!-------------------------------------------------------------------------------------------------- ! $Id$ !-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @author David Cereceda, Lawrence Livermore National Laboratory !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine incoprorating dislocation and twinning physics !> @details to be done !-------------------------------------------------------------------------------------------------- module plastic_disloUCLA use prec, only: & pReal, & pInt implicit none private integer(pInt), dimension(:), allocatable, public, protected :: & plastic_disloUCLA_sizePostResults !< cumulative size of post results integer(pInt), dimension(:,:), allocatable, target, public :: & plastic_disloUCLA_sizePostResult !< size of each post result output character(len=64), dimension(:,:), allocatable, target, public :: & plastic_disloUCLA_output !< name of each post result output character(len=12), dimension(3), parameter, private :: & plastic_disloUCLA_listBasicSlipStates = & ['rhoEdge ', 'rhoEdgeDip ', 'accshearslip'] character(len=12), dimension(2), parameter, private :: & plastic_disloUCLA_listBasicTwinStates = & ['twinFraction', 'accsheartwin'] character(len=17), dimension(4), parameter, private :: & plastic_disloUCLA_listDependentSlipStates = & ['invLambdaSlip ', 'invLambdaSlipTwin', 'meanFreePathSlip ', 'tauSlipThreshold '] character(len=16), dimension(4), parameter, private :: & plastic_disloUCLA_listDependentTwinStates = & ['invLambdaTwin ', 'meanFreePathTwin', 'tauTwinThreshold', 'twinVolume '] real(pReal), parameter, private :: & kB = 1.38e-23_pReal !< Boltzmann constant in J/Kelvin integer(pInt), dimension(:), allocatable, target, public :: & plastic_disloUCLA_Noutput !< number of outputs per instance of this plasticity integer(pInt), dimension(:), allocatable, public, protected :: & plastic_disloUCLA_totalNslip, & !< total number of active slip systems for each instance plastic_disloUCLA_totalNtwin !< total number of active twin systems for each instance integer(pInt), dimension(:,:), allocatable, private :: & plastic_disloUCLA_Nslip, & !< number of active slip systems for each family and instance plastic_disloUCLA_Ntwin !< number of active twin systems for each family and instance real(pReal), dimension(:), allocatable, private :: & plastic_disloUCLA_CAtomicVolume, & !< atomic volume in Bugers vector unit plastic_disloUCLA_D0, & !< prefactor for self-diffusion coefficient plastic_disloUCLA_Qsd, & !< activation energy for dislocation climb plastic_disloUCLA_GrainSize, & !< grain size plastic_disloUCLA_MaxTwinFraction, & !< maximum allowed total twin volume fraction plastic_disloUCLA_CEdgeDipMinDistance, & !< plastic_disloUCLA_Cmfptwin, & !< plastic_disloUCLA_Cthresholdtwin, & !< plastic_disloUCLA_SolidSolutionStrength, & !< Strength due to elements in solid solution plastic_disloUCLA_L0, & !< Length of twin nuclei in Burgers vectors plastic_disloUCLA_xc, & !< critical distance for formation of twin nucleus plastic_disloUCLA_VcrossSlip, & !< cross slip volume plastic_disloUCLA_SFE_0K, & !< stacking fault energy at zero K plastic_disloUCLA_dSFE_dT, & !< temperature dependance of stacking fault energy plastic_disloUCLA_dipoleFormationFactor, & !< scaling factor for dipole formation: 0: off, 1: on. other values not useful plastic_disloUCLA_aTolRho, & !< absolute tolerance for integration of dislocation density plastic_disloUCLA_aTolTwinFrac !< absolute tolerance for integration of twin volume fraction real(pReal), dimension(:,:,:,:), allocatable, private :: & plastic_disloUCLA_Ctwin66 !< twin elasticity matrix in Mandel notation for each instance real(pReal), dimension(:,:,:,:,:,:), allocatable, private :: & plastic_disloUCLA_Ctwin3333 !< twin elasticity matrix for each instance real(pReal), dimension(:,:), allocatable, private :: & plastic_disloUCLA_rhoEdge0, & !< initial edge dislocation density per slip system for each family and instance plastic_disloUCLA_rhoEdgeDip0, & !< initial edge dipole density per slip system for each family and instance plastic_disloUCLA_burgersPerSlipFamily, & !< absolute length of burgers vector [m] for each slip family and instance plastic_disloUCLA_burgersPerSlipSystem, & !< absolute length of burgers vector [m] for each slip system and instance plastic_disloUCLA_burgersPerTwinFamily, & !< absolute length of burgers vector [m] for each twin family and instance plastic_disloUCLA_burgersPerTwinSystem, & !< absolute length of burgers vector [m] for each twin system and instance plastic_disloUCLA_QedgePerSlipFamily, & !< activation energy for glide [J] for each slip family and instance plastic_disloUCLA_QedgePerSlipSystem, & !< activation energy for glide [J] for each slip system and instance plastic_disloUCLA_v0PerSlipFamily, & !< dislocation velocity prefactor [m/s] for each family and instance plastic_disloUCLA_v0PerSlipSystem, & !< dislocation velocity prefactor [m/s] for each slip system and instance plastic_disloUCLA_tau_peierlsPerSlipFamily, & !< Peierls stress [Pa] for each family and instance plastic_disloUCLA_Ndot0PerTwinFamily, & !< twin nucleation rate [1/m³s] for each twin family and instance plastic_disloUCLA_Ndot0PerTwinSystem, & !< twin nucleation rate [1/m³s] for each twin system and instance plastic_disloUCLA_tau_r, & !< stress to bring partial close together for each twin system and instance plastic_disloUCLA_twinsizePerTwinFamily, & !< twin thickness [m] for each twin family and instance plastic_disloUCLA_twinsizePerTwinSystem, & !< twin thickness [m] for each twin system and instance plastic_disloUCLA_CLambdaSlipPerSlipFamily, & !< Adj. parameter for distance between 2 forest dislocations for each slip family and instance plastic_disloUCLA_CLambdaSlipPerSlipSystem, & !< Adj. parameter for distance between 2 forest dislocations for each slip system and instance plastic_disloUCLA_interaction_SlipSlip, & !< coefficients for slip-slip interaction for each interaction type and instance plastic_disloUCLA_interaction_SlipTwin, & !< coefficients for slip-twin interaction for each interaction type and instance plastic_disloUCLA_interaction_TwinSlip, & !< coefficients for twin-slip interaction for each interaction type and instance plastic_disloUCLA_interaction_TwinTwin, & !< coefficients for twin-twin interaction for each interaction type and instance plastic_disloUCLA_pPerSlipFamily, & !< p-exponent in glide velocity plastic_disloUCLA_qPerSlipFamily, & !< q-exponent in glide velocity !* mobility law parameters plastic_disloUCLA_kinkheight, & !< height of the kink pair plastic_disloUCLA_omega, & !< attempt frequency for kink pair nucleation plastic_disloUCLA_kinkwidth, & !< width of the kink pair plastic_disloUCLA_dislolength, & !< dislocation length (lamda) plastic_disloUCLA_friction, & !< friction coeff. B (kMC) !* plastic_disloUCLA_rPerTwinFamily, & !< r-exponent in twin nucleation rate plastic_disloUCLA_nonSchmidCoeff !< non-Schmid coefficients (bcc) real(pReal), dimension(:,:,:), allocatable, private :: & plastic_disloUCLA_interactionMatrix_SlipSlip, & !< interaction matrix of the different slip systems for each instance plastic_disloUCLA_interactionMatrix_SlipTwin, & !< interaction matrix of slip systems with twin systems for each instance plastic_disloUCLA_interactionMatrix_TwinSlip, & !< interaction matrix of twin systems with slip systems for each instance plastic_disloUCLA_interactionMatrix_TwinTwin, & !< interaction matrix of the different twin systems for each instance plastic_disloUCLA_forestProjectionEdge !< matrix of forest projections of edge dislocations for each instance enum, bind(c) enumerator :: undefined_ID, & edge_density_ID, & dipole_density_ID, & shear_rate_slip_ID, & accumulated_shear_slip_ID, & mfp_slip_ID, & resolved_stress_slip_ID, & threshold_stress_slip_ID, & edge_dipole_distance_ID, & stress_exponent_ID, & twin_fraction_ID, & shear_rate_twin_ID, & accumulated_shear_twin_ID, & mfp_twin_ID, & resolved_stress_twin_ID, & threshold_stress_twin_ID end enum integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: & plastic_disloUCLA_outputID !< ID of each post result output type, private :: tDisloUCLAState real(pReal), pointer, dimension(:,:) :: & rhoEdge, & rhoEdgeDip, & accshear_slip, & twinFraction, & accshear_twin, & invLambdaSlip, & invLambdaSlipTwin, & invLambdaTwin, & mfp_slip, & mfp_twin, & threshold_stress_slip, & threshold_stress_twin, & twinVolume end type type(tDisloUCLAState ), allocatable, dimension(:), private :: & state, & state0, & dotState public :: & plastic_disloUCLA_init, & plastic_disloUCLA_homogenizedC, & plastic_disloUCLA_microstructure, & plastic_disloUCLA_LpAndItsTangent, & plastic_disloUCLA_dotState, & plastic_disloUCLA_postResults private :: & plastic_disloUCLA_stateInit, & plastic_disloUCLA_aTolState contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- subroutine plastic_disloUCLA_init(fileUnit) use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use debug, only: & debug_level,& debug_constitutive,& debug_levelBasic use math, only: & math_Mandel3333to66, & math_Voigt66to3333, & math_mul3x3 use IO, only: & IO_read, & IO_lc, & IO_getTag, & IO_isBlank, & IO_stringPos, & IO_stringValue, & IO_floatValue, & IO_intValue, & IO_warning, & IO_error, & IO_timeStamp, & IO_EOF use material, only: & phase_plasticity, & phase_plasticityInstance, & phase_Noutput, & PLASTICITY_DISLOUCLA_label, & PLASTICITY_DISLOUCLA_ID, & material_phase, & plasticState, & MATERIAL_partPhase use lattice use numerics,only: & analyticJaco, & worldrank, & numerics_integrator implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), allocatable, dimension(:) :: chunkPos integer(pInt) :: maxNinstance,mySize=0_pInt,phase,maxTotalNslip,maxTotalNtwin,& f,instance,j,k,l,m,n,o,p,q,r,s,ns,nt, & Nchunks_SlipSlip = 0_pInt, Nchunks_SlipTwin = 0_pInt, & Nchunks_TwinSlip = 0_pInt, Nchunks_TwinTwin = 0_pInt, & Nchunks_SlipFamilies = 0_pInt, Nchunks_TwinFamilies = 0_pInt, Nchunks_nonSchmid = 0_pInt, & offset_slip, index_myFamily, index_otherFamily, & startIndex, endIndex integer(pInt) :: sizeState, sizeDotState, sizeDeltaState integer(pInt) :: NofMyPhase character(len=65536) :: & tag = '', & line = '' real(pReal), dimension(:), allocatable :: tempPerSlip, tempPerTwin mainProcess: if (worldrank == 0) then write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_DISLOUCLA_label//' init -+>>>' write(6,'(a)') ' $Id$' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" endif mainProcess maxNinstance = int(count(phase_plasticity == PLASTICITY_DISLOUCLA_ID),pInt) if (maxNinstance == 