!-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine for isotropic (ISOTROPIC) plasticity !> @details Isotropic (ISOTROPIC) Plasticity which resembles the phenopowerlaw plasticity without !! resolving the stress on the slip systems. Will give the response of phenopowerlaw for an !! untextured polycrystal !-------------------------------------------------------------------------------------------------- module plastic_isotropic use prec, only: & pReal,& pInt implicit none private integer(pInt), dimension(:), allocatable, public, protected :: & plastic_isotropic_sizePostResults !< cumulative size of post results integer(pInt), dimension(:,:), allocatable, target, public :: & plastic_isotropic_sizePostResult !< size of each post result output character(len=64), dimension(:,:), allocatable, target, public :: & plastic_isotropic_output !< name of each post result output integer(pInt), dimension(:), allocatable, target, public :: & plastic_isotropic_Noutput !< number of outputs per instance enum, bind(c) enumerator :: undefined_ID, & flowstress_ID, & strainrate_ID end enum type, private :: tParameters !< container type for internal constitutive parameters integer(kind(undefined_ID)), allocatable, dimension(:) :: & outputID real(pReal) :: & fTaylor, & tau0, & gdot0, & n, & h0, & h0_slopeLnRate = 0.0_pReal, & tausat, & a, & aTolFlowstress = 1.0_pReal, & aTolShear = 1.0e-6_pReal, & tausat_SinhFitA= 0.0_pReal, & tausat_SinhFitB= 0.0_pReal, & tausat_SinhFitC= 0.0_pReal, & tausat_SinhFitD= 0.0_pReal logical :: & dilatation = .false. end type type(tParameters), dimension(:), allocatable, target, private :: param !< containers of constitutive parameters (len Ninstance) type, private :: tIsotropicState !< internal state aliases real(pReal), pointer, dimension(:) :: & ! scalars along NipcMyInstance flowstress, & accumulatedShear end type type, private :: tIsotropicAbsTol !< internal alias for abs tolerance in state real(pReal), pointer :: & ! scalars flowstress, & accumulatedShear end type type(tIsotropicState), allocatable, dimension(:), private :: & !< state aliases per instance state, & state0, & dotState type(tIsotropicAbsTol), allocatable, dimension(:), private :: & !< state aliases per instance stateAbsTol public :: & plastic_isotropic_init, & plastic_isotropic_LpAndItsTangent, & plastic_isotropic_LiAndItsTangent, & plastic_isotropic_dotState, & plastic_isotropic_postResults contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- subroutine plastic_isotropic_init(fileUnit) #if defined(__GFORTRAN__) || __INTEL_COMPILER >= 1800 use, intrinsic :: iso_fortran_env, only: & compiler_version, & compiler_options #endif use debug, only: & debug_level, & debug_constitutive, & debug_levelBasic use numerics, only: & numerics_integrator use math, only: & math_Mandel3333to66, & math_Voigt66to3333 use IO, only: & IO_read, & IO_lc, & IO_getTag, & IO_isBlank, & IO_stringPos, & IO_stringValue, & IO_floatValue, & IO_error, & IO_timeStamp, & IO_EOF use material, only: & phase_plasticity, & phase_plasticityInstance, & phase_Noutput, & PLASTICITY_ISOTROPIC_label, & PLASTICITY_ISOTROPIC_ID, & material_phase, & plasticState, & MATERIAL_partPhase use lattice implicit none integer(pInt), intent(in) :: fileUnit type(tParameters), pointer :: p integer(pInt), allocatable, dimension(:) :: chunkPos integer(pInt) :: & o, & phase, & instance, & maxNinstance, & mySize, & sizeDotState, & sizeState, & sizeDeltaState character(len=65536) :: & tag = '', & line = '', & extmsg = '' character(len=64) :: & outputtag = '' integer(pInt) :: NipcMyPhase write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_ISOTROPIC_label//' init -+>>>' write(6,'(/,a)') ' Ma et al., Computational Materials Science, 109:323–329, 2015' write(6,'(/,a)') ' https://doi.org/10.1016/j.commatsci.2015.07.041' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" maxNinstance = int(count(phase_plasticity == PLASTICITY_ISOTROPIC_ID),pInt) if (maxNinstance == 0_pInt) return if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) & write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance allocate(plastic_isotropic_sizePostResults(maxNinstance), source=0_pInt) allocate(plastic_isotropic_sizePostResult(maxval(phase_Noutput), maxNinstance),source=0_pInt) allocate(plastic_isotropic_output(maxval(phase_Noutput), maxNinstance)) plastic_isotropic_output = '' allocate(plastic_isotropic_Noutput(maxNinstance), source=0_pInt) allocate(param(maxNinstance)) ! one container of parameters per instance rewind(fileUnit) phase = 0_pInt do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partPhase) ! wind forward to line = IO_read(fileUnit) enddo parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part line = IO_read(fileUnit) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(fileUnit, .true.) ! reset IO_read exit endif if (IO_getTag(line,'[',']') /= '') then ! next section phase = phase + 1_pInt ! advance section counter if (phase_plasticity(phase) == PLASTICITY_ISOTROPIC_ID) then p => param(phase_plasticityInstance(phase)) ! shorthand pointer to parameter object of my constitutive law allocate(p%outputID(phase_Noutput(phase))) ! allocate space for IDs of every requested output endif cycle ! skip to next line endif if (phase > 0_pInt) then; if (phase_plasticity(phase) == PLASTICITY_ISOTROPIC_ID) then ! one of my phases. Do not short-circuit here (.and. between if-statements), it's not safe in Fortran instance = phase_plasticityInstance(phase) ! which instance of my plasticity is present phase p => param(instance) chunkPos = IO_stringPos(line) tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key select case(tag) case ('(output)') outputtag = IO_lc(IO_stringValue(line,chunkPos,2_pInt)) select case(outputtag) case ('flowstress') plastic_isotropic_Noutput(instance) = plastic_isotropic_Noutput(instance) + 1_pInt p%outputID (plastic_isotropic_Noutput(instance)) = flowstress_ID plastic_isotropic_output(plastic_isotropic_Noutput(instance),instance) = outputtag case ('strainrate') plastic_isotropic_Noutput(instance) = plastic_isotropic_Noutput(instance) + 1_pInt p%outputID (plastic_isotropic_Noutput(instance)) = strainrate_ID plastic_isotropic_output(plastic_isotropic_Noutput(instance),instance) = outputtag end select case ('/dilatation/') p%dilatation = .true. case ('tau0') p%tau0 = IO_floatValue(line,chunkPos,2_pInt) case ('gdot0') p%gdot0 = IO_floatValue(line,chunkPos,2_pInt) case ('n') p%n = IO_floatValue(line,chunkPos,2_pInt) case ('h0') p%h0 = IO_floatValue(line,chunkPos,2_pInt) case ('h0_slope','slopelnrate') p%h0_slopeLnRate = IO_floatValue(line,chunkPos,2_pInt) case ('tausat') p%tausat = IO_floatValue(line,chunkPos,2_pInt) case ('tausat_sinhfita') p%tausat_SinhFitA = IO_floatValue(line,chunkPos,2_pInt) case ('tausat_sinhfitb') p%tausat_SinhFitB = IO_floatValue(line,chunkPos,2_pInt) case ('tausat_sinhfitc') p%tausat_SinhFitC = IO_floatValue(line,chunkPos,2_pInt) case ('tausat_sinhfitd') p%tausat_SinhFitD = IO_floatValue(line,chunkPos,2_pInt) case ('a', 'w0') p%a = IO_floatValue(line,chunkPos,2_pInt) case ('taylorfactor') p%fTaylor = IO_floatValue(line,chunkPos,2_pInt) case ('atol_flowstress') p%aTolFlowstress = IO_floatValue(line,chunkPos,2_pInt) case ('atol_shear') p%aTolShear = IO_floatValue(line,chunkPos,2_pInt) case default end select endif; endif enddo parsingFile allocate(state(maxNinstance)) ! internal state aliases allocate(state0(maxNinstance)) allocate(dotState(maxNinstance)) allocate(stateAbsTol(maxNinstance)) initializeInstances: do phase = 1_pInt, size(phase_plasticity) ! loop over every plasticity myPhase: if (phase_plasticity(phase) == PLASTICITY_isotropic_ID) then ! isolate instances of own constitutive description NipcMyPhase = count(material_phase == phase) ! number of own material points (including point components ipc) instance = phase_plasticityInstance(phase) p => param(instance) extmsg = '' !