! !(c) Matthew Kennel, Institute for Nonlinear Science (2004) ! ! Licensed under the Academic Free License version 1.1 found in file LICENSE ! with additional provisions found in that same file. ! !####################################################### ! modifications: changed precision according to prec.f90 ! k.komerla, m.diehl !####################################################### module kdtree2_priority_queue_module use prec ! ! maintain a priority queue (PQ) of data, pairs of 'priority/payload', ! implemented with a binary heap. This is the type, and the 'dis' field ! is the priority. ! type kdtree2_result ! a pair of distances, indexes real(pReal) :: dis !=0.0 integer(pInt) :: idx !=-1 Initializers cause some bugs in compilers. end type kdtree2_result ! ! A heap-based priority queue lets one efficiently implement the following ! operations, each in log(N) time, as opposed to linear time. ! ! 1) add a datum (push a datum onto the queue, increasing its length) ! 2) return the priority value of the maximum priority element ! 3) pop-off (and delete) the element with the maximum priority, decreasing ! the size of the queue. ! 4) replace the datum with the maximum priority with a supplied datum ! (of either higher or lower priority), maintaining the size of the ! queue. ! ! ! In the k-d tree case, the 'priority' is the square distance of a point in ! the data set to a reference point. The goal is to keep the smallest M ! distances to a reference point. The tree algorithm searches terminal ! nodes to decide whether to add points under consideration. ! ! A priority queue is useful here because it lets one quickly return the ! largest distance currently existing in the list. If a new candidate ! distance is smaller than this, then the new candidate ought to replace ! the old candidate. In priority queue terms, this means removing the ! highest priority element, and inserting the new one. ! ! Algorithms based on Cormen, Leiserson, Rivest, _Introduction ! to Algorithms_, 1990, with further optimization by the author. ! ! Originally informed by a C implementation by Sriranga Veeraraghavan. ! ! This module is not written in the most clear way, but is implemented such ! for speed, as it its operations will be called many times during searches ! of large numbers of neighbors. ! type pq ! ! The priority queue consists of elements ! priority(1:heap_size), with associated payload(:). ! ! There are heap_size active elements. ! Assumes the allocation is always sufficient. Will NOT increase it ! to match. integer(pInt) :: heap_size = 0 type(kdtree2_result), pointer :: elems(:) end type pq public :: kdtree2_result public :: pq public :: pq_create public :: pq_delete, pq_insert public :: pq_extract_max, pq_max, pq_replace_max, pq_maxpri private contains function pq_create(results_in) result(res) ! ! Create a priority queue from ALREADY allocated ! array pointers for storage. NOTE! It will NOT ! add any alements to the heap, i.e. any existing ! data in the input arrays will NOT be used and may ! be overwritten. ! ! usage: ! real(pReal), pointer :: x(:) ! integer(pInt), pointer :: k(:) ! allocate(x(1000),k(1000)) ! pq => pq_create(x,k) ! type(kdtree2_result), target:: results_in(:) type(pq) :: res ! ! integer(pInt) :: nalloc nalloc = size(results_in,1) if (nalloc .lt. 1) then write (*,*) 'PQ_CREATE: error, input arrays must be allocated.' end if res%elems => results_in res%heap_size = 0 return end function pq_create ! ! operations for getting parents and left + right children ! of elements in a binary heap. ! ! ! These are written inline for speed. ! ! integer(pInt) function parent(i) ! integer(pInt), intent(in) :: i ! parent = (i/2) ! return ! end function parent ! integer(pInt) function left(i) ! integer(pInt), intent(in) ::i ! left = (2*i) ! return ! end function