0_pInt) return if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) & write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance allocate(plastic_disloUCLA_sizePostResults(maxNinstance), source=0_pInt) allocate(plastic_disloUCLA_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt) allocate(plastic_disloUCLA_output(maxval(phase_Noutput),maxNinstance)) plastic_disloUCLA_output = '' allocate(plastic_disloUCLA_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID) allocate(plastic_disloUCLA_Noutput(maxNinstance), source=0_pInt) allocate(plastic_disloUCLA_Nslip(lattice_maxNslipFamily,maxNinstance), source=0_pInt) allocate(plastic_disloUCLA_Ntwin(lattice_maxNtwinFamily,maxNinstance), source=0_pInt) allocate(plastic_disloUCLA_totalNslip(maxNinstance), source=0_pInt) allocate(plastic_disloUCLA_totalNtwin(maxNinstance), source=0_pInt) allocate(plastic_disloUCLA_CAtomicVolume(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_D0(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_Qsd(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_GrainSize(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_MaxTwinFraction(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_CEdgeDipMinDistance(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_Cmfptwin(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_Cthresholdtwin(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_SolidSolutionStrength(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_L0(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_xc(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_VcrossSlip(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_aTolRho(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_aTolTwinFrac(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_SFE_0K(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_dSFE_dT(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_dipoleFormationFactor(maxNinstance), source=1.0_pReal) !should be on by default allocate(plastic_disloUCLA_rhoEdge0(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_rhoEdgeDip0(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_burgersPerSlipFamily(lattice_maxNslipFamily,maxNinstance),source=0.0_pReal) allocate(plastic_disloUCLA_kinkheight(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_omega(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_kinkwidth(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_dislolength(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_friction(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_burgersPerTwinFamily(lattice_maxNtwinFamily,maxNinstance),source=0.0_pReal) allocate(plastic_disloUCLA_QedgePerSlipFamily(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_v0PerSlipFamily(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_tau_peierlsPerSlipFamily(lattice_maxNslipFamily,maxNinstance), & source=0.0_pReal) allocate(plastic_disloUCLA_pPerSlipFamily(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_qPerSlipFamily(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_Ndot0PerTwinFamily(lattice_maxNtwinFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_twinsizePerTwinFamily(lattice_maxNtwinFamily,maxNinstance),source=0.0_pReal) allocate(plastic_disloUCLA_CLambdaSlipPerSlipFamily(lattice_maxNslipFamily,maxNinstance), & source=0.0_pReal) allocate(plastic_disloUCLA_rPerTwinFamily(lattice_maxNtwinFamily,maxNinstance),source=0.0_pReal) allocate(plastic_disloUCLA_interaction_SlipSlip(lattice_maxNinteraction,maxNinstance),source=0.0_pReal) allocate(plastic_disloUCLA_interaction_SlipTwin(lattice_maxNinteraction,maxNinstance),source=0.0_pReal) allocate(plastic_disloUCLA_interaction_TwinSlip(lattice_maxNinteraction,maxNinstance),source=0.0_pReal) allocate(plastic_disloUCLA_interaction_TwinTwin(lattice_maxNinteraction,maxNinstance),source=0.0_pReal) allocate(plastic_disloUCLA_nonSchmidCoeff(lattice_maxNnonSchmid,maxNinstance), source=0.0_pReal) rewind(fileUnit) phase = 0_pInt do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to line = IO_read(fileUnit) enddo parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part line = IO_read(fileUnit) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(fileUnit, .true.) ! reset IO_read exit endif if (IO_getTag(line,'[',']') /= '') then ! next phase section phase = phase + 1_pInt ! advance phase section counter if (phase_plasticity(phase) == PLASTICITY_DISLOUCLA_ID) then Nchunks_SlipFamilies = count(lattice_NslipSystem(:,phase) > 0_pInt) Nchunks_TwinFamilies = count(lattice_NtwinSystem(:,phase) > 0_pInt) Nchunks_SlipSlip = maxval(lattice_interactionSlipSlip(:,:,phase)) Nchunks_SlipTwin = maxval(lattice_interactionSlipTwin(:,:,phase)) Nchunks_TwinSlip = maxval(lattice_interactionTwinSlip(:,:,phase)) Nchunks_TwinTwin = maxval(lattice_interactionTwinTwin(:,:,phase)) Nchunks_nonSchmid = lattice_NnonSchmid(phase) if(allocated(tempPerSlip)) deallocate(tempPerSlip) if(allocated(tempPerTwin)) deallocate(tempPerTwin) allocate(tempPerSlip(Nchunks_SlipFamilies)) allocate(tempPerTwin(Nchunks_TwinFamilies)) endif cycle ! skip to next line endif if (phase > 0_pInt ) then; if (phase_plasticity(phase) == PLASTICITY_DISLOUCLA_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran instance = phase_plasticityInstance(phase) ! which instance of my plasticity is present phase chunkPos = IO_stringPos(line) tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key select case(tag) case ('(output)') select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt))) case ('edge_density') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = edge_density_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('dipole_density') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = dipole_density_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('shear_rate_slip','shearrate_slip') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = shear_rate_slip_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('accumulated_shear_slip') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = accumulated_shear_slip_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('mfp_slip') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = mfp_slip_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('resolved_stress_slip') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = resolved_stress_slip_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('threshold_stress_slip') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = threshold_stress_slip_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('edge_dipole_distance') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = edge_dipole_distance_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('stress_exponent') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = stress_exponent_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('twin_fraction') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = twin_fraction_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('shear_rate_twin','shearrate_twin') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = shear_rate_twin_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('accumulated_shear_twin') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = accumulated_shear_twin_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('mfp_twin') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = mfp_twin_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('resolved_stress_twin') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = resolved_stress_twin_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('threshold_stress_twin') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = threshold_stress_twin_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) end select !-------------------------------------------------------------------------------------------------- ! parameters depending on number of slip system families case ('nslip') if (chunkPos(1) < Nchunks_SlipFamilies + 1_pInt) & call IO_warning(50_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOUCLA_label//')') if (chunkPos(1) > Nchunks_SlipFamilies + 1_pInt) & call IO_error(150_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOUCLA_label//')') Nchunks_SlipFamilies = chunkPos(1) - 1_pInt do j = 1_pInt, Nchunks_SlipFamilies plastic_disloUCLA_Nslip(j,instance) = IO_intValue(line,chunkPos,1_pInt+j) enddo case ('rhoedge0','rhoedgedip0','slipburgers','qedge','v0','clambdaslip','tau_peierls','p_slip','q_slip',& 'kink_height','omega','kink_width','dislolength','friction_coeff') do j = 1_pInt, Nchunks_SlipFamilies tempPerSlip(j) = IO_floatValue(line,chunkPos,1_pInt+j) enddo select case(tag) case ('rhoedge0') plastic_disloUCLA_rhoEdge0(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) case ('rhoedgedip0') plastic_disloUCLA_rhoEdgeDip0(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) case ('slipburgers') plastic_disloUCLA_burgersPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) case ('qedge') plastic_disloUCLA_QedgePerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) case ('v0') plastic_disloUCLA_v0PerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) case ('clambdaslip') plastic_disloUCLA_CLambdaSlipPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) case ('tau_peierls') if (lattice_structure(phase) /= LATTICE_bcc_ID) & call IO_warning(42_pInt,ext_msg=trim(tag)//' for non-bcc ('//PLASTICITY_DISLOUCLA_label//')') plastic_disloUCLA_tau_peierlsPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) case ('p_slip') plastic_disloUCLA_pPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) case ('q_slip') plastic_disloUCLA_qPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) case ('kink_height') plastic_disloUCLA_kinkheight(1:Nchunks_SlipFamilies,instance) = & tempPerSlip(1:Nchunks_SlipFamilies) case ('omega') plastic_disloUCLA_omega(1:Nchunks_SlipFamilies,instance) = & tempPerSlip(1:Nchunks_SlipFamilies) case ('kink_width') plastic_disloUCLA_kinkwidth(1:Nchunks_SlipFamilies,instance) = & tempPerSlip(1:Nchunks_SlipFamilies) case ('dislolength') plastic_disloUCLA_dislolength(1:Nchunks_SlipFamilies,instance) = & tempPerSlip(1:Nchunks_SlipFamilies) case ('friction_coeff') plastic_disloUCLA_friction(1:Nchunks_SlipFamilies,instance) = & tempPerSlip(1:Nchunks_SlipFamilies) end select !