-------------------------------------------------------------------------------------------------- ! sanity checks if (p%aTolShear <= 0.0_pReal) p%aTolShear = 1.0e-6_pReal ! default absolute tolerance 1e-6 if (p%tau0 < 0.0_pReal) extmsg = trim(extmsg)//' tau0' if (p%gdot0 <= 0.0_pReal) extmsg = trim(extmsg)//' gdot0' if (p%n <= 0.0_pReal) extmsg = trim(extmsg)//' n' if (p%tausat <= 0.0_pReal) extmsg = trim(extmsg)//' tausat' if (p%a <= 0.0_pReal) extmsg = trim(extmsg)//' a' if (p%fTaylor <= 0.0_pReal) extmsg = trim(extmsg)//' taylorfactor' if (p%aTolFlowstress <= 0.0_pReal) extmsg = trim(extmsg)//' atol_flowstress' if (extmsg /= '') then extmsg = trim(extmsg)//' ('//PLASTICITY_ISOTROPIC_label//')' ! prepare error message identifier call IO_error(211_pInt,ip=instance,ext_msg=extmsg) endif !-------------------------------------------------------------------------------------------------- ! Determine size of postResults array outputsLoop: do o = 1_pInt,plastic_isotropic_Noutput(instance) select case(p%outputID(o)) case(flowstress_ID,strainrate_ID) mySize = 1_pInt case default end select outputFound: if (mySize > 0_pInt) then plastic_isotropic_sizePostResult(o,instance) = mySize plastic_isotropic_sizePostResults(instance) = & plastic_isotropic_sizePostResults(instance) + mySize endif outputFound enddo outputsLoop !-------------------------------------------------------------------------------------------------- ! allocate state arrays sizeDotState = 2_pInt ! flowstress, accumulated_shear sizeDeltaState = 0_pInt ! no sudden jumps in state sizeState = sizeDotState + sizeDeltaState plasticState(phase)%sizeState = sizeState plasticState(phase)%sizeDotState = sizeDotState plasticState(phase)%sizeDeltaState = sizeDeltaState plasticState(phase)%sizePostResults = plastic_isotropic_sizePostResults(instance) plasticState(phase)%nSlip = 1 plasticState(phase)%nTwin = 0 plasticState(phase)%nTrans= 0 allocate(plasticState(phase)%aTolState ( sizeState)) allocate(plasticState(phase)%state0 ( sizeState,NipcMyPhase),source=0.0_pReal) allocate(plasticState(phase)%partionedState0 ( sizeState,NipcMyPhase),source=0.0_pReal) allocate(plasticState(phase)%subState0 ( sizeState,NipcMyPhase),source=0.0_pReal) allocate(plasticState(phase)%state ( sizeState,NipcMyPhase),source=0.0_pReal) allocate(plasticState(phase)%dotState (sizeDotState,NipcMyPhase),source=0.0_pReal) allocate(plasticState(phase)%deltaState (sizeDeltaState,NipcMyPhase),source=0.0_pReal) if (any(numerics_integrator == 1_pInt)) then allocate(plasticState(phase)%previousDotState (sizeDotState,NipcMyPhase),source=0.0_pReal) allocate(plasticState(phase)%previousDotState2(sizeDotState,NipcMyPhase),source=0.0_pReal) endif if (any(numerics_integrator == 4_pInt)) & allocate(plasticState(phase)%RK4dotState (sizeDotState,NipcMyPhase),source=0.0_pReal) if (any(numerics_integrator == 5_pInt)) & allocate(plasticState(phase)%RKCK45dotState (6,sizeDotState,NipcMyPhase),source=0.0_pReal) !-------------------------------------------------------------------------------------------------- ! globally required state aliases plasticState(phase)%slipRate => plasticState(phase)%dotState(2:2,1:NipcMyPhase) plasticState(phase)%accumulatedSlip => plasticState(phase)%state (2:2,1:NipcMyPhase) !-------------------------------------------------------------------------------------------------- ! locally defined state aliases state(instance)%flowstress => plasticState(phase)%state (1,1:NipcMyPhase) state0(instance)%flowstress => plasticState(phase)%state0 (1,1:NipcMyPhase) dotState(instance)%flowstress => plasticState(phase)%dotState (1,1:NipcMyPhase) stateAbsTol(instance)%flowstress => plasticState(phase)%aTolState(1) state(instance)%accumulatedShear => plasticState(phase)%state (2,1:NipcMyPhase) state0(instance)%accumulatedShear => plasticState(phase)%state0 (2,1:NipcMyPhase) dotState(instance)%accumulatedShear => plasticState(phase)%dotState (2,1:NipcMyPhase) stateAbsTol(instance)%accumulatedShear => plasticState(phase)%aTolState(2) !