1:res(3),m,n) + (defgradAim_lab(m,n) - defgrad_av_lab(m,n)) ! anticipated target minus current state enddo; enddo ! ------------------------------ ! bounds of det(F) ------------- defgradDetMax = -huge(1.0_pReal) defgradDetMin = +huge(1.0_pReal) do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) defgradDet = math_det3x3(defgrad(i,j,k,1:3,1:3)) defgradDetMax = max(defgradDetMax,defgradDet) defgradDetMin = min(defgradDetMin,defgradDet) enddo; enddo; enddo print '(a,x,es10.4)' , 'max determinant of deformation:', defgradDetMax print '(a,x,es10.4)' , 'min determinant of deformation:', defgradDetMin ! ------------------------------ enddo ! end looping when convergency is achieved !$OMP CRITICAL (write2out) print '(a)', '' print '(a)', '=============================================================' if(err_div > err_div_tol .or. err_stress > err_stress_tol) then print '(A,I5.5,A)', 'increment ', totalIncsCounter, ' NOT converged' notConvergedCounter = notConvergedCounter + 1_pInt else print '(A,I5.5,A)', 'increment ', totalIncsCounter, ' converged' endif if (mod(totalIncsCounter -1_pInt,bc(loadcase)%outputfrequency) == 0_pInt) then ! at output frequency print '(a)', '' print '(a)', '... writing results to file .................................' write(538), materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! write result to file endif !$OMP END CRITICAL (write2out) ! ################################################## ! # test of regridding ! allocate(deformed_small(res(1) ,res(2) ,res(3) ,3)); deformed_small = 0.0_pReal ! allocate(deformed_large(3,Npoints*27_pInt)); deformed_large = 0.0_pReal !ToDo: make it smaller (small corona only) ! call deformed_fft(res,geomdimension,defgrad_av_lab,1.0_pReal,defgrad,deformed_small) ! calculate deformed coordinates ! shift = math_mul33x3(defgrad_av_lab,geomdimension) ! print*, 'defgrad' ! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) ! print*, defgrad(i,j,k,1:3,1:3) ! enddo; enddo; enddo ! print*, 'deformed_small' ! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) ! print*, deformed_small(i,j,k,1:3) ! enddo; enddo; enddo ! print*, 'shift', shift ! ielem = 0_pInt ! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) ! do n = -1, 1 ! do m = -1, 1 ! do l = -1, 1 ! ielem = ielem +1_pInt ! deformed_large(1:3,ielem) = deformed_small(i,j,k,1:3)+ real((/l,m,n/),pReal)*shift ! enddo; enddo; enddo ! enddo; enddo; enddo ! print*, 'deformed_large' ! print*, deformed_large ! tree => kdtree2_create(deformed_large,sort=.true.,rearrange=.true.) ! allocate(new_coordinates(res(1),res(2),res(3),3)); new_coordinates = 0.0_pReal !fluctuation free new coordinates ! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) ! new_coordinates(i,j,k,1:3) = math_mul33x3(defgrad_av_lab,coordinates(1:3,i,j,k)) ! enddo; enddo; enddo ! pause ! ################################################## ! # end test of regridding endif ! end calculation/forwarding enddo ! end looping over incs in current loadcase deallocate(c_reduced) deallocate(s_reduced) enddo ! end looping over loadcases !$OMP CRITICAL (write2out) print '(a)', '' print '(a)', '#############################################################' print '(i6.6,a,i6.6,a)', notConvergedCounter, ' out of ', & totalIncsCounter - restartReadInc + 1_pInt, ' increments did not converge!' !$OMP END CRITICAL (write2out) close(538) call fftw_destroy_plan(fftw_stress); call fftw_destroy_plan(fftw_fluctuation) if (debugDivergence) call fftw_destroy_plan(fftw_divergence) if (debugFFTW) then call fftw_destroy_plan(fftw_debug_forward) call fftw_destroy_plan(fftw_debug_backward) endif end program DAMASK_spectral !******************************************************************** ! quit subroutine to satisfy IO_error ! !******************************************************************** subroutine quit(id) use prec implicit none integer(pInt) id stop end subroutine