-------------------------------------------------------------------------------------------------- ! parameters depending on slip number of twin families case ('ntwin') if (chunkPos(1) < Nchunks_TwinFamilies + 1_pInt) & call IO_warning(51_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOUCLA_label//')') if (chunkPos(1) > Nchunks_TwinFamilies + 1_pInt) & call IO_error(150_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOUCLA_label//')') Nchunks_TwinFamilies = chunkPos(1) - 1_pInt do j = 1_pInt, Nchunks_TwinFamilies plastic_disloUCLA_Ntwin(j,instance) = IO_intValue(line,chunkPos,1_pInt+j) enddo case ('ndot0','twinsize','twinburgers','r_twin') do j = 1_pInt, Nchunks_TwinFamilies tempPerTwin(j) = IO_floatValue(line,chunkPos,1_pInt+j) enddo select case(tag) case ('ndot0') if (lattice_structure(phase) == LATTICE_fcc_ID) & call IO_warning(42_pInt,ext_msg=trim(tag)//' for fcc ('//PLASTICITY_DISLOUCLA_label//')') plastic_disloUCLA_Ndot0PerTwinFamily(1:Nchunks_TwinFamilies,instance) = tempPerTwin(1:Nchunks_TwinFamilies) case ('twinsize') plastic_disloUCLA_twinsizePerTwinFamily(1:Nchunks_TwinFamilies,instance) = tempPerTwin(1:Nchunks_TwinFamilies) case ('twinburgers') plastic_disloUCLA_burgersPerTwinFamily(1:Nchunks_TwinFamilies,instance) = tempPerTwin(1:Nchunks_TwinFamilies) case ('r_twin') plastic_disloUCLA_rPerTwinFamily(1:Nchunks_TwinFamilies,instance) = tempPerTwin(1:Nchunks_TwinFamilies) end select !-------------------------------------------------------------------------------------------------- ! parameters depending on number of interactions case ('interaction_slipslip','interactionslipslip') if (chunkPos(1) < 1_pInt + Nchunks_SlipSlip) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOUCLA_label//')') do j = 1_pInt, Nchunks_SlipSlip plastic_disloUCLA_interaction_SlipSlip(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j) enddo case ('interaction_sliptwin','interactionsliptwin') if (chunkPos(1) < 1_pInt + Nchunks_SlipTwin) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOUCLA_label//')') do j = 1_pInt, Nchunks_SlipTwin plastic_disloUCLA_interaction_SlipTwin(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j) enddo case ('interaction_twinslip','interactiontwinslip') if (chunkPos(1) < 1_pInt + Nchunks_TwinSlip) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOUCLA_label//')') do j = 1_pInt, Nchunks_TwinSlip plastic_disloUCLA_interaction_TwinSlip(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j) enddo case ('interaction_twintwin','interactiontwintwin') if (chunkPos(1) < 1_pInt + Nchunks_TwinTwin) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOUCLA_label//')') do j = 1_pInt, Nchunks_TwinTwin plastic_disloUCLA_interaction_TwinTwin(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j) enddo case ('nonschmid_coefficients') if (chunkPos(1) < 1_pInt + Nchunks_nonSchmid) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOUCLA_label//')') do j = 1_pInt,Nchunks_nonSchmid plastic_disloUCLA_nonSchmidCoeff(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j) enddo !-------------------------------------------------------------------------------------------------- ! parameters independent of number of slip/twin systems case ('grainsize') plastic_disloUCLA_GrainSize(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('maxtwinfraction') plastic_disloUCLA_MaxTwinFraction(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('d0') plastic_disloUCLA_D0(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('qsd') plastic_disloUCLA_Qsd(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('atol_rho') plastic_disloUCLA_aTolRho(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('atol_twinfrac') plastic_disloUCLA_aTolTwinFrac(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('cmfptwin') plastic_disloUCLA_Cmfptwin(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('cthresholdtwin') plastic_disloUCLA_Cthresholdtwin(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('solidsolutionstrength') plastic_disloUCLA_SolidSolutionStrength(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('l0') plastic_disloUCLA_L0(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('xc') plastic_disloUCLA_xc(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('vcrossslip') plastic_disloUCLA_VcrossSlip(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('cedgedipmindistance') plastic_disloUCLA_CEdgeDipMinDistance(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('catomicvolume') plastic_disloUCLA_CAtomicVolume(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('sfe_0k') plastic_disloUCLA_SFE_0K(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('dsfe_dt') plastic_disloUCLA_dSFE_dT(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('dipoleformationfactor') plastic_disloUCLA_dipoleFormationFactor(instance) = IO_floatValue(line,chunkPos,2_pInt) end select endif; endif enddo parsingFile sanityChecks: do phase = 1_pInt, size(phase_plasticity) myPhase: if (phase_plasticity(phase) == PLASTICITY_disloUCLA_ID) then instance = phase_plasticityInstance(phase) if (sum(plastic_disloUCLA_Nslip(:,instance)) < 0_pInt) & call IO_error(211_pInt,el=instance,ext_msg='Nslip ('//PLASTICITY_DISLOUCLA_label//')') if (sum(plastic_disloUCLA_Ntwin(:,instance)) < 0_pInt) & call IO_error(211_pInt,el=instance,ext_msg='Ntwin ('//PLASTICITY_DISLOUCLA_label//')') do f = 1_pInt,lattice_maxNslipFamily if (plastic_disloUCLA_Nslip(f,instance) > 0_pInt) then if (plastic_disloUCLA_rhoEdge0(f,instance) < 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='rhoEdge0 ('//PLASTICITY_DISLOUCLA_label//')') if (plastic_disloUCLA_rhoEdgeDip0(f,instance) < 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='rhoEdgeDip0 ('//PLASTICITY_DISLOUCLA_label//')') if (plastic_disloUCLA_burgersPerSlipFamily(f,instance) <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='slipBurgers ('//PLASTICITY_DISLOUCLA_label//')') if (plastic_disloUCLA_v0PerSlipFamily(f,instance) <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='v0 ('//PLASTICITY_DISLOUCLA_label//')') if (plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance) < 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='tau_peierls ('//PLASTICITY_DISLOUCLA_label//')') endif enddo do f = 1_pInt,lattice_maxNtwinFamily if (plastic_disloUCLA_Ntwin(f,instance) > 0_pInt) then if (plastic_disloUCLA_burgersPerTwinFamily(f,instance) <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='twinburgers ('//PLASTICITY_DISLOUCLA_label//')') if (plastic_disloUCLA_Ndot0PerTwinFamily(f,instance) < 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='ndot0 ('//PLASTICITY_DISLOUCLA_label//')') endif enddo if (plastic_disloUCLA_CAtomicVolume(instance) <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='cAtomicVolume ('//PLASTICITY_DISLOUCLA_label//')') if (plastic_disloUCLA_D0(instance) <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='D0 ('//PLASTICITY_DISLOUCLA_label//')') if (plastic_disloUCLA_Qsd(instance) <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='Qsd ('//PLASTICITY_DISLOUCLA_label//')') if (sum(plastic_disloUCLA_Ntwin(:,instance)) > 0_pInt) then if (abs(plastic_disloUCLA_SFE_0K(instance)) <= tiny(0.0_pReal) .and. & abs(plastic_disloUCLA_dSFE_dT(instance)) <= tiny(0.0_pReal) .and. & lattice_structure(phase) == LATTICE_fcc_ID) & call IO_error(211_pInt,el=instance,ext_msg='SFE0K ('//PLASTICITY_DISLOUCLA_label//')') if (plastic_disloUCLA_aTolRho(instance) <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='aTolRho ('//PLASTICITY_DISLOUCLA_label//')') if (plastic_disloUCLA_aTolTwinFrac(instance) <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='aTolTwinFrac ('//PLASTICITY_DISLOUCLA_label//')') endif if (abs(plastic_disloUCLA_dipoleFormationFactor(instance)) > tiny(0.0_pReal) .and. & plastic_disloUCLA_dipoleFormationFactor(instance) /= 1.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='dipoleFormationFactor ('//PLASTICITY_DISLOUCLA_label//')') !-------------------------------------------------------------------------------------------------- ! Determine total number of active slip or twin systems plastic_disloUCLA_Nslip(:,instance) = min(lattice_NslipSystem(:,phase),plastic_disloUCLA_Nslip(:,instance)) plastic_disloUCLA_Ntwin(:,instance) = min(lattice_NtwinSystem(:,phase),plastic_disloUCLA_Ntwin(:,instance)) plastic_disloUCLA_totalNslip(instance) = sum(plastic_disloUCLA_Nslip(:,instance)) plastic_disloUCLA_totalNtwin(instance) = sum(plastic_disloUCLA_Ntwin(:,instance)) endif myPhase enddo sanityChecks !-------------------------------------------------------------------------------------------------- ! allocation of variables whose size depends on the total number of active slip systems maxTotalNslip = maxval(plastic_disloUCLA_totalNslip) maxTotalNtwin = maxval(plastic_disloUCLA_totalNtwin) allocate(plastic_disloUCLA_burgersPerSlipSystem(maxTotalNslip, maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_burgersPerTwinSystem(maxTotalNtwin, maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_QedgePerSlipSystem(maxTotalNslip, maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_v0PerSlipSystem(maxTotalNslip, maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_Ndot0PerTwinSystem(maxTotalNtwin, maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_tau_r(maxTotalNtwin, maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_twinsizePerTwinSystem(maxTotalNtwin, maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_CLambdaSlipPerSlipSystem(maxTotalNslip, maxNinstance),source=0.0_pReal) allocate(plastic_disloUCLA_interactionMatrix_SlipSlip(maxval(plastic_disloUCLA_totalNslip),& ! slip resistance from slip activity maxval(plastic_disloUCLA_totalNslip),& maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_interactionMatrix_SlipTwin(maxval(plastic_disloUCLA_totalNslip),& ! slip resistance from twin activity maxval(plastic_disloUCLA_totalNtwin),& maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_interactionMatrix_TwinSlip(maxval(plastic_disloUCLA_totalNtwin),& ! twin resistance from slip activity maxval(plastic_disloUCLA_totalNslip),& maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_interactionMatrix_TwinTwin(maxval(plastic_disloUCLA_totalNtwin),& ! twin resistance from twin activity maxval(plastic_disloUCLA_totalNtwin),& maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_forestProjectionEdge(maxTotalNslip,maxTotalNslip,maxNinstance), & source=0.0_pReal) allocate(plastic_disloUCLA_Ctwin66(6,6,maxTotalNtwin,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_Ctwin3333(3,3,3,3,maxTotalNtwin,maxNinstance), source=0.0_pReal) allocate(state(maxNinstance)) allocate(state0(maxNinstance)) allocate(dotState(maxNinstance)) initializeInstances: do phase = 1_pInt, size(phase_plasticity) myPhase2: if (phase_plasticity(phase) == PLASTICITY_disloUCLA_ID) then NofMyPhase=count(material_phase==phase) instance = phase_plasticityInstance(phase) ns = plastic_disloUCLA_totalNslip(instance) nt = plastic_disloUCLA_totalNtwin(instance) !