left ! integer(pInt) function right(i) ! integer(pInt), intent(in) :: i ! right = (2*i)+1 ! return ! end function right ! logical function compare_priority(p1,p2) ! real(pReal), intent(in) :: p1, p2 ! ! compare_priority = (p1 .gt. p2) ! return ! end function compare_priority subroutine heapify(a,i_in) ! ! take a heap rooted at 'i' and force it to be in the ! heap canonical form. This is performance critical ! and has been tweaked a little to reflect this. ! type(pq),pointer :: a integer(pInt), intent(in) :: i_in ! integer(pInt) :: i, l, r, largest real(pReal) :: pri_i, pri_l, pri_r, pri_largest type(kdtree2_result) :: temp i = i_in bigloop: do l = 2*i ! left(i) r = l+1 ! right(i) ! ! set 'largest' to the index of either i, l, r ! depending on whose priority is largest. ! ! note that l or r can be larger than the heap size ! in which case they do not count. ! does left child have higher priority? if (l .gt. a%heap_size) then ! we know that i is the largest as both l and r are invalid. exit else pri_i = a%elems(i)%dis pri_l = a%elems(l)%dis if (pri_l .gt. pri_i) then largest = l pri_largest = pri_l else largest = i pri_largest = pri_i endif ! ! between i and l we have a winner ! now choose between that and r. ! if (r .le. a%heap_size) then pri_r = a%elems(r)%dis if (pri_r .gt. pri_largest) then largest = r endif endif endif if (largest .ne. i) then ! swap data in nodes largest and i, then heapify temp = a%elems(i) a%elems(i) = a%elems(largest) a%elems(largest) = temp ! ! Canonical heapify() algorithm has tail-ecursive call: ! ! call heapify(a,largest) ! we will simulate with cycle ! i = largest cycle bigloop ! continue the loop else return ! break from the loop end if enddo bigloop return end subroutine heapify subroutine pq_max(a,e) ! ! return the priority and its payload of the maximum priority element ! on the queue, which should be the first one, if it is ! in heapified form. ! type(pq),pointer :: a type(kdtree2_result),intent(out) :: e if (a%heap_size .gt. 0) then e = a%elems(1) else write (*,*) 'PQ_MAX: ERROR, heap_size < 1' stop endif return end subroutine pq_max real(pReal) function pq_maxpri(a) type(pq), pointer :: a if (a%heap_size .gt. 0) then pq_maxpri = a%elems(1)%dis else write (*,*) 'PQ_MAX_PRI: ERROR, heapsize < 1' stop endif return end function pq_maxpri subroutine pq_extract_max(a,e) ! ! return the priority and payload of maximum priority ! element, and remove it from the queue. ! (equivalent to 'pop()' on a stack) ! type(pq),pointer :: a type(kdtree2_result), intent(out) :: e if (a%heap_size .ge. 1) then ! ! return max as first element ! e = a%elems(1) ! ! move last element to first ! a%elems(1) = a%elems(a%heap_size) a%heap_size = a%heap_size-1 call heapify(a,1) return else write (*,*) 'PQ_EXTRACT_MAX: error, attempted to pop non-positive PQ' stop end if end subroutine pq_extract_max real(pReal) function pq_insert(a,dis,idx) ! ! Insert a new element and return the new maximum priority, ! which may or may not be the same as the old maximum priority. ! type(pq),pointer :: a real(pReal), intent(in) :: dis integer(pInt), intent(in) :: idx ! type(kdtree2_result), intent(in) :: e ! integer(pInt) :: i, isparent real(pReal) :: parentdis ! ! if (a%heap_size .ge. a%max_elems) then ! write (*,*) 'PQ_INSERT: error, attempt made to insert element on full PQ' ! stop ! else a%heap_size = a%heap_size + 1 i = a%heap_size do while (i .gt. 1) isparent = int(i/2) parentdis = a%elems(isparent)%dis if (dis .gt. parentdis) then ! move what was in i's parent into i. a%elems(i)%dis = parentdis a%elems(i)%idx = a%elems(isparent)%idx i = isparent else exit endif end do ! insert the element at the determined position a%elems(i)%dis = dis a%elems(i)%idx = idx pq_insert = a%elems(1)%dis return ! end if end function pq_insert subroutine pq_adjust_heap(a,i) type(pq),pointer :: a integer(pInt), intent(in) :: i ! ! nominally arguments (a,i), but specialize for a=1 ! ! This routine assumes that the trees with roots 2 and 3 are already heaps, i.e. ! the children of '1' are heaps. When the procedure is completed, the ! tree rooted at 1 is a heap. real(pReal) :: prichild integer(pInt) :: parent, child, N type(kdtree2_result) :: e e = a%elems(i) parent = i child = 2*i N = a%heap_size do while (child .le. N) if (child .lt. N) then if (a%elems(child)%dis .lt. a%elems(child+1)%dis) then child = child+1 endif endif prichild = a%elems(child)%dis if (e%dis .ge. prichild) then exit else ! move child into parent. a%elems(parent) = a%elems(child) parent = child child = 2*parent end if end do a%elems(parent) = e return end subroutine pq_adjust_heap real(pReal) function pq_replace_max(a,dis,idx) ! ! Replace the extant maximum priority element ! in the PQ with (dis,idx). Return ! the new maximum priority, which may be larger ! or smaller than the old one. ! type(pq),pointer :: a real(pReal), intent(in) :: dis integer(pInt), intent(in) :: idx ! type(kdtree2_result), intent(in) :: e ! not tested as well! integer(pInt) :: parent, child, N real(pReal) :: prichild, prichildp1 type(kdtree2_result) :: etmp if (.true.) then N=a%heap_size if (N .ge. 1) then parent =1 child=2 loop: do while (child .le. N) prichild = a%elems(child)%dis ! ! posibly child+1 has higher priority, and if ! so, get it, and increment child. ! if (child .lt. N) then prichildp1 = a%elems(child+1)%dis if (prichild .lt. prichildp1) then child = child+1 prichild = prichildp1 endif endif if (dis .ge. prichild) then exit loop ! we have a proper place for our new element, ! bigger than either children's priority. else ! move child into parent. a%elems(parent) = a%elems(child) parent = child child = 2*parent end if end do loop a%elems(parent)%dis = dis a%elems(parent)%idx = idx pq_replace_max = a%elems(1)%dis else a%elems(1)%dis = dis a%elems(1)%idx = idx pq_replace_max = dis endif else ! ! slower version using elementary pop and push operations. ! call pq_extract_max(a,etmp) etmp%dis = dis etmp%idx = idx pq_replace_max = pq_insert(a,dis,idx) endif return end function pq_replace_max subroutine pq_delete(a,i) ! ! delete item with index 'i' ! type(pq),pointer :: a integer(pInt) :: i if ((i .lt. 1) .or. (i .gt. a%heap_size)) then write (*,*) 'PQ_DELETE: error, attempt to remove out of bounds element.' stop endif ! swap the item to be deleted with the last element ! and shorten heap by one. a%elems(i) = a%elems(a%heap_size) a%heap_size = a%heap_size - 1 call heapify(a,i) end subroutine pq_delete end module kdtree2_priority_queue_module module kdtree2_module use prec use kdtree2_priority_queue_module ! K-D tree routines in Fortran 90 by Matt Kennel. ! Original program was written in Sather by Steve Omohundro and ! Matt Kennel. Only the Euclidean metric is supported. ! ! ! This module is identical to 'kd_tree', except that the order ! of subscripts is reversed in the data file. ! In otherwords for an embedding of N D-dimensional vectors, the ! data file is here, in natural Fortran order data(1:D, 1:N) ! because Fortran lays out columns first, ! ! whereas conventionally (C-style) it is data(1:N,1:D) ! as in the original kd_tree module. ! !-------------DATA TYPE, CREATION, DELETION--------------------- public :: pReal public :: kdtree2, kdtree2_result, tree_node, kdtree2_create, kdtree2_destroy !--------------------------------------------------------------- !