-------------------------------------------------------------------------------------------------- ! init state state0(instance)%flowstress = p%tau0 state0(instance)%accumulatedShear = 0.0_pReal !-------------------------------------------------------------------------------------------------- ! init absolute state tolerances stateAbsTol(instance)%flowstress = p%aTolFlowstress stateAbsTol(instance)%accumulatedShear = p%aTolShear endif myPhase enddo initializeInstances end subroutine plastic_isotropic_init !-------------------------------------------------------------------------------------------------- !> @brief calculates plastic velocity gradient and its tangent !-------------------------------------------------------------------------------------------------- subroutine plastic_isotropic_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el) use debug, only: & debug_level, & debug_constitutive, & debug_levelBasic, & debug_levelExtensive, & debug_levelSelective, & debug_e, & debug_i, & debug_g use math, only: & math_mul6x6, & math_Mandel6to33, & math_Plain3333to99, & math_deviatoric33, & math_mul33xx33, & math_transpose33 use material, only: & phasememberAt, & material_phase, & phase_plasticityInstance implicit none real(pReal), dimension(3,3), intent(out) :: & Lp !< plastic velocity gradient real(pReal), dimension(9,9), intent(out) :: & dLp_dTstar99 !< derivative of Lp with respect to 2nd Piola Kirchhoff stress real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type tParameters, pointer :: p real(pReal), dimension(3,3) :: & Tstar_dev_33 !< deviatoric part of the 2nd Piola Kirchhoff stress tensor as 2nd order tensor real(pReal), dimension(3,3,3,3) :: & dLp_dTstar_3333 !< derivative of Lp with respect to Tstar as 4th order tensor real(pReal) :: & gamma_dot, & !< strainrate norm_Tstar_dev, & !< euclidean norm of Tstar_dev squarenorm_Tstar_dev !< square of the euclidean norm of Tstar_dev integer(pInt) :: & instance, of, & k, l, m, n of = phasememberAt(ipc,ip,el) ! phasememberAt should be tackled by material and be renamed to material_phasemember instance = phase_plasticityInstance(material_phase(ipc,ip,el)) p => param(instance) Tstar_dev_33 = math_deviatoric33(math_Mandel6to33(Tstar_v)) ! deviatoric part of 2nd Piola-Kirchhoff stress squarenorm_Tstar_dev = math_mul33xx33(Tstar_dev_33,Tstar_dev_33) norm_Tstar_dev = sqrt(squarenorm_Tstar_dev) if (norm_Tstar_dev <= 0.0_pReal) then ! Tstar == 0 --> both Lp and dLp_dTstar are zero Lp = 0.0_pReal dLp_dTstar99 = 0.0_pReal else gamma_dot = p%gdot0 & * ( sqrt(1.5_pReal) * norm_Tstar_dev / p%fTaylor / state(instance)%flowstress(of) ) & **p%n Lp = Tstar_dev_33/norm_Tstar_dev * gamma_dot/p%fTaylor if (iand(debug_level(debug_constitutive), debug_levelExtensive) /= 0_pInt & .and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) & .or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt)) then write(6,'(a,i8,1x,i2,1x,i3)') '<< CONST isotropic >> at el ip g ',el,ip,ipc write(6,'(/,a,/,3(12x,3(f12.4,1x)/))') '<< CONST isotropic >> Tstar (dev) / MPa', & math_transpose33(Tstar_dev_33(1:3,1:3))*1.0e-6_pReal write(6,'(/,a,/,f12.5)') '<< CONST isotropic >> norm Tstar / MPa', norm_Tstar_dev*1.0e-6_pReal write(6,'(/,a,/,f12.5)') '<< CONST isotropic >> gdot', gamma_dot end if !