-------------------------------------------------------------------------------------------------- ! Determine size of postResults array outputs: do o = 1_pInt,plastic_disloUCLA_Noutput(instance) select case(plastic_disloUCLA_outputID(o,instance)) case(edge_density_ID, & dipole_density_ID, & shear_rate_slip_ID, & accumulated_shear_slip_ID, & mfp_slip_ID, & resolved_stress_slip_ID, & threshold_stress_slip_ID, & edge_dipole_distance_ID, & stress_exponent_ID & ) mySize = ns case(twin_fraction_ID, & shear_rate_twin_ID, & accumulated_shear_twin_ID, & mfp_twin_ID, & resolved_stress_twin_ID, & threshold_stress_twin_ID & ) mySize = nt end select if (mySize > 0_pInt) then ! any meaningful output found plastic_disloUCLA_sizePostResult(o,instance) = mySize plastic_disloUCLA_sizePostResults(instance) = plastic_disloUCLA_sizePostResults(instance) + mySize endif enddo outputs !-------------------------------------------------------------------------------------------------- ! allocate state arrays sizeDotState = int(size(plastic_disloUCLA_listBasicSlipStates),pInt) * ns & + int(size(plastic_disloUCLA_listBasicTwinStates),pInt) * nt sizeDeltaState = 0_pInt sizeState = sizeDotState & + int(size(plastic_disloUCLA_listDependentSlipStates),pInt) * ns & + int(size(plastic_disloUCLA_listDependentTwinStates),pInt) * nt plasticState(phase)%sizeState = sizeState plasticState(phase)%sizeDotState = sizeDotState plasticState(phase)%sizeDeltaState = sizeDeltaState plasticState(phase)%sizePostResults = plastic_disloUCLA_sizePostResults(instance) plasticState(phase)%nSlip = plastic_disloucla_totalNslip(instance) plasticState(phase)%nTwin = plastic_disloucla_totalNtwin(instance) plasticState(phase)%nTrans= 0_pInt allocate(plasticState(phase)%aTolState (sizeState), source=0.0_pReal) allocate(plasticState(phase)%state0 (sizeState,NofMyPhase), source=0.0_pReal) allocate(plasticState(phase)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal) allocate(plasticState(phase)%subState0 (sizeState,NofMyPhase), source=0.0_pReal) allocate(plasticState(phase)%state (sizeState,NofMyPhase), source=0.0_pReal) allocate(plasticState(phase)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal) allocate(plasticState(phase)%deltaState (sizeDeltaState,NofMyPhase), source=0.0_pReal) if (.not. analyticJaco) then allocate(plasticState(phase)%state_backup (sizeState,NofMyPhase), source=0.0_pReal) allocate(plasticState(phase)%dotState_backup (sizeDotState,NofMyPhase), source=0.0_pReal) endif if (any(numerics_integrator == 1_pInt)) then allocate(plasticState(phase)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal) allocate(plasticState(phase)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal) endif if (any(numerics_integrator == 4_pInt)) & allocate(plasticState(phase)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal) if (any(numerics_integrator == 5_pInt)) & allocate(plasticState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal) offset_slip = 2_pInt*plasticState(phase)%nSlip plasticState(phase)%slipRate => & plasticState(phase)%dotState(offset_slip+1:offset_slip+plasticState(phase)%nSlip,1:NofMyPhase) plasticState(phase)%accumulatedSlip => & plasticState(phase)%state (offset_slip+1:offset_slip+plasticState(phase)%nSlip,1:NofMyPhase) !* Process slip related parameters ------------------------------------------------ mySlipFamilies: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(plastic_disloUCLA_Nslip(1:f-1_pInt,instance)) ! index in truncated slip system list mySlipSystems: do j = 1_pInt,plastic_disloUCLA_Nslip(f,instance) !* Burgers vector, ! dislocation velocity prefactor, ! mean free path prefactor, ! and minimum dipole distance plastic_disloUCLA_burgersPerSlipSystem(index_myFamily+j,instance) = & plastic_disloUCLA_burgersPerSlipFamily(f,instance) plastic_disloUCLA_QedgePerSlipSystem(index_myFamily+j,instance) = & plastic_disloUCLA_QedgePerSlipFamily(f,instance) plastic_disloUCLA_v0PerSlipSystem(index_myFamily+j,instance) = & plastic_disloUCLA_v0PerSlipFamily(f,instance) plastic_disloUCLA_CLambdaSlipPerSlipSystem(index_myFamily+j,instance) = & plastic_disloUCLA_CLambdaSlipPerSlipFamily(f,instance) !* Calculation of forest projections for edge dislocations !* Interaction matrices otherSlipFamilies: do o = 1_pInt,lattice_maxNslipFamily index_otherFamily = sum(plastic_disloUCLA_Nslip(1:o-1_pInt,instance)) otherSlipSystems: do k = 1_pInt,plastic_disloUCLA_Nslip(o,instance) plastic_disloUCLA_forestProjectionEdge(index_myFamily+j,index_otherFamily+k,instance) = & abs(math_mul3x3(lattice_sn(:,sum(lattice_NslipSystem(1:f-1,phase))+j,phase), & lattice_st(:,sum(lattice_NslipSystem(1:o-1,phase))+k,phase))) plastic_disloUCLA_interactionMatrix_SlipSlip(index_myFamily+j,index_otherFamily+k,instance) = & plastic_disloUCLA_interaction_SlipSlip(lattice_interactionSlipSlip( & sum(lattice_NslipSystem(1:f-1,phase))+j, & sum(lattice_NslipSystem(1:o-1,phase))+k, & phase), instance ) enddo otherSlipSystems; enddo otherSlipFamilies otherTwinFamilies: do o = 1_pInt,lattice_maxNtwinFamily index_otherFamily = sum(plastic_disloUCLA_Ntwin(1:o-1_pInt,instance)) otherTwinSystems: do k = 1_pInt,plastic_disloUCLA_Ntwin(o,instance) plastic_disloUCLA_interactionMatrix_SlipTwin(index_myFamily+j,index_otherFamily+k,instance) = & plastic_disloUCLA_interaction_SlipTwin(lattice_interactionSlipTwin( & sum(lattice_NslipSystem(1:f-1_pInt,phase))+j, & sum(lattice_NtwinSystem(1:o-1_pInt,phase))+k, & phase), instance ) enddo otherTwinSystems; enddo otherTwinFamilies enddo mySlipSystems enddo mySlipFamilies !* Process twin related parameters ------------------------------------------------ myTwinFamilies: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(plastic_disloUCLA_Ntwin(1:f-1_pInt,instance)) ! index in truncated twin system list myTwinSystems: do j = 1_pInt,plastic_disloUCLA_Ntwin(f,instance) !* Burgers vector, ! nucleation rate prefactor, ! and twin size plastic_disloUCLA_burgersPerTwinSystem(index_myFamily+j,instance) = & plastic_disloUCLA_burgersPerTwinFamily(f,instance) plastic_disloUCLA_Ndot0PerTwinSystem(index_myFamily+j,instance) = & plastic_disloUCLA_Ndot0PerTwinFamily(f,instance) plastic_disloUCLA_twinsizePerTwinSystem(index_myFamily+j,instance) = & plastic_disloUCLA_twinsizePerTwinFamily(f,instance) !* Rotate twin elasticity matrices index_otherFamily = sum(lattice_NtwinSystem(1:f-1_pInt,phase)) ! index in full lattice twin list do l = 1_pInt,3_pInt; do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt; do o = 1_pInt,3_pInt do p = 1_pInt,3_pInt; do q = 1_pInt,3_pInt; do r = 1_pInt,3_pInt; do s = 1_pInt,3_pInt plastic_disloUCLA_Ctwin3333(l,m,n,o,index_myFamily+j,instance) = & plastic_disloUCLA_Ctwin3333(l,m,n,o,index_myFamily+j,instance) + & lattice_C3333(p,q,r,s,instance) * & lattice_Qtwin(l,p,index_otherFamily+j,phase) * & lattice_Qtwin(m,q,index_otherFamily+j,phase) * & lattice_Qtwin(n,r,index_otherFamily+j,phase) * & lattice_Qtwin(o,s,index_otherFamily+j,phase) enddo; enddo; enddo; enddo enddo; enddo; enddo; enddo plastic_disloUCLA_Ctwin66(1:6,1:6,index_myFamily+j,instance) = & math_Mandel3333to66(plastic_disloUCLA_Ctwin3333(1:3,1:3,1:3,1:3,index_myFamily+j,instance)) !* Interaction matrices otherSlipFamilies2: do o = 1_pInt,lattice_maxNslipFamily index_otherFamily = sum(plastic_disloUCLA_Nslip(1:o-1_pInt,instance)) otherSlipSystems2: do k = 1_pInt,plastic_disloUCLA_Nslip(o,instance) plastic_disloUCLA_interactionMatrix_TwinSlip(index_myFamily+j,index_otherFamily+k,instance) = & plastic_disloUCLA_interaction_TwinSlip(lattice_interactionTwinSlip( & sum(lattice_NtwinSystem(1:f-1_pInt,phase))+j, & sum(lattice_NslipSystem(1:o-1_pInt,phase))+k, & phase), instance ) enddo otherSlipSystems2; enddo otherSlipFamilies2 otherTwinFamilies2: do o = 1_pInt,lattice_maxNtwinFamily index_otherFamily = sum(plastic_disloUCLA_Ntwin(1:o-1_pInt,instance)) otherTwinSystems2: do k = 1_pInt,plastic_disloUCLA_Ntwin(o,instance) plastic_disloUCLA_interactionMatrix_TwinTwin(index_myFamily+j,index_otherFamily+k,instance) = & plastic_disloUCLA_interaction_TwinTwin(lattice_interactionTwinTwin( & sum(lattice_NtwinSystem(1:f-1_pInt,phase))+j, & sum(lattice_NtwinSystem(1:o-1_pInt,phase))+k, & phase), instance ) enddo otherTwinSystems2; enddo otherTwinFamilies2 enddo myTwinSystems enddo myTwinFamilies startIndex=1_pInt endIndex=ns state(instance)%rhoEdge=>plasticState(phase)%state(startIndex:endIndex,:) state0(instance)%rhoEdge=>plasticState(phase)%state0(startIndex:endIndex,:) dotState(instance)%rhoEdge=>plasticState(phase)%dotState(startIndex:endIndex,:) startIndex=endIndex+1_pInt endIndex=endIndex+ns state(instance)%rhoEdgeDip=>plasticState(phase)%state(startIndex:endIndex,:) state0(instance)%rhoEdgeDip=>plasticState(phase)%state0(startIndex:endIndex,:) dotState(instance)%rhoEdgeDip=>plasticState(phase)%dotState(startIndex:endIndex,:) startIndex=endIndex+1_pInt endIndex=endIndex+ns state(instance)%accshear_slip=>plasticState(phase)%state(startIndex:endIndex,:) state0(instance)%accshear_slip=>plasticState(phase)%state0(startIndex:endIndex,:) dotState(instance)%accshear_slip=>plasticState(phase)%dotState(startIndex:endIndex,:) startIndex=endIndex+1_pInt endIndex=endIndex+nt state(instance)%twinFraction=>plasticState(phase)%state(startIndex:endIndex,:) state0(instance)%twinFraction=>plasticState(phase)%state0(startIndex:endIndex,:) dotState(instance)%twinFraction=>plasticState(phase)%dotState(startIndex:endIndex,:) startIndex=endIndex+1_pInt endIndex=endIndex+nt state(instance)%accshear_twin=>plasticState(phase)%state(startIndex:endIndex,:) state0(instance)%accshear_twin=>plasticState(phase)%state0(startIndex:endIndex,:) dotState(instance)%accshear_twin=>plasticState(phase)%dotState(startIndex:endIndex,:) startIndex=endIndex+1_pInt endIndex=endIndex+ns state(instance)%invLambdaSlip=>plasticState(phase)%state(startIndex:endIndex,:) state0(instance)%invLambdaSlip=>plasticState(phase)%state0(startIndex:endIndex,:) startIndex=endIndex+1 endIndex=endIndex+ns state(instance)%invLambdaSlipTwin=>plasticState(phase)%state(startIndex:endIndex,:) state0(instance)%invLambdaSlipTwin=>plasticState(phase)%state0(startIndex:endIndex,:) startIndex=endIndex+1 endIndex=endIndex+nt state(instance)%invLambdaTwin=>plasticState(phase)%state(startIndex:endIndex,:) state0(instance)%invLambdaTwin=>plasticState(phase)%state0(startIndex:endIndex,:) startIndex=endIndex+1 endIndex=endIndex+ns state(instance)%mfp_slip=>plasticState(phase)%state(startIndex:endIndex,:) state0(instance)%mfp_slip=>plasticState(phase)%state0(startIndex:endIndex,:) startIndex=endIndex+1 endIndex=endIndex+nt state(instance)%mfp_twin=>plasticState(phase)%state(startIndex:endIndex,:) state0(instance)%mfp_twin=>plasticState(phase)%state0(startIndex:endIndex,:) startIndex=endIndex+1 endIndex=endIndex+ns state(instance)%threshold_stress_slip=>plasticState(phase)%state(startIndex:endIndex,:) state0(instance)%threshold_stress_slip=>plasticState(phase)%state0(startIndex:endIndex,:) startIndex=endIndex+1 endIndex=endIndex+nt state(instance)%threshold_stress_twin=>plasticState(phase)%state(startIndex:endIndex,:) state0(instance)%threshold_stress_twin=>plasticState(phase)%state0(startIndex:endIndex,:) startIndex=endIndex+1 endIndex=endIndex+nt state(instance)%twinVolume=>plasticState(phase)%state(startIndex:endIndex,:) state0(instance)%twinVolume=>plasticState(phase)%state0(startIndex:endIndex,:) call plastic_disloUCLA_stateInit(phase,instance) call plastic_disloUCLA_aTolState(phase,instance) endif myPhase2 enddo initializeInstances end subroutine plastic_disloUCLA_init !