-------------------SEARCH ROUTINES----------------------------- public :: kdtree2_n_nearest,kdtree2_n_nearest_around_point ! Return fixed number of nearest neighbors around arbitrary vector, ! or extant point in dataset, with decorrelation window. ! public :: kdtree2_r_nearest, kdtree2_r_nearest_around_point ! Return points within a fixed ball of arb vector/extant point ! public :: kdtree2_sort_results ! Sort, in order of increasing distance, rseults from above. ! public :: kdtree2_r_count, kdtree2_r_count_around_point ! Count points within a fixed ball of arb vector/extant point ! public :: kdtree2_n_nearest_brute_force, kdtree2_r_nearest_brute_force ! brute force of kdtree2_[n|r]_nearest !---------------------------------------------------------------- integer(pInt), parameter :: bucket_size = 12 ! The maximum number of points to keep in a terminal node. type interval real(pReal) :: lower,upper end type interval type :: tree_node ! an internal tree node private integer(pInt) :: cut_dim ! the dimension to cut real(pReal) :: cut_val ! where to cut the dimension real(pReal) :: cut_val_left, cut_val_right ! improved cutoffs knowing the spread in child boxes. integer(pInt) :: l, u type (tree_node), pointer :: left, right type(interval), pointer :: box(:) => null() ! child pointers ! Points included in this node are indexes[k] with k \in [l,u] end type tree_node type :: kdtree2 ! Global information about the tree, one per tree integer(pInt) :: dimen=0, n=0 ! dimensionality and total # of points real(pReal), pointer :: the_data(:,:) => null() ! pointer to the actual data array ! ! IMPORTANT NOTE: IT IS DIMENSIONED the_data(1:d,1:N) ! which may be opposite of what may be conventional. ! This is, because in Fortran, the memory layout is such that ! the first dimension is in sequential order. Hence, with ! (1:d,1:N), all components of the vector will be in consecutive ! memory locations. The search time is dominated by the ! evaluation of distances in the terminal nodes. Putting all ! vector components in consecutive memory location improves ! memory cache locality, and hence search speed, and may enable ! vectorization on some processors and compilers. integer(pInt), pointer :: ind(:) => null() ! permuted index into the data, so that indexes[l..u] of some ! bucket represent the indexes of the actual points in that ! bucket. logical :: sort = .false. ! do we always sort output results? logical :: rearrange = .false. real(pReal), pointer :: rearranged_data(:,:) => null() ! if (rearrange .eqv. .true.) then rearranged_data has been ! created so that rearranged_data(:,i) = the_data(:,ind(i)), ! permitting search to use more cache-friendly rearranged_data, at ! some initial computation and storage cost. type (tree_node), pointer :: root => null() ! root pointer of the tree end type kdtree2 type :: tree_search_record ! ! One of these is created for each search. ! private ! ! Many fields are copied from the tree structure, in order to ! speed up the search. ! integer(pInt) :: dimen integer(pInt) :: nn, nfound real(pReal) :: ballsize integer(pInt) :: centeridx=999, correltime=9999 ! exclude points within 'correltime' of 'centeridx', iff centeridx >= 0 integer(pInt) :: nalloc ! how much allocated for results(:)? logical :: rearrange ! are the data rearranged or original? ! did the # of points found overflow the storage provided? logical :: overflow real(pReal), pointer :: qv(:) ! query vector type(kdtree2_result), pointer :: results(:) ! results type(pq) :: pq real(pReal), pointer :: data(:,:) ! temp pointer to data integer(pInt), pointer :: ind(:) ! temp pointer to indexes end type tree_search_record private ! everything else is private. type(tree_search_record), save, target :: sr ! A GLOBAL VARIABLE for search contains function kdtree2_create(input_data,dim,sort,rearrange) result (mr) ! ! create the actual tree structure, given an input array of data. ! ! Note, input data is input_data(1:d,1:N), NOT the other way around. ! THIS IS THE REVERSE OF THE PREVIOUS VERSION OF THIS MODULE. ! The reason for it is cache friendliness, improving performance. ! ! Optional arguments: If 'dim' is