#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,sys,string,re,math,numpy,random from optparse import OptionParser, OptionGroup, Option, SUPPRESS_HELP # ----------------------------- class extendedOption(Option): # ----------------------------- # used for definition of new option parser action 'extend', which enables to take multiple option arguments # taken from online tutorial http://docs.python.org/library/optparse.html ACTIONS = Option.ACTIONS + ("extend",) STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",) TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",) ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",) def take_action(self, action, dest, opt, value, values, parser): if action == "extend": lvalue = value.split(",") values.ensure_value(dest, []).extend(lvalue) else: Option.take_action(self, action, dest, opt, value, values, parser) # ----------------------- MAIN ------------------------------- identifiers = { 'resolution': ['a','b','c'], 'dimension': ['x','y','z'], } mappings = { 'resolution': lambda x: int(x), 'dimension': lambda x: float(x), } parser = OptionParser(option_class=extendedOption, usage='%prog [options]', description = """ Distribute given number of points randomly within the three-dimensional cube [0,0,0]--[1,1,1]. Reports positions with random crystal orientations in seeds file format to STDOUT. """ + string.replace('$Id$','\n','\\n') ) parser.add_option('-N', dest='N', type='int', \ help='number of seed points to distribute [%default]') parser.add_option('-r','--resolution', dest='res', type='int', nargs=3, \ help='Min Fourier points in x, y, z %default') parser.add_option('-s', '--rnd', dest='randomSeed', type='int', \ help='seed of random number generator [%default]') parser.set_defaults(randomSeed = 0) parser.set_defaults(res = [16,16,16]) parser.set_defaults(N = 20) (options, extras) = parser.parse_args() Npoints = options.res[0]*options.res[1]*options.res[2] if options.N > Npoints: sys.stderr.write('Warning: more seeds than grid points at minimum resolution.\n') options.N = Npoints seeds = numpy.zeros((3,options.N),float) numpy.random.seed(options.randomSeed) grainEuler = numpy.random.rand(3,options.N) grainEuler[0,:] *= 360.0 grainEuler[1,:] = numpy.arccos(2*grainEuler[1,:]-1)*180.0/math.pi grainEuler[2,:] *= 360.0 seedpoint = numpy.random.permutation(Npoints)[:options.N] seeds[0,:] = (numpy.mod(seedpoint ,options.res[0])+numpy.random.random())/options.res[0] seeds[1,:] = (numpy.mod(seedpoint// options.res[0] ,options.res[1])+numpy.random.random())/options.res[1] seeds[2,:] = (numpy.mod(seedpoint//(options.res[1]*options.res[0]),options.res[2])+numpy.random.random())/options.res[2] print "4\theader" print "resolution\ta %i\tb %i\tc %i"%(options.res[0],options.res[1],options.res[2],) print "grains\t%i"%options.N print "randomSeed\t%f"%(options.randomSeed) print "x\ty\tz\tphi1\tPhi\tphi2" numpy.savetxt(sys.stdout,numpy.transpose(numpy.concatenate((seeds,grainEuler),axis = 0)),fmt='%10.6f',delimiter='\t')