-------------------------------------------------------------------------------------------------- !> @brief sets the relevant state values for a given instance of this plasticity !-------------------------------------------------------------------------------------------------- subroutine plastic_disloUCLA_stateInit(ph,instance) use math, only: & pi use lattice, only: & lattice_maxNslipFamily, & lattice_mu use material, only: & plasticState implicit none integer(pInt), intent(in) :: & instance, & !< number specifying the instance of the plasticity ph real(pReal), dimension(plasticState(ph)%sizeState) :: tempState integer(pInt) :: i,j,f,ns,nt, index_myFamily real(pReal), dimension(plastic_disloUCLA_totalNslip(instance)) :: & rhoEdge0, & rhoEdgeDip0, & invLambdaSlip0, & MeanFreePathSlip0, & tauSlipThreshold0 real(pReal), dimension(plastic_disloUCLA_totalNtwin(instance)) :: & MeanFreePathTwin0,TwinVolume0 tempState = 0.0_pReal ns = plastic_disloUCLA_totalNslip(instance) nt = plastic_disloUCLA_totalNtwin(instance) !-------------------------------------------------------------------------------------------------- ! initialize basic slip state variables do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(plastic_disloUCLA_Nslip(1:f-1_pInt,instance)) ! index in truncated slip system list rhoEdge0(index_myFamily+1_pInt: & index_myFamily+plastic_disloUCLA_Nslip(f,instance)) = & plastic_disloUCLA_rhoEdge0(f,instance) rhoEdgeDip0(index_myFamily+1_pInt: & index_myFamily+plastic_disloUCLA_Nslip(f,instance)) = & plastic_disloUCLA_rhoEdgeDip0(f,instance) enddo tempState(1_pInt:ns) = rhoEdge0 tempState(ns+1_pInt:2_pInt*ns) = rhoEdgeDip0 !-------------------------------------------------------------------------------------------------- ! initialize dependent slip microstructural variables forall (i = 1_pInt:ns) & invLambdaSlip0(i) = sqrt(dot_product((rhoEdge0+rhoEdgeDip0),plastic_disloUCLA_forestProjectionEdge(1:ns,i,instance)))/ & plastic_disloUCLA_CLambdaSlipPerSlipSystem(i,instance) tempState(3_pInt*ns+2_pInt*nt+1:4_pInt*ns+2_pInt*nt) = invLambdaSlip0 forall (i = 1_pInt:ns) & MeanFreePathSlip0(i) = & plastic_disloUCLA_GrainSize(instance)/(1.0_pReal+invLambdaSlip0(i)*plastic_disloUCLA_GrainSize(instance)) tempState(5_pInt*ns+3_pInt*nt+1:6_pInt*ns+3_pInt*nt) = MeanFreePathSlip0 forall (i = 1_pInt:ns) & tauSlipThreshold0(i) = & lattice_mu(ph)*plastic_disloUCLA_burgersPerSlipSystem(i,instance) * & sqrt(dot_product((rhoEdge0+rhoEdgeDip0),plastic_disloUCLA_interactionMatrix_SlipSlip(i,1:ns,instance))) tempState(6_pInt*ns+4_pInt*nt+1:7_pInt*ns+4_pInt*nt) = tauSlipThreshold0 !-------------------------------------------------------------------------------------------------- ! initialize dependent twin microstructural variables forall (j = 1_pInt:nt) & MeanFreePathTwin0(j) = plastic_disloUCLA_GrainSize(instance) tempState(6_pInt*ns+3_pInt*nt+1_pInt:6_pInt*ns+4_pInt*nt) = MeanFreePathTwin0 forall (j = 1_pInt:nt) & TwinVolume0(j) = & (pi/4.0_pReal)*plastic_disloUCLA_twinsizePerTwinSystem(j,instance)*MeanFreePathTwin0(j)**(2.0_pReal) tempState(7_pInt*ns+5_pInt*nt+1_pInt:7_pInt*ns+6_pInt*nt) = TwinVolume0 plasticState(ph)%state0 = spread(tempState,2,size(plasticState(ph)%state(1,:))) end subroutine plastic_disloUCLA_stateInit !-------------------------------------------------------------------------------------------------- !> @brief sets the relevant state values for a given instance of this plasticity !-------------------------------------------------------------------------------------------------- subroutine plastic_disloUCLA_aTolState(ph,instance) use material, only: & plasticState implicit none integer(pInt), intent(in) :: & ph, & instance ! number specifying the current instance of the plasticity ! Tolerance state for dislocation densities plasticState(ph)%aTolState(1_pInt:2_pInt*plastic_disloUCLA_totalNslip(instance)) = & plastic_disloUCLA_aTolRho(instance) ! Tolerance state for accumulated shear due to slip plasticState(ph)%aTolState(2_pInt*plastic_disloUCLA_totalNslip(instance)+1_pInt: & 3_pInt*plastic_disloUCLA_totalNslip(instance))=1e6_pReal ! Tolerance state for twin volume fraction plasticState(ph)%aTolState(3_pInt*plastic_disloUCLA_totalNslip(instance)+1_pInt: & 3_pInt*plastic_disloUCLA_totalNslip(instance)+& plastic_disloUCLA_totalNtwin(instance)) = & plastic_disloUCLA_aTolTwinFrac(instance) ! Tolerance state for accumulated shear due to twin plasticState(ph)%aTolState(3_pInt*plastic_disloUCLA_totalNslip(instance)+ & plastic_disloUCLA_totalNtwin(instance)+1_pInt: & 3_pInt*plastic_disloUCLA_totalNslip(instance)+ & 2_pInt*plastic_disloUCLA_totalNtwin(instance)) = 1e6_pReal end subroutine plastic_disloUCLA_aTolState !-------------------------------------------------------------------------------------------------- !> @brief returns the homogenized elasticity matrix !-------------------------------------------------------------------------------------------------- function plastic_disloUCLA_homogenizedC(ipc,ip,el) use material, only: & phase_plasticityInstance, & plasticState, & phaseAt, phasememberAt use lattice, only: & lattice_C66 implicit none real(pReal), dimension(6,6) :: & plastic_disloUCLA_homogenizedC integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element integer(pInt) :: instance,ns,nt,i, & ph, & of real(pReal) :: sumf !* Shortened notation of = phasememberAt(ipc,ip,el) ph = phaseAt(ipc,ip,el) instance = phase_plasticityInstance(ph) ns = plastic_disloUCLA_totalNslip(instance) nt = plastic_disloUCLA_totalNtwin(instance) !* Total twin volume fraction sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0 !* Homogenized elasticity matrix plastic_disloUCLA_homogenizedC = (1.0_pReal-sumf)*lattice_C66(1:6,1:6,ph) do i=1_pInt,nt plastic_disloUCLA_homogenizedC = plastic_disloUCLA_homogenizedC & + state(instance)%twinFraction(i,of)*plastic_disloUCLA_Ctwin66(1:6,1:6,i,instance) enddo end function plastic_disloUCLA_homogenizedC !-------------------------------------------------------------------------------------------------- !> @brief calculates derived quantities from state !-------------------------------------------------------------------------------------------------- subroutine plastic_disloUCLA_microstructure(temperature,ipc,ip,el) use math, only: & pi use material, only: & material_phase, & phase_plasticityInstance, & phaseAt, phasememberAt use lattice, only: & lattice_mu, & lattice_nu implicit none integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element real(pReal), intent(in) :: & temperature !< temperature at IP integer(pInt) :: & instance, & ns,nt,s,t, & ph, & of real(pReal) :: & sumf,sfe,x0 real(pReal), dimension(plastic_disloUCLA_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: fOverStacksize !* Shortened notation of = phasememberAt(ipc,ip,el) ph = phaseAt(ipc,ip,el) instance = phase_plasticityInstance(ph) ns = plastic_disloUCLA_totalNslip(instance) nt = plastic_disloUCLA_totalNtwin(instance) !* Total twin volume fraction sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0 !* Stacking fault energy sfe = plastic_disloUCLA_SFE_0K(instance) + & plastic_disloUCLA_dSFE_dT(instance) * Temperature !* rescaled twin volume fraction for topology forall (t = 1_pInt:nt) & fOverStacksize(t) = & state(instance)%twinFraction(t,of)/plastic_disloUCLA_twinsizePerTwinSystem(t,instance) !* 1/mean free distance between 2 forest dislocations seen by a moving dislocation forall (s = 1_pInt:ns) & state(instance)%invLambdaSlip(s,of) = & sqrt(dot_product((state(instance)%rhoEdge(1_pInt:ns,of)+state(instance)%rhoEdgeDip(1_pInt:ns,of)),& plastic_disloUCLA_forestProjectionEdge(1:ns,s,instance)))/ & plastic_disloUCLA_CLambdaSlipPerSlipSystem(s,instance) !* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation !$OMP CRITICAL (evilmatmul) state(instance)%invLambdaSlipTwin(1_pInt:ns,of) = 0.0_pReal if (nt > 0_pInt .and. ns > 0_pInt) & state(instance)%invLambdaSlipTwin(1_pInt:ns,of) = & matmul(plastic_disloUCLA_interactionMatrix_SlipTwin(1:ns,1:nt,instance),fOverStacksize(1:nt))/(1.0_pReal-sumf) !$OMP END CRITICAL (evilmatmul) !* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin !$OMP CRITICAL (evilmatmul) if (nt > 0_pInt) & state(instance)%invLambdaTwin(1_pInt:nt,of) = & matmul(plastic_disloUCLA_interactionMatrix_TwinTwin(1:nt,1:nt,instance),fOverStacksize(1:nt))/(1.0_pReal-sumf) !$OMP END CRITICAL (evilmatmul) !* mean free path between 2 obstacles seen by a moving dislocation do s = 1_pInt,ns if (nt > 0_pInt) then state(instance)%mfp_slip(s,of) = & plastic_disloUCLA_GrainSize(instance)/(1.0_pReal+plastic_disloUCLA_GrainSize(instance)*& (state(instance)%invLambdaSlip(s,of)+state(instance)%invLambdaSlipTwin(s,of))) else state(instance)%mfp_slip(s,of) = & plastic_disloUCLA_GrainSize(instance)/& (1.0_pReal+plastic_disloUCLA_GrainSize(instance)*(state(instance)%invLambdaSlip(s,of))) endif enddo !* mean free path between 2 obstacles seen by a growing twin forall (t = 1_pInt:nt) & state(instance)%mfp_twin(t,of) = & (plastic_disloUCLA_Cmfptwin(instance)*plastic_disloUCLA_GrainSize(instance))/& (1.0_pReal+plastic_disloUCLA_GrainSize(instance)*state(instance)%invLambdaTwin(t,of)) !* threshold stress for dislocation motion forall (s = 1_pInt:ns) & state(instance)%threshold_stress_slip(s,of) = & lattice_mu(ph)*plastic_disloUCLA_burgersPerSlipSystem(s,instance)*& sqrt(dot_product((state(instance)%rhoEdge(1_pInt:ns,of)+state(instance)%rhoEdgeDip(1_pInt:ns,of)),& plastic_disloUCLA_interactionMatrix_SlipSlip(s,1:ns,instance))) !