specified, then the tree ! will only search the first 'dim' components ! of input_data, otherwise, dim is inferred ! from SIZE(input_data,1). ! ! if sort .eqv. .true. then output results ! will be sorted by increasing distance. ! default=.false., as it is faster to not sort. ! ! if rearrange .eqv. .true. then an internal ! copy of the data, rearranged by terminal node, ! will be made for cache friendliness. ! default=.true., as it speeds searches, but ! building takes longer, and extra memory is used. ! ! .. Function Return Cut_value .. type (kdtree2), pointer :: mr integer(pInt), intent(in), optional :: dim logical, intent(in), optional :: sort logical, intent(in), optional :: rearrange ! .. ! .. Array Arguments .. real(pReal), target :: input_data(:,:) ! integer(pInt) :: i ! .. allocate (mr) mr%the_data => input_data ! pointer assignment if (present(dim)) then mr%dimen = dim else mr%dimen = size(input_data,1) end if mr%n = size(input_data,2) if (mr%dimen > mr%n) then ! unlikely to be correct write (*,*) 'KD_TREE_TRANS: likely user error.' write (*,*) 'KD_TREE_TRANS: You passed in matrix with D=',mr%dimen write (*,*) 'KD_TREE_TRANS: and N=',mr%n write (*,*) 'KD_TREE_TRANS: note, that new format is data(1:D,1:N)' write (*,*) 'KD_TREE_TRANS: with usually N >> D. If N =approx= D, then a k-d tree' write (*,*) 'KD_TREE_TRANS: is not an appropriate data structure.' stop end if call build_tree(mr) if (present(sort)) then mr%sort = sort else mr%sort = .false. endif if (present(rearrange)) then mr%rearrange = rearrange else mr%rearrange = .true. endif if (mr%rearrange) then allocate(mr%rearranged_data(mr%dimen,mr%n)) do i=1,mr%n mr%rearranged_data(:,i) = mr%the_data(:, & mr%ind(i)) enddo else nullify(mr%rearranged_data) endif end function kdtree2_create subroutine build_tree(tp) type (kdtree2), pointer :: tp ! .. integer(pInt) :: j type(tree_node), pointer :: dummy => null() ! .. allocate (tp%ind(tp%n)) forall (j=1:tp%n) tp%ind(j) = j end forall tp%root => build_tree_for_range(tp,1,tp%n, dummy) end subroutine build_tree recursive function build_tree_for_range(tp,l,u,parent) result (res) ! .. Function Return Cut_value .. type (tree_node), pointer :: res ! .. ! .. Structure Arguments .. type (kdtree2), pointer :: tp type (tree_node),pointer :: parent ! .. ! .. Scalar Arguments .. integer(pInt), intent (In) :: l, u ! .. ! .. Local Scalars .. integer(pInt) :: i, c, m, dimen logical :: recompute real(pReal) :: average !!$ If (.False.) Then !!$ If ((l .Lt. 1) .Or. (l .Gt. tp%n)) Then !!$ Stop 'illegal L value in build_tree_for_range' !!$ End If !!$ If ((u .Lt. 1) .Or. (u .Gt. tp%n)) Then !!$ Stop 'illegal u value in build_tree_for_range' !!$ End If !!$ If (u .Lt. l) Then !!$ Stop 'U is less than L, thats illegal.' !!$ End If !!$ Endif !!$ ! first compute min and max dimen = tp%dimen allocate (res) allocate(res%box(dimen)) ! First, compute an APPROXIMATE bounding box of all points associated with this node. if ( u < l ) then ! no points in this box nullify(res) return end if if ((u-l)<=bucket_size) then ! ! always compute true bounding box for terminal nodes. ! do i=1,dimen call spread_in_coordinate(tp,i,l,u,res%box(i)) end do res%cut_dim = 0 res%cut_val = 0.0 res%l = l res%u = u res%left =>null() res%right => null() else ! ! modify approximate bounding box. This will be an ! overestimate of the true bounding box, as we are only recomputing ! the bounding box for the dimension that the parent split on. ! ! Going to a true bounding box computation would significantly ! increase the time necessary to build the tree, and usually ! has only a very small difference. This box is not used ! for searching but only for deciding which coordinate to split on. ! do i=1,dimen recompute=.true. if (associated(parent)) then if (i .ne. parent%cut_dim) then recompute=.false. end if endif