!-------------------------------------------------------------------------------------------------- ! $Id: thermal_conduction.f90 3210 2014-06-17 15:24:44Z MPIE\m.diehl $ !-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine incoprorating dislocation and twinning physics !> @details to be done !-------------------------------------------------------------------------------------------------- module thermal_conduction use prec, only: & pReal, & pInt implicit none private integer(pInt), dimension(:), allocatable, public, protected :: & thermal_conduction_sizePostResults !< cumulative size of post results integer(pInt), dimension(:,:), allocatable, target, public :: & thermal_conduction_sizePostResult !< size of each post result output character(len=64), dimension(:,:), allocatable, target, public :: & thermal_conduction_output !< name of each post result output integer(pInt), dimension(:), allocatable, private :: & thermal_conduction_Noutput !< number of outputs per instance of this damage real(pReal), dimension(:), allocatable, public :: & thermal_conduction_specific_heat, & thermal_conduction_density enum, bind(c) enumerator :: undefined_ID, & temperature_ID end enum integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: & thermal_conduction_outputID !< ID of each post result output public :: & thermal_conduction_init, & thermal_conduction_stateInit, & thermal_conduction_aTolState, & thermal_conduction_microstructure, & thermal_conduction_temperature, & thermal_conduction_postResults contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- subroutine thermal_conduction_init(fileUnit) use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use debug, only: & debug_level,& debug_constitutive,& debug_levelBasic use mesh, only: & mesh_maxNips, & mesh_NcpElems use IO, only: & IO_read, & IO_lc, & IO_getTag, & IO_isBlank, & IO_stringPos, & IO_stringValue, & IO_floatValue, & IO_intValue, & IO_warning, & IO_error, & IO_timeStamp, & IO_EOF use material, only: & homogenization_maxNgrains, & phase_thermal, & phase_thermalInstance, & phase_Noutput, & THERMAL_CONDUCTION_label, & THERMAL_conduction_ID, & material_phase, & thermalState, & MATERIAL_partPhase use numerics,only: & numerics_integrator implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: MAXNCHUNKS = 7_pInt integer(pInt), dimension(1+2*MAXNCHUNKS) :: positions integer(pInt) :: maxNinstance,mySize=0_pInt,phase,instance,o integer(pInt) :: sizeState, sizeDotState integer(pInt) :: NofMyPhase character(len=65536) :: & tag = '', & line = '' write(6,'(/,a)') ' <<<+- thermal_'//THERMAL_CONDUCTION_label//' init -+>>>' write(6,'(a)') ' $Id: thermal_conduction.f90 3210 2014-06-17 15:24:44Z MPIE\m.diehl $' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" maxNinstance = int(count(phase_thermal == THERMAL_conduction_ID),pInt) if (maxNinstance == 0_pInt) return if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) & write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance allocate(thermal_conduction_sizePostResults(maxNinstance), source=0_pInt) allocate(thermal_conduction_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt) allocate(thermal_conduction_output(maxval(phase_Noutput),maxNinstance)) thermal_conduction_output = '' allocate(thermal_conduction_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID) allocate(thermal_conduction_Noutput(maxNinstance), source=0_pInt) allocate(thermal_conduction_specific_heat(maxNinstance), source=0.0_pReal) allocate(thermal_conduction_density(maxNinstance), source=0.0_pReal) rewind(fileUnit) phase = 0_pInt do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to line = IO_read(fileUnit) enddo parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part line = IO_read(fileUnit) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(fileUnit, .true.) ! reset IO_read exit endif if (IO_getTag(line,'[',']') /= '') then ! next phase section phase = phase + 1_pInt ! advance phase section counter cycle ! skip to next line endif if (phase > 0_pInt ) then; if (phase_thermal(phase) == THERMAL_conduction_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran instance = phase_thermalInstance(phase) ! which instance of my thermal is present phase positions = IO_stringPos(line,MAXNCHUNKS) tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key select case(tag) case ('(output)') select case(IO_lc(IO_stringValue(line,positions,2_pInt))) case ('temperature') thermal_conduction_Noutput(instance) = thermal_conduction_Noutput(instance) + 1_pInt thermal_conduction_outputID(thermal_conduction_Noutput(instance),instance) = temperature_ID thermal_conduction_output(thermal_conduction_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,positions,2_pInt)) end select case ('specific_heat') thermal_conduction_specific_heat(instance) = IO_floatValue(line,positions,2_pInt) case ('density') thermal_conduction_density(instance) = IO_floatValue(line,positions,2_pInt) end select endif; endif enddo parsingFile initializeInstances: do phase = 1_pInt, size(phase_thermal) if (phase_thermal(phase) == THERMAL_conduction_ID) then NofMyPhase=count(material_phase==phase) instance = phase_thermalInstance(phase) !