* threshold stress for growing twin forall (t = 1_pInt:nt) & state(instance)%threshold_stress_twin(t,of) = & plastic_disloUCLA_Cthresholdtwin(instance)*& (sfe/(3.0_pReal*plastic_disloUCLA_burgersPerTwinSystem(t,instance))+& 3.0_pReal*plastic_disloUCLA_burgersPerTwinSystem(t,instance)*lattice_mu(ph)/& (plastic_disloUCLA_L0(instance)*plastic_disloUCLA_burgersPerSlipSystem(t,instance))) !* final twin volume after growth forall (t = 1_pInt:nt) & state(instance)%twinVolume(t,of) = & (pi/4.0_pReal)*plastic_disloUCLA_twinsizePerTwinSystem(t,instance)*state(instance)%mfp_twin(t,of)**(2.0_pReal) !* equilibrium seperation of partial dislocations do t = 1_pInt,nt x0 = lattice_mu(ph)*plastic_disloUCLA_burgersPerTwinSystem(t,instance)**(2.0_pReal)/& (sfe*8.0_pReal*pi)*(2.0_pReal+lattice_nu(ph))/(1.0_pReal-lattice_nu(ph)) plastic_disloUCLA_tau_r(t,instance)= & lattice_mu(ph)*plastic_disloUCLA_burgersPerTwinSystem(t,instance)/(2.0_pReal*pi)*& (1/(x0+plastic_disloUCLA_xc(instance))+cos(pi/3.0_pReal)/x0) !!! used where?? enddo end subroutine plastic_disloUCLA_microstructure !-------------------------------------------------------------------------------------------------- !> @brief calculates plastic velocity gradient and its tangent !-------------------------------------------------------------------------------------------------- subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature,ipc,ip,el) use prec, only: & tol_math_check use math, only: & math_Plain3333to99, & math_Mandel6to33, & math_Mandel33to6, & math_spectralDecompositionSym33, & math_symmetric33, & math_mul33x3 use material, only: & material_phase, & phase_plasticityInstance, & !plasticState, & phaseAt, phasememberAt use lattice, only: & lattice_Sslip, & lattice_Sslip_v, & lattice_Stwin, & lattice_Stwin_v, & lattice_maxNslipFamily,& lattice_maxNtwinFamily, & lattice_NslipSystem, & lattice_NtwinSystem, & lattice_NnonSchmid, & lattice_shearTwin, & lattice_structure, & lattice_fcc_twinNucleationSlipPair, & LATTICE_fcc_ID implicit none integer(pInt), intent(in) :: ipc,ip,el real(pReal), intent(in) :: Temperature real(pReal), dimension(6), intent(in) :: Tstar_v real(pReal), dimension(3,3), intent(out) :: Lp real(pReal), dimension(9,9), intent(out) :: dLp_dTstar99 integer(pInt) :: instance,ph,of,ns,nt,f,i,j,k,l,m,n,index_myFamily,s1,s2 real(pReal) :: sumf,StressRatio_p,StressRatio_pminus1,StressRatio_r,BoltzmannRatio,DotGamma0,Ndot0, & tau_slip_pos,tau_slip_neg,vel_slip,dvel_slip,& dgdot_dtauslip_pos,dgdot_dtauslip_neg,dgdot_dtautwin,tau_twin,gdot_twin,stressRatio real(pReal), dimension(3,3,2) :: & nonSchmid_tensor real(pReal), dimension(3,3,3,3) :: & dLp_dTstar3333 real(pReal), dimension(plastic_disloUCLA_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_slip_pos,gdot_slip_neg !* Shortened notation of = phasememberAt(ipc,ip,el) ph = phaseAt(ipc,ip,el) instance = phase_plasticityInstance(ph) ns = plastic_disloUCLA_totalNslip(instance) nt = plastic_disloUCLA_totalNtwin(instance) Lp = 0.0_pReal dLp_dTstar3333 = 0.0_pReal !-------------------------------------------------------------------------------------------------- ! Dislocation glide part gdot_slip_pos = 0.0_pReal gdot_slip_neg = 0.0_pReal dgdot_dtauslip_pos = 0.0_pReal dgdot_dtauslip_neg = 0.0_pReal j = 0_pInt slipFamilies: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family slipSystems: do i = 1_pInt,plastic_disloUCLA_Nslip(f,instance) j = j+1_pInt !* Boltzmann ratio BoltzmannRatio = plastic_disloUCLA_QedgePerSlipSystem(j,instance)/(kB*Temperature) !* Initial shear rates DotGamma0 = & state(instance)%rhoEdge(j,of)*plastic_disloUCLA_burgersPerSlipSystem(j,instance)*& plastic_disloUCLA_v0PerSlipSystem(j,instance) !* Resolved shear stress on slip system tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph)) tau_slip_neg = tau_slip_pos nonSchmid_tensor(1:3,1:3,1) = lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph) nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,1) nonSchmidSystems: do k = 1,lattice_NnonSchmid(ph) tau_slip_pos = tau_slip_pos + plastic_disloUCLA_nonSchmidCoeff(k,instance)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k, index_myFamily+i,ph)) tau_slip_neg = tau_slip_neg + plastic_disloUCLA_nonSchmidCoeff(k,instance)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph)) nonSchmid_tensor(1:3,1:3,1) = nonSchmid_tensor(1:3,1:3,1) + plastic_disloUCLA_nonSchmidCoeff(k,instance)*& lattice_Sslip(1:3,1:3,2*k, index_myFamily+i,ph) nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,2) + plastic_disloUCLA_nonSchmidCoeff(k,instance)*& lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+i,ph) enddo nonSchmidSystems significantPostitiveStress: if((abs(tau_slip_pos)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then !* Stress ratio stressRatio = ((abs(tau_slip_pos)-state(instance)%threshold_stress_slip(j,of))/& (plastic_disloUCLA_SolidSolutionStrength(instance)+& plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))) stressRatio_p = stressRatio** plastic_disloUCLA_pPerSlipFamily(f,instance) stressRatio_pminus1 = stressRatio**(plastic_disloUCLA_pPerSlipFamily(f,instance)-1.0_pReal) !* Shear rates due to slip vel_slip = 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) & * plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) & * ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) & * (tau_slip_pos & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) & / ( & 2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & ) gdot_slip_pos(j) = DotGamma0 & * vel_slip & * sign(1.0_pReal,tau_slip_pos) !* Derivatives of shear rates dvel_slip = & 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) & * plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) & * ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) & * ( & (exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & + tau_slip_pos & * (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i) *BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)& *plastic_disloUCLA_qPerSlipFamily(f,instance)/& (plastic_disloUCLA_SolidSolutionStrength(instance)+plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))*& StressRatio_pminus1*(1-StressRatio_p)**(plastic_disloUCLA_qPerSlipFamily(f,instance)-1.0_pReal) ) &!deltaf(f) ) & * (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & ) & - (tau_slip_pos & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) & * (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i) *BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)& *plastic_disloUCLA_qPerSlipFamily(f,instance)/& (plastic_disloUCLA_SolidSolutionStrength(instance)+plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))*& StressRatio_pminus1*(1-StressRatio_p)**(plastic_disloUCLA_qPerSlipFamily(f,instance)-1.0_pReal) )& !deltaf(f) ) & ) & / ( & ( & 2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & )**2.0_pReal & ) dgdot_dtauslip_pos = DotGamma0 * dvel_slip endif significantPostitiveStress significantNegativeStress: if((abs(tau_slip_neg)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then !* Stress ratio stressRatio = ((abs(tau_slip_neg)-state(instance)%threshold_stress_slip(j,of))/& (plastic_disloUCLA_SolidSolutionStrength(instance)+& plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))) stressRatio_p = stressRatio** plastic_disloUCLA_pPerSlipFamily(f,instance) stressRatio_pminus1 = stressRatio**(plastic_disloUCLA_pPerSlipFamily(f,instance)-1.0_pReal) !* Shear rates due to slip vel_slip = 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) & * plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) & * ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) & * (tau_slip_neg & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) & / ( & 2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & ) gdot_slip_neg(j) = DotGamma0 & * vel_slip & * sign(1.0_pReal,tau_slip_neg) !* Derivatives of shear rates dvel_slip = & 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) & * plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) & * ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) & * ( & (exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & + tau_slip_neg & * (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i) *BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)& *plastic_disloUCLA_qPerSlipFamily(f,instance)/& (plastic_disloUCLA_SolidSolutionStrength(instance)+plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))*& StressRatio_pminus1*(1-StressRatio_p)**(plastic_disloUCLA_qPerSlipFamily(f,instance)-1.0_pReal) ) &!deltaf(f) ) & * (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & ) & - (tau_slip_neg & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) & * (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i) *BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)& *plastic_disloUCLA_qPerSlipFamily(f,instance)/& (plastic_disloUCLA_SolidSolutionStrength(instance)+plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))*& StressRatio_pminus1*(1-StressRatio_p)**(plastic_disloUCLA_qPerSlipFamily(f,instance)-1.0_pReal) )& !deltaf(f) ) & ) & / ( & ( & 2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & )**2.0_pReal & ) dgdot_dtauslip_neg = DotGamma0 * dvel_slip endif significantNegativeStress !* Plastic velocity gradient for dislocation glide Lp = Lp + (gdot_slip_pos(j)+gdot_slip_neg(j))*0.5_pReal*lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph) !* Calculation of the tangent of Lp forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = & dLp_dTstar3333(k,l,m,n) + (dgdot_dtauslip_pos*nonSchmid_tensor(m,n,1)+& dgdot_dtauslip_neg*nonSchmid_tensor(m,n,2))*0.5_pReal*& lattice_Sslip(k,l,1,index_myFamily+i,ph) enddo slipSystems enddo slipFamilies !-------------------------------------------------------------------------------------------------- ! correct Lp and dLp_dTstar3333 for twinned fraction !* Total twin volume fraction sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0 Lp = Lp * (1.0_pReal - sumf) dLp_dTstar3333 = dLp_dTstar3333 * (1.0_pReal - sumf) !-------------------------------------------------------------------------------------------------- ! Mechanical twinning part gdot_twin = 0.0_pReal dgdot_dtautwin = 0.0_pReal j = 0_pInt twinFamilies: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family twinSystems: do i = 1_pInt,plastic_disloUCLA_Ntwin(f,instance) j = j+1_pInt !* Resolved shear stress on twin system tau_twin = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph)) !