if (recompute) then call spread_in_coordinate(tp,i,l,u,res%box(i)) else res%box(i) = parent%box(i) endif end do c = maxloc(res%box(1:dimen)%upper-res%box(1:dimen)%lower,1) ! ! c is the identity of which coordinate has the greatest spread. ! if (.false.) then ! select exact median to have fully balanced tree. m = (l+u)/2 call select_on_coordinate(tp%the_data,tp%ind,c,m,l,u) else ! ! select point halfway between min and max, as per A. Moore, ! who says this helps in some degenerate cases, or ! actual arithmetic average. ! if (.true.) then ! actually compute average average = sum(tp%the_data(c,tp%ind(l:u))) / real(u-l+1,pReal) else average = (res%box(c)%upper + res%box(c)%lower)/2.0 endif res%cut_val = average m = select_on_coordinate_value(tp%the_data,tp%ind,c,average,l,u) endif ! moves indexes around res%cut_dim = c res%l = l res%u = u ! res%cut_val = tp%the_data(c,tp%ind(m)) res%left => build_tree_for_range(tp,l,m,res) res%right => build_tree_for_range(tp,m+1,u,res) if (associated(res%right) .eqv. .false.) then res%box = res%left%box res%cut_val_left = res%left%box(c)%upper res%cut_val = res%cut_val_left elseif (associated(res%left) .eqv. .false.) then res%box = res%right%box res%cut_val_right = res%right%box(c)%lower res%cut_val = res%cut_val_right else res%cut_val_right = res%right%box(c)%lower res%cut_val_left = res%left%box(c)%upper res%cut_val = (res%cut_val_left + res%cut_val_right)/2 ! now remake the true bounding box for self. ! Since we are taking unions (in effect) of a tree structure, ! this is much faster than doing an exhaustive ! search over all points res%box%upper = max(res%left%box%upper,res%right%box%upper) res%box%lower = min(res%left%box%lower,res%right%box%lower) endif end if end function build_tree_for_range integer(pInt) function select_on_coordinate_value(v,ind,c,alpha,li,ui) & result(res) ! Move elts of ind around between l and u, so that all points ! <= than alpha (in c cooordinate) are first, and then ! all points > alpha are second. ! ! Algorithm (matt kennel). ! ! Consider the list as having three parts: on the left, ! the points known to be <= alpha. On the right, the points ! known to be > alpha, and in the middle, the currently unknown ! points. The algorithm is to scan the unknown points, starting ! from the left, and swapping them so that they are added to ! the left stack or the right stack, as appropriate. ! ! The algorithm finishes when the unknown stack is empty. ! ! .. Scalar Arguments .. integer(pInt), intent (In) :: c, li, ui real(pReal), intent(in) :: alpha ! .. real(pReal) :: v(1:,1:) integer(pInt) :: ind(1:) integer(pInt) :: tmp ! .. integer(pInt) :: lb, rb ! ! The points known to be <= alpha are in ! [l,lb-1] ! ! The points known to be > alpha are in ! [rb+1,u]. ! ! Therefore we add new points into lb or ! rb as appropriate. When lb=rb ! we are done. We return the location of the last point <= alpha. ! ! lb = li; rb = ui do while (lb < rb) if ( v(c,ind(lb)) <= alpha ) then ! it is good where it is. lb = lb+1 else ! swap it with rb. tmp = ind(lb); ind(lb) = ind(rb); ind(rb) = tmp rb = rb-1 endif end do ! now lb .eq. ub if (v(c,ind(lb)) <= alpha) then res = lb else res = lb-1 endif end function select_on_coordinate_value subroutine select_on_coordinate(v,ind,c,k,li,ui) ! Move elts of ind around between l and u, so that the kth ! element ! is >= those below, <= those above, in the coordinate c. ! .. Scalar Arguments .. integer(pInt), intent (In) :: c, k, li, ui ! .. integer(pInt) :: i, l, m, s, t, u ! .. real(pReal) :: v(:,:) integer(pInt) :: ind(:) ! .. l = li u = ui do while (l<u) t = ind(l) m = l do i = l + 1, u if (v(c,ind(i))<v(c,t)) then m = m + 1 s = ind(m) ind(m) = ind(i) ind(i) = s end if end do s = ind(l) ind(l) = ind(m) ind(m) = s if (m<=k) l = m + 1 if (m>=k) u = m - 1 end do end subroutine