#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,sys,string,re,math,itertools import numpy as np from scipy import ndimage from optparse import OptionParser import damask scriptID = string.replace('$Id$','\n','\\n') scriptName = os.path.splitext(scriptID.split()[1])[0] def periodic_3Dpad(array, rimdim=(1,1,1)): rimdim = np.array(rimdim,'i') size = np.array(array.shape,'i') padded = np.empty(size+2*rimdim,array.dtype) padded[rimdim[0]:rimdim[0]+size[0], rimdim[1]:rimdim[1]+size[1], rimdim[2]:rimdim[2]+size[2]] = array p = np.zeros(3,'i') for side in xrange(3): for p[(side+2)%3] in xrange(padded.shape[(side+2)%3]): for p[(side+1)%3] in xrange(padded.shape[(side+1)%3]): for p[side%3] in xrange(rimdim[side%3]): spot = (p-rimdim)%size padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]] for p[side%3] in xrange(rimdim[side%3]+size[side%3],size[side%3]+2*rimdim[side%3]): spot = (p-rimdim)%size padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]] return padded #-------------------------------------------------------------------------------------------------- # MAIN #-------------------------------------------------------------------------------------------------- features = [ {'aliens': 1, 'alias': ['boundary','biplane'],}, {'aliens': 2, 'alias': ['tripleline',],}, {'aliens': 3, 'alias': ['quadruplepoint',],} ] neighborhoods = { 'neumann':np.array([ [-1, 0, 0], [ 1, 0, 0], [ 0,-1, 0], [ 0, 1, 0], [ 0, 0,-1], [ 0, 0, 1], ]), 'moore':np.array([ [-1,-1,-1], [ 0,-1,-1], [ 1,-1,-1], [-1, 0,-1], [ 0, 0,-1], [ 1, 0,-1], [-1, 1,-1], [ 0, 1,-1], [ 1, 1,-1], # [-1,-1, 0], [ 0,-1, 0], [ 1,-1, 0], [-1, 0, 0], # [ 1, 0, 0], [-1, 1, 0], [ 0, 1, 0], [ 1, 1, 0], # [-1,-1, 1], [ 0,-1, 1], [ 1,-1, 1], [-1, 0, 1], [ 0, 0, 1], [ 1, 0, 1], [-1, 1, 1], [ 0, 1, 1], [ 1, 1, 1], ]) } parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Produce geom files containing Euclidean distance to grain structural features: boundaries, triple lines, and quadruple points. """, version = scriptID) parser.add_option('-t','--type', dest = 'type', action = 'extend', metavar = '', help = 'feature type (%s) '%(', '.join(map(lambda x:'|'.join(x['alias']),features))) ) parser.add_option('-n','--neighborhood', dest = 'neighborhood', choices = neighborhoods.keys(), metavar = 'string', help = 'type of neighborhood (%s) [neumann]'%(', '.join(neighborhoods.keys()))) parser.add_option('-s', '--scale', dest = 'scale', type = 'float', metavar = 'float', help = 'voxel size [%default]') parser.set_defaults(type = [], neighborhood = 'neumann', scale = 1.0, ) (options,filenames) = parser.parse_args() if len(options.type) == 0 or \ not set(options.type).issubset(set(list(itertools.chain(*map(lambda x: x['alias'],features))))): parser.error('sleect feature type from (%s).'%(', '.join(map(lambda x:'|'.join(x['alias']),features))) ) if 'biplane' in options.type and 'boundary' in options.type: parser.error("only one alias out 'biplane' and 'boundary' required") feature_list = [] for i,feature in enumerate(features): for name in feature['alias']: for myType in options.type: if name.startswith(myType): feature_list.append(i) # remember selected features break # --- loop over input files ------------------------------------------------------------------------- if filenames == []: filenames = ['STDIN'] for name in filenames: if not (name == 'STDIN' or os.path.exists(name)): continue table = damask.ASCIItable(name = name, outname = None, buffered = False, labeled = False, readonly = True) table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else '')) # --- interpret header ---------------------------------------------------------------------------- table.head_read() info,extra_header = table.head_getGeom() table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))), 'size x y z: %s'%(' x '.join(map(str,info['size']))), 'origin x y z: %s'%(' : '.join(map(str,info['origin']))), 'homogenization: %i'%info['homogenization'], 'microstructures: %i'%info['microstructures'], ]) errors = [] if np.any(info['grid'] < 1): errors.append('invalid grid a b c.') if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.') if errors != []: table.croak(errors) table.close(dismiss = True) continue # --- read data ------------------------------------------------------------------------------------ microstructure = table.microstructure_read(info['grid']).reshape(info['grid'],order='F') # read microstructure table.close() neighborhood = neighborhoods[options.neighborhood] convoluted = np.empty([len(neighborhood)]+list(info['grid']+2),'i') structure = periodic_3Dpad(microstructure) for i,p in enumerate(neighborhood): stencil = np.zeros((3,3,3),'i') stencil[1,1,1] = -1 stencil[p[0]+1, p[1]+1, p[2]+1] = 1 convoluted[i,:,:,:] = ndimage.convolve(structure,stencil) # distance = np.ones(info['grid'],'d') convoluted = np.sort(convoluted,axis = 0) uniques = np.where(convoluted[0,1:-1,1:-1,1:-1] != 0, 1,0) # initialize unique value counter (exclude myself [= 0]) for i in xrange(1,len(neighborhood)): # check remaining points in neighborhood uniques += np.where(np.logical_and( convoluted[i,1:-1,1:-1,1:-1] != convoluted[i-1,1:-1,1:-1,1:-1], # flip of ID difference detected? convoluted[i,1:-1,1:-1,1:-1] != 0), # not myself? 1,0) # count flip for feature in feature_list: table = damask.ASCIItable(name = name, outname = features[feature]['alias'][0]+'_'+name, buffered = False, labeled = False, writeonly = True) distance = np.where(uniques >= features[feature]['aliens'],0.0,1.0) # seed with 0.0 when enough unique neighbor IDs are present distance = ndimage.morphology.distance_transform_edt(distance)*[options.scale]*3 # for i in xrange(len(feature_list)): # distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3 # for i,feature in enumerate(feature_list): info['microstructures'] = int(math.ceil(distance.max())) #--- write header --------------------------------------------------------------------------------- table.info_clear() table.info_append(extra_header+[ scriptID + ' ' + ' '.join(sys.argv[1:]), "grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=info['grid']), "size\tx {size[0]}\ty {size[1]}\tz {size[2]}".format(size=info['size']), "origin\tx {origin[0]}\ty {origin[1]}\tz {origin[2]}".format(origin=info['origin']), "homogenization\t{homog}".format(homog=info['homogenization']), "microstructures\t{microstructures}".format(microstructures=info['microstructures']), ]) table.labels_clear() table.head_write() table.output_flush() # --- write microstructure information ------------------------------------------------------------ formatwidth = int(math.floor(math.log10(distance.max())+1)) table.data = distance.reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose() table.data_writeArray('%%%ii'%(formatwidth),delimiter=' ') #--- output finalization -------------------------------------------------------------------------- table.close() ### 'output':[open(features[feature]['names'][0]+'_'+name,'w') for feature in feature_list],