* Stress ratios if (tau_twin > tol_math_check) then StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/tau_twin)**plastic_disloUCLA_rPerTwinFamily(f,instance) !* Shear rates and their derivatives due to twin select case(lattice_structure(ph)) case (LATTICE_fcc_ID) s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i) s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i) if (tau_twin < plastic_disloUCLA_tau_r(j,instance)) then Ndot0=(abs(gdot_slip_pos(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+& !no non-Schmid behavior for fcc, just take the not influenced positive gdot_slip_pos (= gdot_slip_neg) abs(gdot_slip_pos(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/& (plastic_disloUCLA_L0(instance)*plastic_disloUCLA_burgersPerSlipSystem(j,instance))*& (1.0_pReal-exp(-plastic_disloUCLA_VcrossSlip(instance)/(kB*Temperature)*& (plastic_disloUCLA_tau_r(j,instance)-tau_twin))) else Ndot0=0.0_pReal end if case default Ndot0=plastic_disloUCLA_Ndot0PerTwinSystem(j,instance) end select gdot_twin = & (plastic_disloUCLA_MaxTwinFraction(instance)-sumf)*lattice_shearTwin(index_myFamily+i,ph)*& state(instance)%twinVolume(j,of)*Ndot0*exp(-StressRatio_r) dgdot_dtautwin = ((gdot_twin*plastic_disloUCLA_rPerTwinFamily(f,instance))/tau_twin)*StressRatio_r endif !* Plastic velocity gradient for mechanical twinning Lp = Lp + gdot_twin*lattice_Stwin(1:3,1:3,index_myFamily+i,ph) !* Calculation of the tangent of Lp forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = & dLp_dTstar3333(k,l,m,n) + dgdot_dtautwin*& lattice_Stwin(k,l,index_myFamily+i,ph)*& lattice_Stwin(m,n,index_myFamily+i,ph) enddo twinSystems enddo twinFamilies dLp_dTstar99 = math_Plain3333to99(dLp_dTstar3333) end subroutine plastic_disloUCLA_LpAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief calculates the rate of change of microstructure !-------------------------------------------------------------------------------------------------- subroutine plastic_disloUCLA_dotState(Tstar_v,Temperature,ipc,ip,el) use prec, only: & tol_math_check use math, only: & pi use material, only: & material_phase, & phase_plasticityInstance, & plasticState, & phaseAt, phasememberAt use lattice, only: & lattice_Sslip_v, & lattice_Stwin_v, & lattice_maxNslipFamily, & lattice_maxNtwinFamily, & lattice_NslipSystem, & lattice_NtwinSystem, & lattice_NnonSchmid, & lattice_sheartwin, & lattice_mu, & lattice_structure, & lattice_fcc_twinNucleationSlipPair, & LATTICE_fcc_ID implicit none real(pReal), dimension(6), intent(in):: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation real(pReal), intent(in) :: & temperature !< temperature at integration point integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element integer(pInt) :: instance,ns,nt,f,i,j,k,index_myFamily,s1,s2, & ph, & of real(pReal) :: & sumf, & stressRatio_p,& BoltzmannRatio,& DotGamma0,& stressRatio, & EdgeDipMinDistance,& AtomicVolume,& VacancyDiffusion,& StressRatio_r,& Ndot0,& tau_slip_pos,& tau_slip_neg,& DotRhoMultiplication,& EdgeDipDistance, & DotRhoEdgeDipAnnihilation, & DotRhoEdgeEdgeAnnihilation, & ClimbVelocity, & DotRhoEdgeDipClimb, & DotRhoDipFormation, & tau_twin, & vel_slip, & gdot_slip real(pReal), dimension(plastic_disloUCLA_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_slip_pos, gdot_slip_neg !* Shortened notation of = phasememberAt(ipc,ip,el) ph = phaseAt(ipc,ip,el) instance = phase_plasticityInstance(ph) ns = plastic_disloUCLA_totalNslip(instance) nt = plastic_disloUCLA_totalNtwin(instance) !* Total twin volume fraction sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0 plasticState(ph)%dotState(:,of) = 0.0_pReal !* Dislocation density evolution gdot_slip_pos = 0.0_pReal gdot_slip_neg = 0.0_pReal j = 0_pInt slipFamilies: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family slipSystems: do i = 1_pInt,plastic_disloUCLA_Nslip(f,instance) j = j+1_pInt !* Boltzmann ratio BoltzmannRatio = plastic_disloUCLA_QedgePerSlipSystem(j,instance)/(kB*Temperature) !* Initial shear rates DotGamma0 = & state(instance)%rhoEdge(j,of)*plastic_disloUCLA_burgersPerSlipSystem(j,instance)*& plastic_disloUCLA_v0PerSlipSystem(j,instance) !* Resolved shear stress on slip system tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph)) tau_slip_neg = tau_slip_pos nonSchmidSystems: do k = 1,lattice_NnonSchmid(ph) tau_slip_pos = tau_slip_pos + plastic_disloUCLA_nonSchmidCoeff(k,instance)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k, index_myFamily+i,ph)) tau_slip_neg = tau_slip_neg + plastic_disloUCLA_nonSchmidCoeff(k,instance)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph)) enddo nonSchmidSystems significantPositiveStress: if((abs(tau_slip_pos)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then !* Stress ratios stressRatio = ((abs(tau_slip_pos)-state(instance)%threshold_stress_slip(j,of))/& (plastic_disloUCLA_SolidSolutionStrength(instance)+& plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))) stressRatio_p = stressRatio** plastic_disloUCLA_pPerSlipFamily(f,instance) !* Shear rates due to slip vel_slip = 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) & * plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) & * ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) & * (tau_slip_pos & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) & / ( & 2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & ) gdot_slip_pos(j) = DotGamma0 & * vel_slip & * sign(1.0_pReal,tau_slip_pos) endif significantPositiveStress significantNegativeStress: if((abs(tau_slip_neg)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then !* Stress ratios stressRatio = ((abs(tau_slip_neg)-state(instance)%threshold_stress_slip(j,of))/& (plastic_disloUCLA_SolidSolutionStrength(instance)+& plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))) stressRatio_p = stressRatio** plastic_disloUCLA_pPerSlipFamily(f,instance) vel_slip = 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) & * plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) & * ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) & * (tau_slip_neg & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) & / ( & 2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & ) gdot_slip_neg(j) = DotGamma0 & * vel_slip & * sign(1.0_pReal,tau_slip_neg) endif significantNegativeStress gdot_slip = (gdot_slip_pos(j)+gdot_slip_neg(j))*0.5_pReal !* Multiplication DotRhoMultiplication = abs(gdot_slip)/& (plastic_disloUCLA_burgersPerSlipSystem(j,instance)* & state(instance)%mfp_slip(j,of)) !* Dipole formation EdgeDipMinDistance = & plastic_disloUCLA_CEdgeDipMinDistance(instance)*plastic_disloUCLA_burgersPerSlipSystem(j,instance) if (abs(tau_slip_pos) <= tiny(0.0_pReal)) then DotRhoDipFormation = 0.0_pReal else EdgeDipDistance = & (3.0_pReal*lattice_mu(ph)*plastic_disloUCLA_burgersPerSlipSystem(j,instance))/& (16.0_pReal*pi*abs(tau_slip_pos)) if (EdgeDipDistance>state(instance)%mfp_slip(j,of)) EdgeDipDistance=state(instance)%mfp_slip(j,of) if (EdgeDipDistance tol_math_check) then StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/tau_twin)**plastic_disloUCLA_rPerTwinFamily(f,instance) !* Shear rates and their derivatives due to twin select case(lattice_structure(ph)) case (LATTICE_fcc_ID) s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i) s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i) if (tau_twin < plastic_disloUCLA_tau_r(j,instance)) then Ndot0=(abs(gdot_slip_pos(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+& !no non-Schmid behavior for fcc, just take the not influenced positive slip (gdot_slip_pos = gdot_slip_neg) abs(gdot_slip_pos(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/& (plastic_disloUCLA_L0(instance)*plastic_disloUCLA_burgersPerSlipSystem(j,instance))*& (1.0_pReal-exp(-plastic_disloUCLA_VcrossSlip(instance)/(kB*Temperature)*& (plastic_disloUCLA_tau_r(j,instance)-tau_twin))) else Ndot0=0.0_pReal end if case default Ndot0=plastic_disloUCLA_Ndot0PerTwinSystem(j,instance) end select dotState(instance)%twinFraction(j, of) = & (plastic_disloUCLA_MaxTwinFraction(instance)-sumf)*& state(instance)%twinVolume(j, of)*Ndot0*exp(-StressRatio_r) !* Dotstate for accumulated shear due to twin dotState(instance)%accshear_twin(j,of) = dotState(ph)%twinFraction(j,of) * & lattice_sheartwin(index_myfamily+i,ph) endif enddo twinSystems enddo twinFamilies end subroutine plastic_disloUCLA_dotState !-------------------------------------------------------------------------------------------------- !> @brief return array of constitutive results !-------------------------------------------------------------------------------------------------- function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el) use prec, only: & tol_math_check use math, only: & pi use material, only: & material_phase, & phase_plasticityInstance,& !plasticState, & phaseAt, phasememberAt use lattice, only: & lattice_Sslip_v, & lattice_Stwin_v, & lattice_maxNslipFamily, & lattice_maxNtwinFamily, & lattice_NslipSystem, & lattice_NtwinSystem, & lattice_NnonSchmid, & lattice_shearTwin, & lattice_mu, & lattice_structure, & lattice_fcc_twinNucleationSlipPair, & LATTICE_fcc_ID implicit none real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation real(pReal), intent(in) :: & temperature !< temperature at integration point integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element real(pReal), dimension(plastic_disloUCLA_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & plastic_disloUCLA_postResults integer(pInt) :: & instance,& ns,nt,& f,o,i,c,j,k,index_myFamily,& s1,s2, & ph, & of real(pReal) :: sumf,tau_twin,StressRatio_p,StressRatio_pminus1,& BoltzmannRatio,DotGamma0,StressRatio_r,Ndot0,stressRatio real(pReal) :: dvel_slip, vel_slip real(pReal), dimension(plastic_disloUCLA_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_slip_pos,dgdot_dtauslip_pos,tau_slip_pos,gdot_slip_neg,dgdot_dtauslip_neg,tau_slip_neg !* Shortened notation of = phasememberAt(ipc,ip,el) ph = phaseAt(ipc,ip,el) instance = phase_plasticityInstance(ph) ns = plastic_disloUCLA_totalNslip(instance) nt = plastic_disloUCLA_totalNtwin(instance) !* Total twin volume fraction sumf = sum(state(ph)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0 !* Required output c = 0_pInt plastic_disloUCLA_postResults = 0.0_pReal do o = 1_pInt,plastic_disloUCLA_Noutput(instance) select case(plastic_disloUCLA_outputID(o,instance)) case (edge_density_ID) plastic_disloUCLA_postResults(c+1_pInt:c+ns) = state(instance)%rhoEdge(1_pInt:ns,of) c = c + ns case (dipole_density_ID) plastic_disloUCLA_postResults(c+1_pInt:c+ns) = state(instance)%rhoEdgeDip(1_pInt:ns,of) c = c + ns case (shear_rate_slip_ID,shear_rate_twin_ID,stress_exponent_ID) gdot_slip_pos = 0.0_pReal gdot_slip_neg = 0.0_pReal dgdot_dtauslip_pos = 0.0_pReal dgdot_dtauslip_neg = 0.0_pReal j = 0_pInt slipFamilies: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family slipSystems: do i = 1_pInt,plastic_disloUCLA_Nslip(f,instance) j = j + 1_pInt !