-------------------------------------------------------------------------------------------------- ! Calculation of the tangent of Lp forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar_3333(k,l,m,n) = (p%n-1.0_pReal) * & Tstar_dev_33(k,l)*Tstar_dev_33(m,n) / squarenorm_Tstar_dev forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) & dLp_dTstar_3333(k,l,k,l) = dLp_dTstar_3333(k,l,k,l) + 1.0_pReal forall (k=1_pInt:3_pInt,m=1_pInt:3_pInt) & dLp_dTstar_3333(k,k,m,m) = dLp_dTstar_3333(k,k,m,m) - 1.0_pReal/3.0_pReal dLp_dTstar99 = math_Plain3333to99(gamma_dot / p%fTaylor * & dLp_dTstar_3333 / norm_Tstar_dev) end if end subroutine plastic_isotropic_LpAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief calculates plastic velocity gradient and its tangent !-------------------------------------------------------------------------------------------------- subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar_3333,Tstar_v,ipc,ip,el) use math, only: & math_mul6x6, & math_Mandel6to33, & math_Plain3333to99, & math_spherical33, & math_mul33xx33 use material, only: & phasememberAt, & material_phase, & phase_plasticityInstance implicit none real(pReal), dimension(3,3), intent(out) :: & Li !< plastic velocity gradient real(pReal), dimension(3,3,3,3), intent(out) :: & dLi_dTstar_3333 !< derivative of Li with respect to Tstar as 4th order tensor real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type tParameters, pointer :: p real(pReal), dimension(3,3) :: & Tstar_sph_33 !< sphiatoric part of the 2nd Piola Kirchhoff stress tensor as 2nd order tensor real(pReal) :: & gamma_dot, & !< strainrate norm_Tstar_sph, & !< euclidean norm of Tstar_sph squarenorm_Tstar_sph !< square of the euclidean norm of Tstar_sph integer(pInt) :: & instance, of, & k, l, m, n of = phasememberAt(ipc,ip,el) ! phasememberAt should be tackled by material and be renamed to material_phasemember instance = phase_plasticityInstance(material_phase(ipc,ip,el)) p => param(instance) Tstar_sph_33 = math_spherical33(math_Mandel6to33(Tstar_v)) ! spherical part of 2nd Piola-Kirchhoff stress squarenorm_Tstar_sph = math_mul33xx33(Tstar_sph_33,Tstar_sph_33) norm_Tstar_sph = sqrt(squarenorm_Tstar_sph) if (p%dilatation .and. norm_Tstar_sph > 0.0_pReal) then ! Tstar == 0 or J2 plascitiy --> both Li and dLi_dTstar are zero gamma_dot = p%gdot0 & * (sqrt(1.5_pReal) * norm_Tstar_sph / p%fTaylor / state(instance)%flowstress(of) ) & **p%n Li = Tstar_sph_33/norm_Tstar_sph * gamma_dot/p%fTaylor !-------------------------------------------------------------------------------------------------- ! Calculation of the tangent of Li forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLi_dTstar_3333(k,l,m,n) = (p%n-1.0_pReal) * & Tstar_sph_33(k,l)*Tstar_sph_33(m,n) / squarenorm_Tstar_sph forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) & dLi_dTstar_3333(k,l,k,l) = dLi_dTstar_3333(k,l,k,l) + 1.0_pReal dLi_dTstar_3333 = gamma_dot / p%fTaylor * & dLi_dTstar_3333 / norm_Tstar_sph else Li = 0.0_pReal dLi_dTstar_3333 = 0.0_pReal endif end subroutine plastic_isotropic_LiAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief calculates the rate of change of microstructure !-------------------------------------------------------------------------------------------------- subroutine plastic_isotropic_dotState(Tstar_v,ipc,ip,el) use prec, only: & dEq0 use math, only: & math_mul6x6 use material, only: & phasememberAt, & material_phase, & phase_plasticityInstance implicit none real(pReal), dimension(6), intent(in):: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type tParameters, pointer :: p real(pReal), dimension(6) :: & Tstar_dev_v !< deviatoric 2nd Piola Kirchhoff stress tensor in Mandel notation real(pReal) :: & gamma_dot, & !< strainrate hardening, & !< hardening coefficient saturation, & !< saturation flowstress norm_Tstar_v !< euclidean norm of Tstar_dev integer(pInt) :: & instance, & !< instance of my instance (unique number of my constitutive model) of !