!-------------------------------------------------------------------------------------------------- !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine incorporating kinematics resulting from thermal expansion !> @details to be done !-------------------------------------------------------------------------------------------------- submodule(constitutive:constitutive_thermal) kinematics_thermal_expansion integer, dimension(:), allocatable :: kinematics_thermal_expansion_instance type :: tParameters real(pReal) :: & T_ref real(pReal), dimension(3,3,3) :: & A = 0.0_pReal end type tParameters type(tParameters), dimension(:), allocatable :: param contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- module function kinematics_thermal_expansion_init(kinematics_length) result(myKinematics) integer, intent(in) :: kinematics_length logical, dimension(:,:), allocatable :: myKinematics integer :: Ninstances,p,i,k real(pReal), dimension(:), allocatable :: temp class(tNode), pointer :: & phases, & phase, & kinematics, & kinematic_type print'(/,a)', ' <<<+- kinematics_thermal_expansion init -+>>>' myKinematics = kinematics_active('thermal_expansion',kinematics_length) Ninstances = count(myKinematics) print'(a,i2)', ' # instances: ',Ninstances; flush(IO_STDOUT) if(Ninstances == 0) return phases => config_material%get('phase') allocate(param(Ninstances)) allocate(kinematics_thermal_expansion_instance(phases%length), source=0) do p = 1, phases%length if(any(myKinematics(:,p))) kinematics_thermal_expansion_instance(p) = count(myKinematics(:,1:p)) phase => phases%get(p) if(count(myKinematics(:,p)) == 0) cycle kinematics => phase%get('kinematics') do k = 1, kinematics%length if(myKinematics(k,p)) then associate(prm => param(kinematics_thermal_expansion_instance(p))) kinematic_type => kinematics%get(k) prm%T_ref = kinematic_type%get_asFloat('T_ref', defaultVal=0.0_pReal) ! read up to three parameters (constant, linear, quadratic with T) temp = kinematic_type%get_asFloats('A_11') prm%A(1,1,1:size(temp)) = temp temp = kinematic_type%get_asFloats('A_22',defaultVal=[(0.0_pReal, i=1,size(temp))],requiredSize=size(temp)) prm%A(2,2,1:size(temp)) = temp temp = kinematic_type%get_asFloats('A_33',defaultVal=[(0.0_pReal, i=1,size(temp))],requiredSize=size(temp)) prm%A(3,3,1:size(temp)) = temp do i=1, size(prm%A,3) prm%A(1:3,1:3,i) = lattice_applyLatticeSymmetry33(prm%A(1:3,1:3,i),& phase%get_asString('lattice')) enddo end associate endif enddo enddo end function kinematics_thermal_expansion_init !-------------------------------------------------------------------------------------------------- !> @brief report initial thermal strain based on current temperature deviation from reference !-------------------------------------------------------------------------------------------------- pure module function kinematics_thermal_expansion_initialStrain(homog,phase,offset) result(initialStrain) integer, intent(in) :: & phase, & homog, & offset real(pReal), dimension(3,3) :: & initialStrain !< initial thermal strain (should be small strain, though) associate(prm => param(kinematics_thermal_expansion_instance(phase))) initialStrain = & (temperature(homog)%p(offset) - prm%T_ref)**1 / 1. * prm%A(1:3,1:3,1) + & ! constant coefficient (temperature(homog)%p(offset) - prm%T_ref)**2 / 2. * prm%A(1:3,1:3,2) + & ! linear coefficient (temperature(homog)%p(offset) - prm%T_ref)**3 / 3. * prm%A(1:3,1:3,3) ! quadratic coefficient end associate end function kinematics_thermal_expansion_initialStrain !-------------------------------------------------------------------------------------------------- !> @brief constitutive equation for calculating the velocity gradient !-------------------------------------------------------------------------------------------------- module subroutine kinematics_thermal_expansion_LiAndItsTangent(Li, dLi_dTstar, ipc, ip, el) integer, intent(in) :: & ipc, & !< grain number ip, & !< integration point number el !< element number real(pReal), intent(out), dimension(3,3) :: & Li !< thermal velocity gradient real(pReal), intent(out), dimension(3,3,3,3) :: & dLi_dTstar !< derivative of Li with respect to Tstar (4th-order tensor defined to be zero) integer :: & phase, & homog real(pReal) :: & T, TDot phase = material_phaseAt(ipc,el) homog = material_homogenizationAt(el) T = temperature(homog)%p(material_homogenizationMemberAt(ip,el)) TDot = temperatureRate(homog)%p(material_homogenizationMemberAt(ip,el)) associate(prm => param(kinematics_thermal_expansion_instance(phase))) Li = TDot * ( & prm%A(1:3,1:3,1)*(T - prm%T_ref)**0 & ! constant coefficient + prm%A(1:3,1:3,2)*(T - prm%T_ref)**1 & ! linear coefficient + prm%A(1:3,1:3,3)*(T - prm%T_ref)**2 & ! quadratic coefficient ) / & (1.0_pReal & + prm%A(1:3,1:3,1)*(T - prm%T_ref)**1 / 1. & + prm%A(1:3,1:3,2)*(T - prm%T_ref)**2 / 2. & + prm%A(1:3,1:3,3)*(T - prm%T_ref)**3 / 3. & ) end associate dLi_dTstar = 0.0_pReal end subroutine kinematics_thermal_expansion_LiAndItsTangent end submodule kinematics_thermal_expansion