-------------------------------------------------------------------------------------------------- ! Determine size of postResults array outputsLoop: do o = 1_pInt,thermal_conduction_Noutput(instance) select case(thermal_conduction_outputID(o,instance)) case(temperature_ID) mySize = 1_pInt end select if (mySize > 0_pInt) then ! any meaningful output found thermal_conduction_sizePostResult(o,instance) = mySize thermal_conduction_sizePostResults(instance) = thermal_conduction_sizePostResults(instance) + mySize endif enddo outputsLoop ! Determine size of state array sizeDotState = 0_pInt sizeState = 2_pInt thermalState(phase)%sizeState = sizeState thermalState(phase)%sizeDotState = sizeDotState thermalState(phase)%sizePostResults = thermal_conduction_sizePostResults(instance) allocate(thermalState(phase)%aTolState (sizeState), source=0.0_pReal) allocate(thermalState(phase)%state0 (sizeState,NofMyPhase), source=0.0_pReal) allocate(thermalState(phase)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal) allocate(thermalState(phase)%subState0 (sizeState,NofMyPhase), source=0.0_pReal) allocate(thermalState(phase)%state (sizeState,NofMyPhase), source=0.0_pReal) allocate(thermalState(phase)%state_backup (sizeState,NofMyPhase), source=0.0_pReal) allocate(thermalState(phase)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal) allocate(thermalState(phase)%deltaState (sizeDotState,NofMyPhase), source=0.0_pReal) allocate(thermalState(phase)%dotState_backup (sizeDotState,NofMyPhase), source=0.0_pReal) if (any(numerics_integrator == 1_pInt)) then allocate(thermalState(phase)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal) allocate(thermalState(phase)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal) endif if (any(numerics_integrator == 4_pInt)) & allocate(thermalState(phase)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal) if (any(numerics_integrator == 5_pInt)) & allocate(thermalState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal) call thermal_conduction_stateInit(phase,instance) call thermal_conduction_aTolState(phase,instance) endif enddo initializeInstances end subroutine thermal_conduction_init !-------------------------------------------------------------------------------------------------- !> @brief sets the relevant NEW state values for a given instance of this thermal !-------------------------------------------------------------------------------------------------- subroutine thermal_conduction_stateInit(phase,instance) use material, only: & thermalState use lattice, only: & lattice_referenceTemperature implicit none integer(pInt), intent(in) :: instance !< number specifying the instance of the thermal integer(pInt), intent(in) :: phase !< number specifying the phase of the thermal real(pReal), dimension(thermalState(phase)%sizeState) :: tempState tempState(1) = 0.0_pReal tempState(2) = lattice_referenceTemperature(phase) thermalState(phase)%state = spread(tempState,2,size(thermalState(phase)%state(1,:))) thermalState(phase)%state0 = thermalState(phase)%state thermalState(phase)%partionedState0 = thermalState(phase)%state end subroutine thermal_conduction_stateInit !-------------------------------------------------------------------------------------------------- !> @brief sets the relevant state values for a given instance of this thermal !-------------------------------------------------------------------------------------------------- subroutine thermal_conduction_aTolState(phase,instance) use material, only: & thermalState implicit none integer(pInt), intent(in) :: & phase, & instance ! number specifying the current instance of the thermal real(pReal), dimension(thermalState(phase)%sizeState) :: tempTol tempTol = 1.0_pReal thermalState(phase)%aTolState = tempTol end subroutine thermal_conduction_aTolState !-------------------------------------------------------------------------------------------------- !> @brief calculates derived quantities from state !-------------------------------------------------------------------------------------------------- subroutine thermal_conduction_microstructure(Tstar_v, Lp, ipc, ip, el) use material, only: & mappingConstitutive, & phase_thermalInstance, & thermalState use math, only: & math_Mandel6to33 implicit none integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element real(pReal), intent(in), dimension(6) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor (Mandel) real(pReal), intent(in), dimension(3,3) :: & Lp integer(pInt) :: & instance, phase, constituent phase = mappingConstitutive(2,ipc,ip,el) constituent = mappingConstitutive(1,ipc,ip,el) instance = phase_thermalInstance(phase) thermalState(phase)%state(1,constituent) = & sum(abs(math_Mandel6to33(Tstar_v)*Lp)) end subroutine thermal_conduction_microstructure !-------------------------------------------------------------------------------------------------- !> @brief returns temperature based on conduction thermal model state layout !-------------------------------------------------------------------------------------------------- function thermal_conduction_temperature(ipc, ip, el) use material, only: & mappingConstitutive, & thermalState implicit none integer(pInt), intent(in) :: & ipc, & !< grain number ip, & !< integration point number el !< element number real(pReal) :: thermal_conduction_temperature thermal_conduction_temperature = & thermalState(mappingConstitutive(2,ipc,ip,el))%state(2,mappingConstitutive(1,ipc,ip,el)) end function thermal_conduction_temperature !-------------------------------------------------------------------------------------------------- !> @brief return array of constitutive results !-------------------------------------------------------------------------------------------------- function thermal_conduction_postResults(ipc,ip,el) use material, only: & mappingConstitutive, & phase_thermalInstance, & thermalState implicit none integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element real(pReal), dimension(thermal_conduction_sizePostResults(phase_thermalInstance(mappingConstitutive(2,ipc,ip,el)))) :: & thermal_conduction_postResults integer(pInt) :: & instance, phase, constituent, o, c phase = mappingConstitutive(2,ipc,ip,el) constituent = mappingConstitutive(1,ipc,ip,el) instance = phase_thermalInstance(phase) c = 0_pInt thermal_conduction_postResults = 0.0_pReal do o = 1_pInt,thermal_conduction_Noutput(instance) select case(thermal_conduction_outputID(o,instance)) case (temperature_ID) thermal_conduction_postResults(c+1_pInt) = thermalState(phase)%state(2,constituent) c = c + 1 end select enddo end function thermal_conduction_postResults end module thermal_conduction