select_on_coordinate subroutine spread_in_coordinate(tp,c,l,u,interv) ! the spread in coordinate 'c', between l and u. ! ! Return lower bound in 'smin', and upper in 'smax', ! .. ! .. Structure Arguments .. type (kdtree2), pointer :: tp type(interval), intent(out) :: interv ! .. ! .. Scalar Arguments .. integer(pInt), intent (In) :: c, l, u ! .. ! .. Local Scalars .. real(pReal) :: last, lmax, lmin, t, smin,smax integer(pInt) :: i, ulocal ! .. ! .. Local Arrays .. real(pReal), pointer :: v(:,:) integer(pInt), pointer :: ind(:) ! .. v => tp%the_data(1:,1:) ind => tp%ind(1:) smin = v(c,ind(l)) smax = smin ulocal = u do i = l + 2, ulocal, 2 lmin = v(c,ind(i-1)) lmax = v(c,ind(i)) if (lmin>lmax) then t = lmin lmin = lmax lmax = t end if if (smin>lmin) smin = lmin if (smax<lmax) smax = lmax end do if (i==ulocal+1) then last = v(c,ind(ulocal)) if (smin>last) smin = last if (smax<last) smax = last end if interv%lower = smin interv%upper = smax end subroutine spread_in_coordinate subroutine kdtree2_destroy(tp) ! Deallocates all memory for the tree, except input data matrix ! .. Structure Arguments .. type (kdtree2), pointer :: tp ! .. call destroy_node(tp%root) deallocate (tp%ind) nullify (tp%ind) if (tp%rearrange) then deallocate(tp%rearranged_data) nullify(tp%rearranged_data) endif deallocate(tp) return contains recursive subroutine destroy_node(np) ! .. Structure Arguments .. type (tree_node), pointer :: np ! .. ! .. Intrinsic Functions .. intrinsic ASSOCIATED ! .. if (associated(np%left)) then call destroy_node(np%left) nullify (np%left) end if if (associated(np%right)) then call destroy_node(np%right) nullify (np%right) end if if (associated(np%box)) deallocate(np%box) deallocate(np) return end subroutine destroy_node end subroutine kdtree2_destroy subroutine kdtree2_n_nearest(tp,qv,nn,results) ! Find the 'nn' vectors in the tree nearest to 'qv' in euclidean norm ! returning their indexes and distances in 'indexes' and 'distances' ! arrays already allocated passed to this subroutine. type (kdtree2), pointer :: tp real(pReal), target, intent (In) :: qv(:) integer(pInt), intent (In) :: nn type(kdtree2_result), target :: results(:) sr%ballsize = huge(1.0) sr%qv => qv sr%nn = nn sr%nfound = 0 sr%centeridx = -1 sr%correltime = 0 sr%overflow = .false. sr%results => results sr%nalloc = nn ! will be checked sr%ind => tp%ind sr%rearrange = tp%rearrange if (tp%rearrange) then sr%Data => tp%rearranged_data else sr%Data => tp%the_data endif sr%dimen = tp%dimen call validate_query_storage(nn) sr%pq = pq_create(results) call search(tp%root) if (tp%sort) then call kdtree2_sort_results(nn, results) endif ! deallocate(sr%pqp) return end subroutine kdtree2_n_nearest subroutine kdtree2_n_nearest_around_point(tp,idxin,correltime,nn,results) ! Find the 'nn' vectors in the tree nearest to point 'idxin', ! with correlation window 'correltime', returing results in ! results(:), which must be pre-allocated upon entry. type (kdtree2), pointer :: tp integer(pInt), intent (In) :: idxin, correltime, nn type(kdtree2_result), target :: results(:) allocate (sr%qv(tp%dimen)) sr%qv = tp%the_data(:,idxin) ! copy the vector sr%ballsize = huge(1.0) ! the largest real(pReal) number sr%centeridx = idxin sr%correltime = correltime sr%nn = nn sr%nfound = 0 sr%dimen = tp%dimen sr%nalloc = nn sr%results => results sr%ind => tp%ind sr%rearrange = tp%rearrange if (sr%rearrange) then sr%Data => tp%rearranged_data else sr%Data => tp%the_data endif call validate_query_storage(nn) sr%pq = pq_create(results) call search(tp%root) if (tp%sort) then call kdtree2_sort_results(nn, results) endif deallocate (sr%qv) return end subroutine kdtree2_n_nearest_around_point subroutine kdtree2_r_nearest(tp,qv,r2,nfound,nalloc,results) ! find the nearest neighbors to point 'idxin', within SQUARED ! Euclidean distance 'r2'. Upon