!******************************************************************** ! Material subroutine for MSC.Marc Version 0.1 ! ! written by F. Roters, P. Eisenlohr, L. Hantcherli, W.A. Counts ! MPI fuer Eisenforschung, Duesseldorf ! ! last modified: 22.03.2007 !******************************************************************** ! Usage: ! - choose material as hypela2 ! - set statevariable 2 to number of material ! - set statevariable 2 to number of texture ! - choose output of user variables if desired ! - make sure the file material.mpie exists in the working ! directory ! - use nonsymmetric option for solver (e.g. direct profile ! or multifrontal sparse, the letter seems to be faster!) !******************************************************************** ! Marc subroutines used: ! - hypela2 ! - plotv ! - quit !******************************************************************** ! Marc common blocks included: ! - concom: lovl, ncycle ! - creeps: timinc !******************************************************************** ! include "prec.f90" ! include "math.f90" ! include "IO.f90" ! include "mesh.f90" ! include "constitutive.f90" include "CPFEM.f90" ! subroutine hypela2(d,g,e,de,s,t,dt,ngens,n,nn,kc,mats,ndi,nshear,& disp,dispt,coord,ffn,frotn,strechn,eigvn,ffn1,& frotn1,strechn1,eigvn1,ncrd1,itel,ndeg1,ndm,& nnode,jtype,lclass,ifr,ifu) !******************************************************************** ! This is the Marc material routine !******************************************************************** ! ! ************* user subroutine for defining material behavior ************** ! ! !CAUTION: Due to calculation of the Deformation gradients, Stretch Tensors and ! Rotation tensors at previous and current states, the analysis can be ! computationally expensive. Please use the user subroutine -> hypela ! if these kinematic quantities are not needed in the constitutive model ! ! ! IMPORTANT NOTES : ! ! ! (1) You must include the -> process,1,1,1, card in the parameter section ! of MARC input deck. ! ! (2) For total Lagrangian formulation use the -> 'large disp' card in the ! parameter section of MARC input deck. ! For updated Lagrangian formulation use the -> 'large disp' and 'update' ! cards in the parameter section of MARC input deck. However for any ! large strain calculation (whether elasticity or inelasticity) must entail ! the use of 'finite' parameter card also. ! ! (3) For Plasticity, the 2nd or 3rd cards in 'geometry' option in the model ! definition sections must be flagged for correct behavior in incompressible ! deformation. ! ! (4) The kinematic quantities are calculated for the following continuum ! elements (both lower and higher order) : ! plane stress, plane strain, generalized plane strain, axisymmetric, ! axisymmetric with twist and brick elements. ! ! ! ! ! d stress strain law to be formed ! g change in stress due to temperature effects ! e total strain ! de increment of strain ! s stress - should be updated by user ! t state variables (comes in at t=n, must be updated ! to have state variables at t=n+1) ! dt increment of state variables ! ngens size of stress - strain law ! n element number ! nn integration point number ! kc layer number ! mats material identification number ! ndi number of direct components ! nshear number of shear components ! disp incremental displacements ! dispt displacements at t=n (at assembly, lovl=4) and ! displacements at t=n+1 (at stress recovery, lovl=6) ! coord coordinates ! ncrd number of coordinates ! ndeg number of degrees of freedom ! itel dimension of F and R, either 2 or 3 ! nnode number of nodes per element ! jtype element type ! lclass element class ! ifr set to 1 if R has been calculated ! ifu set to 1 if strech has been calculated ! ! at t=n : ! ! ffn deformation gradient ! frotn rotation tensor ! strechn square of principal stretch ratios, lambda(i) ! eigvn(i,j) i principal direction components for j eigenvalues ! ! at t=n+1 : ! ! ffn1 deformation gradient ! frotn1 rotation tensor ! strechn1 square of principal stretch ratios, lambda(i) ! eigvn1(i,j) i principal direction components for j eigenvalues ! ! The following operation obtains U (stretch tensor) at t=n+1 : ! ! call scla(un1,0.d0,itel,itel,1) ! do 3 k=1,3 ! do 2 i=1,3 ! do 1 j=1,3 ! un1(i,j)=un1(i,j)+dsqrt(strechn1(k))*eigvn1(i,k)*eigvn1(j,k) !1 continue !2 continue !3 continue ! ! use prec, only: pReal,pInt use CPFEM, only : CPFEM_stress_all, CPFEM_jaco_old implicit real(pReal) (a-h,o-z) ! ! Marc common blocks are in fixed format so they have to be pasted in here beware of changes in newer Marc versions ! these are from 2005r3 ! concom is needed for inc (# increment), lovl ! include 'concom' common/concom/ & iacous, iasmbl, iautth, ibear, icompl, iconj, icreep, ideva(50), idyn, idynt,& ielas, ielcma, ielect, iform, ifour, iharm, ihcps, iheat, iheatt, ihresp,& ijoule, ilem, ilnmom, iloren, inc, incext, incsub, ipass, iplres, ipois,& ipoist, irpflo, ismall, ismalt, isoil, ispect, ispnow, istore, iswep, ithcrp,& itherm, iupblg, iupdat, jacflg, jel, jparks, largst, lfond, loadup, loaduq,& lodcor, lovl, lsub, magnet, ncycle, newtnt, newton, noshr, linear, ivscpl,& icrpim, iradrt, ipshft, itshr, iangin, iupmdr, iconjf, jincfl, jpermg, jhour,& isolvr, jritz, jtable, jshell, jdoubl, jform, jcentr, imini, kautth, iautof,& ibukty, iassum, icnstd, icnstt, kmakmas, imethvp,iradrte,iradrtp, iupdate,iupdatp,& ncycnt, marmen ,idynme, ihavca, ispf, kmini, imixed, largtt, kdoela, iautofg,& ipshftp,idntrc, ipore, jtablm, jtablc, isnecma,itrnspo,imsdif, jtrnspo,mcnear,& imech, imecht, ielcmat, ielectt,magnett, imsdift,noplas, jtabls, jactch, jtablth,& kgmsto ,jpzo, ifricsh, iremkin,iremfor, ishearp,jspf, machining, jlshell,icompsol,& iupblgfo,jcondir,nstcrp, nactive,ipassref, nstspnt,ibeart,icheckmpc, noline, icuring,& ishrink,ioffsflg,isetoff, iharmt, inc_incdat, iautspc,ibrake ! creeps is needed for timinc (time increment) ! include 'creeps' common/creeps/ & cptim,timinc,timinc_p,timinc_s,timincm,timinc_a,timinc_b,creept(33),icptim,icfte,icfst,& icfeq,icftm,icetem,mcreep,jcreep,icpa,icftmp,icfstr,icfqcp,icfcpm,icrppr,icrcha,icpb,iicpmt,iicpa ! real(pReal) mpie_timefactor, mpie_stress(ngens) real(pReal) mpie_jacobi(ngens,ngens) ! dimension e(*),de(*),t(*),dt(*),g(*),d(ngens,ngens),s(ngens),n(2),coord(ncrd,*),disp(ndeg,*),dispt(ndeg,*),ffn(itel,*),& frotn(itel,*),strechn(itel),eigvn(itel,*),ffn1(itel,*),frotn1(itel,*),strechn1(itel),eigvn1(itel,*) ! ! call general material routine only in increment 0 and for lovl==6 (stress recovery) ! subroutine cpfem_general(mpie_s, mpie_d, mpie_ndi, ! 1 mpie_ffn, mpie_ffn1, mpie_cn, mpie_tinc, ! 2 mpie_timefactor, mpie_numel, mpie_nip, mpie_en, ! 3 mpie_in, mpie_mn, mpie_dimension, state_var) !******************************************************************** ! This routine calculates the material behaviour !******************************************************************** ! mpie_ffn deformation gradient for t=t0 ! mpie_ffn1 deformation gradient for t=t1 ! mpie_ndi dimension ! mpie_cn number of cycle ! mpie_tinc time increment ! mpie_en element number ! mpie_in intergration point number ! mpie_dimension dimension of stress/strain vector !******************************************************************** ! CPFEM_ffn_all(:,:, n(1), nn)=ffn ! CPFEM_ffn1_all(:,:, n(1), nn)=ffn1 if ((lovl==6).or.(inc==0)) then call cpfem_general(ffn, ffn1, ndi, inc, subinc, ncycle, timinc, n(1), nn) endif ! return stress and jacobi s=CPFEM_stress_all(1:ngens,n(1), nn) d=CPFEM_jaco_old(1:ngens,1:ngens, n(1), nn) return end ! ! subroutine plotv(v,s,sp,etot,eplas,ecreep,t,m,nn,layer,ndi, nshear,jpltcd) !******************************************************************** ! This routine sets user defined output variables for Marc !******************************************************************** ! ! select a variable contour plotting (user subroutine). ! ! v variable ! s (idss) stress array ! sp stresses in preferred direction ! etot total strain (generalized) ! eplas total plastic strain ! ecreep total creep strain ! t current temperature ! m element number ! nn integration point number ! layer layer number ! ndi (3) number of direct stress components ! nshear (3) number of shear stress components ! !******************************************************************** use prec, only: pReal,pInt use CPFEM, only: CPFEM_results use constitutive, only: constitutive_Nresults implicit none ! real(pReal) s(*),etot(*),eplas(*),ecreep(*),sp(*) real(pReal) v, t(*) integer(pInt) m, nn, layer, ndi, nshear, jpltcd real(pReal) orientation_no, result_no ! ! calculate position in CPFEM_results orientation_no=int(jpltcd/constitutive_Nresults) result_no=modulo(jpltcd, constitutive_Nresults) ! assign result variable v=CPFEM_result(result_no, grain_no, m, n) return end ! ! subroutine utimestep(timestep,timestepold,icall, time,timeloadcase) !******************************************************************** ! This routine modifies the addaptive time step of Marc !******************************************************************** use CPFEM, only : CPFEM_timefactor_max use prec, only: pReal,pInt implicit none ! real(pReal) timestep, timestepold, time,timeloadcase integer(pInt) icall ! ! user subroutine for modifying the time step in auto step ! ! timestep : the current time step as suggested by marc ! to be modified in this routine ! timestepold : the current time step before it was modified by marc ! icall : =1 for setting the initial time step ! =2 if this routine is called during an increment ! =3 if this routine is called at the beginning ! of the increment ! time : time at the start of the current increment ! timeloadcase: time period of the current load case ! ! it is in general not recommended to increase the time step ! during the increment. ! this routine is called right after the time step has (possibly) ! been updated by marc. ! ! user coding ! reduce timestep during increment in case mpie_timefactor is too large if(icall==2_pInt) then if(mpie_timefactor_max>1.25_pReal) then timestep=min(timestep,timestepold*0.8_pReal) end if return ! modify timestep at beginning of new increment else if(icall==3_pInt) then if(mpie_timefactor_max<=0.8_pReal) then timestep=min(timestep,timestepold*1.25_pReal) else if (mpie_timefactor_max<=1.0_pReal) then timestep=min(timestep,timestepold/mpie_timefactor_max) else if (mpie_timefactor_max<=1.25_pReal) then timestep=min(timestep,timestepold*1.01_pReal) else timestep=min(timestep,timestepold*0.8_pReal) end if end if return end