#!/usr/bin/env python3 import os import sys from io import StringIO from optparse import OptionParser import numpy as np import damask scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptID = ' '.join([scriptName,damask.version]) def volTetrahedron(coords): """ Return the volume of the tetrahedron with given vertices or sides. If vertices are given they must be in a NumPy array with shape (4,3): the position vectors of the 4 vertices in 3 dimensions; if the six sides are given, they must be an array of length 6. If both are given, the sides will be used in the calculation. This method implements Tartaglia's formula using the Cayley-Menger determinant: |0 1 1 1 1 | |1 0 s1^2 s2^2 s3^2| 288 V^2 = |1 s1^2 0 s4^2 s5^2| |1 s2^2 s4^2 0 s6^2| |1 s3^2 s5^2 s6^2 0 | where s1, s2, ..., s6 are the tetrahedron side lengths. from http://codereview.stackexchange.com/questions/77593/calculating-the-volume-of-a-tetrahedron """ # The indexes of rows in the vertices array corresponding to all # possible pairs of vertices vertex_pair_indexes = np.array(((0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3))) # Get all the squares of all side lengths from the differences between # the 6 different pairs of vertex positions vertices = np.concatenate((coords[0],coords[1],coords[2],coords[3])).reshape(4,3) vertex1, vertex2 = vertex_pair_indexes[:,0], vertex_pair_indexes[:,1] sides_squared = np.sum((vertices[vertex1] - vertices[vertex2])**2,axis=-1) # Set up the Cayley-Menger determinant M = np.zeros((5,5)) # Fill in the upper triangle of the matrix M[0,1:] = 1 # The squared-side length elements can be indexed using the vertex # pair indices (compare with the determinant illustrated above) M[tuple(zip(*(vertex_pair_indexes + 1)))] = sides_squared # The matrix is symmetric, so we can fill in the lower triangle by # adding the transpose M = M + M.T return np.sqrt(np.linalg.det(M) / 288) def volumeMismatch(size,F,nodes): """ Calculates the volume mismatch. volume mismatch is defined as the difference between volume of reconstructed (compatible) cube and determinant of deformation gradient at Fourier point. """ coords = np.empty([8,3]) vMismatch = np.empty(F.shape[:3]) #-------------------------------------------------------------------------------------------------- # calculate actual volume and volume resulting from deformation gradient for k in range(grid[0]): for j in range(grid[1]): for i in range(grid[2]): coords[0,0:3] = nodes[k, j, i ,0:3] coords[1,0:3] = nodes[k ,j, i+1,0:3] coords[2,0:3] = nodes[k ,j+1,i+1,0:3] coords[3,0:3] = nodes[k, j+1,i ,0:3] coords[4,0:3] = nodes[k+1,j, i ,0:3] coords[5,0:3] = nodes[k+1,j, i+1,0:3] coords[6,0:3] = nodes[k+1,j+1,i+1,0:3] coords[7,0:3] = nodes[k+1,j+1,i ,0:3] vMismatch[k,j,i] = \ ( abs(volTetrahedron([coords[6,0:3],coords[0,0:3],coords[7,0:3],coords[3,0:3]])) \ + abs(volTetrahedron([coords[6,0:3],coords[0,0:3],coords[7,0:3],coords[4,0:3]])) \ + abs(volTetrahedron([coords[6,0:3],coords[0,0:3],coords[2,0:3],coords[3,0:3]])) \ + abs(volTetrahedron([coords[6,0:3],coords[0,0:3],coords[2,0:3],coords[1,0:3]])) \ + abs(volTetrahedron([coords[6,0:3],coords[4,0:3],coords[1,0:3],coords[5,0:3]])) \ + abs(volTetrahedron([coords[6,0:3],coords[4,0:3],coords[1,0:3],coords[0,0:3]]))) \ /np.linalg.det(F[k,j,i,0:3,0:3]) return vMismatch/(size.prod()/grid.prod()) def shapeMismatch(size,F,nodes,centres): """ Routine to calculate the shape mismatch. shape mismatch is defined as difference between the vectors from the central point to the corners of reconstructed (combatible) volume element and the vectors calculated by deforming the initial volume element with the current deformation gradient. """ sMismatch = np.empty(F.shape[:3]) #-------------------------------------------------------------------------------------------------- # initial positions delta = size/grid*.5 coordsInitial = np.vstack((delta * np.array((-1,-1,-1)), delta * np.array((+1,-1,-1)), delta * np.array((+1,+1,-1)), delta * np.array((-1,+1,-1)), delta * np.array((-1,-1,+1)), delta * np.array((+1,-1,+1)), delta * np.array((+1,+1,+1)), delta * np.array((-1,+1,+1)))) #-------------------------------------------------------------------------------------------------- # compare deformed original and deformed positions to actual positions for k in range(grid[0]): for j in range(grid[1]): for i in range(grid[2]): sMismatch[k,j,i] = \ + np.linalg.norm(nodes[k, j, i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[0,0:3]))\ + np.linalg.norm(nodes[k+1,j, i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[1,0:3]))\ + np.linalg.norm(nodes[k+1,j+1,i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[2,0:3]))\ + np.linalg.norm(nodes[k, j+1,i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[3,0:3]))\ + np.linalg.norm(nodes[k, j, i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[4,0:3]))\ + np.linalg.norm(nodes[k+1,j, i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[5,0:3]))\ + np.linalg.norm(nodes[k+1,j+1,i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[6,0:3]))\ + np.linalg.norm(nodes[k ,j+1,i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[7,0:3])) return sMismatch # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [ASCIItable(s)]', description = """ Add column(s) containing the shape and volume mismatch resulting from given deformation gradient. Operates on periodic three-dimensional x,y,z-ordered data sets. """, version = scriptID) parser.add_option('-c','--coordinates', dest = 'pos', type = 'string', metavar = 'string', help = 'column heading of coordinates [%default]') parser.add_option('-f','--defgrad', dest = 'defgrad', type = 'string', metavar = 'string ', help = 'column heading of deformation gradient [%default]') parser.add_option('--no-shape','-s', dest = 'shape', action = 'store_false', help = 'omit shape mismatch') parser.add_option('--no-volume','-v', dest = 'volume', action = 'store_false', help = 'omit volume mismatch') parser.set_defaults(pos = 'pos', defgrad = 'f', shape = True, volume = True, ) (options,filenames) = parser.parse_args() if filenames == []: filenames = [None] for name in filenames: damask.util.report(scriptName,name) table = damask.Table.load_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name) grid,size,origin = damask.grid_filters.cell_coord0_gridSizeOrigin(table.get(options.pos)) F = table.get(options.defgrad).reshape(tuple(grid)+(-1,),order='F').reshape(tuple(grid)+(3,3)) nodes = damask.grid_filters.node_coord(size,F) if options.shape: centers = damask.grid_filters.cell_coord(size,F) shapeMismatch = shapeMismatch(size,F,nodes,centers) table = table.add('shapeMismatch(({}))'.format(options.defgrad), shapeMismatch.reshape(-1,1,order='F'), scriptID+' '+' '.join(sys.argv[1:])) if options.volume: volumeMismatch = volumeMismatch(size,F,nodes) table = table.add('volMismatch(({}))'.format(options.defgrad), volumeMismatch.reshape(-1,1,order='F'), scriptID+' '+' '.join(sys.argv[1:])) table.save_ASCII(sys.stdout if name is None else name)