< shortcut notation for offset position in state array of = phasememberAt(ipc,ip,el) ! phasememberAt should be tackled by material and be renamed to material_phasemember instance = phase_plasticityInstance(material_phase(ipc,ip,el)) p => param(instance) !-------------------------------------------------------------------------------------------------- ! norm of (deviatoric) 2nd Piola-Kirchhoff stress if (p%dilatation) then norm_Tstar_v = sqrt(math_mul6x6(Tstar_v,Tstar_v)) else Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal Tstar_dev_v(4:6) = Tstar_v(4:6) norm_Tstar_v = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v)) end if !-------------------------------------------------------------------------------------------------- ! strain rate gamma_dot = p%gdot0 * ( sqrt(1.5_pReal) * norm_Tstar_v & / &!----------------------------------------------------------------------------------- (p%fTaylor*state(instance)%flowstress(of) ))**p%n !-------------------------------------------------------------------------------------------------- ! hardening coefficient if (abs(gamma_dot) > 1e-12_pReal) then if (dEq0(p%tausat_SinhFitA)) then saturation = p%tausat else saturation = p%tausat & + asinh( (gamma_dot / p%tausat_SinhFitA& )**(1.0_pReal / p%tausat_SinhFitD)& )**(1.0_pReal / p%tausat_SinhFitC) & / ( p%tausat_SinhFitB & * (gamma_dot / p%gdot0)**(1.0_pReal / p%n) & ) endif hardening = ( p%h0 + p%h0_slopeLnRate * log(gamma_dot) ) & * abs( 1.0_pReal - state(instance)%flowstress(of)/saturation )**p%a & * sign(1.0_pReal, 1.0_pReal - state(instance)%flowstress(of)/saturation) else hardening = 0.0_pReal endif dotState(instance)%flowstress (of) = hardening * gamma_dot dotState(instance)%accumulatedShear(of) = gamma_dot end subroutine plastic_isotropic_dotState !-------------------------------------------------------------------------------------------------- !> @brief return array of constitutive results !-------------------------------------------------------------------------------------------------- function plastic_isotropic_postResults(Tstar_v,ipc,ip,el) use math, only: & math_mul6x6 use material, only: & material_phase, & phasememberAt, & phase_plasticityInstance implicit none real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type tParameters, pointer :: p real(pReal), dimension(plastic_isotropic_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & plastic_isotropic_postResults real(pReal), dimension(6) :: & Tstar_dev_v !< deviatoric 2nd Piola Kirchhoff stress tensor in Mandel notation real(pReal) :: & norm_Tstar_v ! euclidean norm of Tstar_dev integer(pInt) :: & instance, & !< instance of my instance (unique number of my constitutive model) of, & !< shortcut notation for offset position in state array c, & o of = phasememberAt(ipc,ip,el) ! phasememberAt should be tackled by material and be renamed to material_phasemember instance = phase_plasticityInstance(material_phase(ipc,ip,el)) p => param(instance) !-------------------------------------------------------------------------------------------------- ! norm of (deviatoric) 2nd Piola-Kirchhoff stress if (p%dilatation) then norm_Tstar_v = sqrt(math_mul6x6(Tstar_v,Tstar_v)) else Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal Tstar_dev_v(4:6) = Tstar_v(4:6) norm_Tstar_v = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v)) end if c = 0_pInt plastic_isotropic_postResults = 0.0_pReal outputsLoop: do o = 1_pInt,plastic_isotropic_Noutput(instance) select case(p%outputID(o)) case (flowstress_ID) plastic_isotropic_postResults(c+1_pInt) = state(instance)%flowstress(of) c = c + 1_pInt case (strainrate_ID) plastic_isotropic_postResults(c+1_pInt) = & p%gdot0 * ( sqrt(1.5_pReal) * norm_Tstar_v & / &!---------------------------------------------------------------------------------- (p%fTaylor * state(instance)%flowstress(of)) ) ** p%n c = c + 1_pInt end select enddo outputsLoop end function plastic_isotropic_postResults end module plastic_isotropic