* Boltzmann ratio BoltzmannRatio = plastic_disloUCLA_QedgePerSlipSystem(j,instance)/(kB*Temperature) !* Initial shear rates DotGamma0 = & state(instance)%rhoEdge(j,of)*plastic_disloUCLA_burgersPerSlipSystem(j,instance)*& plastic_disloUCLA_v0PerSlipSystem(j,instance) !* Resolved shear stress on slip system tau_slip_pos(j) = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph)) tau_slip_neg(j) = tau_slip_pos(j) nonSchmidSystems: do k = 1,lattice_NnonSchmid(ph) tau_slip_pos = tau_slip_pos + plastic_disloUCLA_nonSchmidCoeff(k,instance)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,ph)) tau_slip_neg = tau_slip_neg + plastic_disloUCLA_nonSchmidCoeff(k,instance)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph)) enddo nonSchmidSystems significantPositiveTau: if((abs(tau_slip_pos(j))-state(instance)%threshold_stress_slip(j, of)) > tol_math_check) then !* Stress ratio stressRatio = ((abs(tau_slip_pos(j))-state(instance)%threshold_stress_slip(j, of))/& (plastic_disloUCLA_SolidSolutionStrength(instance)+& plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))) stressRatio_p = stressRatio** plastic_disloUCLA_pPerSlipFamily(f,instance) stressRatio_pminus1 = stressRatio**(plastic_disloUCLA_pPerSlipFamily(f,instance)-1.0_pReal) !* Shear rates due to slip vel_slip = 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) & * plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) & * ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) & * (tau_slip_pos(j) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) & / ( & 2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos(j) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & ) gdot_slip_pos(j) = DotGamma0 & * vel_slip & * sign(1.0_pReal,tau_slip_pos(j)) !* Derivatives of shear rates dvel_slip = & 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) & * plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) & * ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) & * ( & (exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & + tau_slip_pos(j) & * (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i) *BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)& *plastic_disloUCLA_qPerSlipFamily(f,instance)/& (plastic_disloUCLA_SolidSolutionStrength(instance)+plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))*& StressRatio_pminus1*(1-StressRatio_p)**(plastic_disloUCLA_qPerSlipFamily(f,instance)-1.0_pReal) ) &!deltaf(f) ) & * (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos(j) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & ) & - (tau_slip_pos(j) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) & * (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i) *BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)& *plastic_disloUCLA_qPerSlipFamily(f,instance)/& (plastic_disloUCLA_SolidSolutionStrength(instance)+plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))*& StressRatio_pminus1*(1-StressRatio_p)**(plastic_disloUCLA_qPerSlipFamily(f,instance)-1.0_pReal) )& !deltaf(f) ) & ) & / ( & ( & 2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos(j) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & )**2.0_pReal & ) dgdot_dtauslip_pos(j) = DotGamma0 * dvel_slip endif significantPositiveTau significantNegativeTau: if((abs(tau_slip_neg(j))-state(instance)%threshold_stress_slip(j, of)) > tol_math_check) then !* Stress ratios stressRatio = ((abs(tau_slip_neg(j))-state(instance)%threshold_stress_slip(j, of))/& (plastic_disloUCLA_SolidSolutionStrength(instance)+& plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))) stressRatio_p = stressRatio** plastic_disloUCLA_pPerSlipFamily(f,instance) stressRatio_pminus1 = stressRatio**(plastic_disloUCLA_pPerSlipFamily(f,instance)-1.0_pReal) !* Shear rates due to slip vel_slip = 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) & * plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) & * ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) & * (tau_slip_neg(j) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) & / ( & 2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg(j) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & ) gdot_slip_neg(j) = DotGamma0 & * vel_slip & * sign(1.0_pReal,tau_slip_neg(j)) !* Derivatives of shear rates dvel_slip = & 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) & * plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) & * ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) & * ( & (exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & + tau_slip_neg(j) & * (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i) *BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)& *plastic_disloUCLA_qPerSlipFamily(f,instance)/& (plastic_disloUCLA_SolidSolutionStrength(instance)+plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))*& StressRatio_pminus1*(1-StressRatio_p)**(plastic_disloUCLA_qPerSlipFamily(f,instance)-1.0_pReal) ) &!deltaf(f) ) & * (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg(j) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & ) & - (tau_slip_neg(j) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) & * (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i) *BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)& *plastic_disloUCLA_qPerSlipFamily(f,instance)/& (plastic_disloUCLA_SolidSolutionStrength(instance)+plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))*& StressRatio_pminus1*(1-StressRatio_p)**(plastic_disloUCLA_qPerSlipFamily(f,instance)-1.0_pReal) )& !deltaf(f) ) & ) & / ( & ( & 2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg(j) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & )**2.0_pReal & ) dgdot_dtauslip_neg(j) = DotGamma0 * dvel_slip endif significantNegativeTau enddo slipSystems enddo slipFamilies if (plastic_disloUCLA_outputID(o,instance) == shear_rate_slip_ID) then plastic_disloUCLA_postResults(c+1:c+ns) = (gdot_slip_pos + gdot_slip_neg)*0.5_pReal c = c + ns elseif (plastic_disloUCLA_outputID(o,instance) == shear_rate_twin_ID) then if (nt > 0_pInt) then j = 0_pInt twinFamilies1: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family twinSystems1: do i = 1,plastic_disloUCLA_Ntwin(f,instance) j = j + 1_pInt !* Resolved shear stress on twin system tau_twin = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph)) !* Stress ratios StressRatio_r = (state(instance)%threshold_stress_twin(j, of)/ & tau_twin)**plastic_disloUCLA_rPerTwinFamily(f,instance) !* Shear rates due to twin if ( tau_twin > 0.0_pReal ) then select case(lattice_structure(ph)) case (LATTICE_fcc_ID) s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i) s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i) if (tau_twin < plastic_disloUCLA_tau_r(j,instance)) then Ndot0=(abs(gdot_slip_pos(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+& !no non-Schmid behavior for fcc, just take the not influenced positive slip (gdot_slip_pos = gdot_slip_neg) abs(gdot_slip_pos(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/& (plastic_disloUCLA_L0(instance)*& plastic_disloUCLA_burgersPerSlipSystem(j,instance))*& (1.0_pReal-exp(-plastic_disloUCLA_VcrossSlip(instance)/(kB*Temperature)*& (plastic_disloUCLA_tau_r(j,instance)-tau_twin))) else Ndot0=0.0_pReal end if case default Ndot0=plastic_disloUCLA_Ndot0PerTwinSystem(j,instance) end select plastic_disloUCLA_postResults(c+j) = & (plastic_disloUCLA_MaxTwinFraction(instance)-sumf)*lattice_shearTwin(index_myFamily+i,ph)*& state(instance)%twinVolume(j,of)*Ndot0*exp(-StressRatio_r) endif enddo twinSystems1 enddo twinFamilies1 endif c = c + nt elseif(plastic_disloUCLA_outputID(o,instance) == stress_exponent_ID) then do j = 1_pInt, ns if (abs(gdot_slip_pos(j)+gdot_slip_neg(j))<=tiny(0.0_pReal)) then plastic_disloUCLA_postResults(c+j) = 0.0_pReal else plastic_disloUCLA_postResults(c+j) = (tau_slip_pos(j)+tau_slip_neg(j))/& (gdot_slip_pos(j)+gdot_slip_neg(j))*& (dgdot_dtauslip_pos(j)+dgdot_dtauslip_neg(j))* 0.5_pReal endif enddo c = c + ns endif case (accumulated_shear_slip_ID) plastic_disloUCLA_postResults(c+1_pInt:c+ns) = & state(instance)%accshear_slip(1_pInt:ns, of) c = c + ns case (mfp_slip_ID) plastic_disloUCLA_postResults(c+1_pInt:c+ns) =& state(instance)%mfp_slip(1_pInt:ns, of) c = c + ns case (resolved_stress_slip_ID) j = 0_pInt slipFamilies1: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family slipSystems1: do i = 1_pInt,plastic_disloUCLA_Nslip(f,instance) j = j + 1_pInt plastic_disloUCLA_postResults(c+j) =& dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph)) enddo slipSystems1; enddo slipFamilies1 c = c + ns case (threshold_stress_slip_ID) plastic_disloUCLA_postResults(c+1_pInt:c+ns) = & state(instance)%threshold_stress_slip(1_pInt:ns,of) c = c + ns case (edge_dipole_distance_ID) j = 0_pInt slipFamilies2: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family slipSystems2: do i = 1_pInt,plastic_disloUCLA_Nslip(f,instance) j = j + 1_pInt plastic_disloUCLA_postResults(c+j) = & (3.0_pReal*lattice_mu(ph)*plastic_disloUCLA_burgersPerSlipSystem(j,instance))/& (16.0_pReal*pi*abs(dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph)))) plastic_disloUCLA_postResults(c+j)=min(plastic_disloUCLA_postResults(c+j),& state(instance)%mfp_slip(j,of)) enddo slipSystems2; enddo slipFamilies2 c = c + ns case (twin_fraction_ID) plastic_disloUCLA_postResults(c+1_pInt:c+nt) = state(instance)%twinFraction(1_pInt:nt, of) c = c + nt case (accumulated_shear_twin_ID) plastic_disloUCLA_postResults(c+1_pInt:c+nt) = state(instance)%accshear_twin(1_pInt:nt, of) c = c + nt case (mfp_twin_ID) plastic_disloUCLA_postResults(c+1_pInt:c+nt) = state(instance)%mfp_twin(1_pInt:nt, of) c = c + nt case (resolved_stress_twin_ID) if (nt > 0_pInt) then j = 0_pInt twinFamilies2: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family twinSystems2: do i = 1_pInt,plastic_disloUCLA_Ntwin(f,instance) j = j + 1_pInt plastic_disloUCLA_postResults(c+j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph)) enddo twinSystems2; enddo twinFamilies2 endif c = c + nt case (threshold_stress_twin_ID) plastic_disloUCLA_postResults(c+1_pInt:c+nt) = state(instance)%threshold_stress_twin(1_pInt:nt, of) c = c + nt end select enddo end function plastic_disloUCLA_postResults end module plastic_disloUCLA