ENTRY, nalloc must be the ! size of memory allocated for results(1:nalloc). Upon ! EXIT, nfound is the number actually found within the ball. ! ! Note that if nfound .gt. nalloc then more neighbors were found ! than there were storage to store. The resulting list is NOT ! the smallest ball inside norm r^2 ! ! Results are NOT sorted unless tree was created with sort option. type (kdtree2), pointer :: tp real(pReal), target, intent (In) :: qv(:) real(pReal), intent(in) :: r2 integer(pInt), intent(out) :: nfound integer(pInt), intent (In) :: nalloc type(kdtree2_result), target :: results(:) ! sr%qv => qv sr%ballsize = r2 sr%nn = 0 ! flag for fixed ball search sr%nfound = 0 sr%centeridx = -1 sr%correltime = 0 sr%results => results call validate_query_storage(nalloc) sr%nalloc = nalloc sr%overflow = .false. sr%ind => tp%ind sr%rearrange= tp%rearrange if (tp%rearrange) then sr%Data => tp%rearranged_data else sr%Data => tp%the_data endif sr%dimen = tp%dimen ! !sr%dsl = Huge(sr%dsl) ! set to huge positive values !sr%il = -1 ! set to invalid indexes ! call search(tp%root) nfound = sr%nfound if (tp%sort) then call kdtree2_sort_results(nfound, results) endif if (sr%overflow) then write (*,*) 'KD_TREE_TRANS: warning! return from kdtree2_r_nearest found more neighbors' write (*,*) 'KD_TREE_TRANS: than storage was provided for. Answer is NOT smallest ball' write (*,*) 'KD_TREE_TRANS: with that number of neighbors! I.e. it is wrong.' endif return end subroutine kdtree2_r_nearest subroutine kdtree2_r_nearest_around_point(tp,idxin,correltime,r2,& nfound,nalloc,results) ! ! Like kdtree2_r_nearest, but around a point 'idxin' already existing ! in the data set. ! ! Results are NOT sorted unless tree was created with sort option. ! type (kdtree2), pointer :: tp integer(pInt), intent (In) :: idxin, correltime, nalloc real(pReal), intent(in) :: r2 integer(pInt), intent(out) :: nfound type(kdtree2_result), target :: results(:) ! .. ! .. Intrinsic Functions .. intrinsic HUGE ! .. allocate (sr%qv(tp%dimen)) sr%qv = tp%the_data(:,idxin) ! copy the vector sr%ballsize = r2 sr%nn = 0 ! flag for fixed r search sr%nfound = 0 sr%centeridx = idxin sr%correltime = correltime sr%results => results sr%nalloc = nalloc sr%overflow = .false. call validate_query_storage(nalloc) ! sr%dsl = HUGE(sr%dsl) ! set to huge positive values ! sr%il = -1 ! set to invalid indexes sr%ind => tp%ind sr%rearrange = tp%rearrange if (tp%rearrange) then sr%Data => tp%rearranged_data else sr%Data => tp%the_data endif sr%rearrange = tp%rearrange sr%dimen = tp%dimen ! !sr%dsl = Huge(sr%dsl) ! set to huge positive values !sr%il = -1 ! set to invalid indexes ! call search(tp%root) nfound = sr%nfound if (tp%sort) then call kdtree2_sort_results(nfound,results) endif if (sr%overflow) then write (*,*) 'KD_TREE_TRANS: warning! return from kdtree2_r_nearest found more neighbors' write (*,*) 'KD_TREE_TRANS: than storage was provided for. Answer is NOT smallest ball' write (*,*) 'KD_TREE_TRANS: with that number of neighbors! I.e. it is wrong.' endif deallocate (sr%qv) return end subroutine kdtree2_r_nearest_around_point function kdtree2_r_count(tp,qv,r2) result(nfound) ! Count the number of neighbors within square distance 'r2'. type (kdtree2), pointer :: tp real(pReal), target, intent (In) :: qv(:) real(pReal), intent(in) :: r2 integer(pInt) :: nfound ! .. ! .. Intrinsic Functions .. intrinsic HUGE ! .. sr%qv => qv sr%ballsize = r2 sr%nn = 0 ! flag for fixed r search sr%nfound = 0 sr%centeridx = -1 sr%correltime = 0 nullify(sr%results) ! for some reason, FTN 95 chokes on '=> null()' sr%nalloc = 0 ! we do not allocate any storage but that's OK ! for counting. sr%ind => tp%ind sr%rearrange = tp%rearrange if (tp%rearrange) then sr%Data => tp%rearranged_data else sr%Data => tp%the_data endif sr%dimen = tp%dimen ! !sr%dsl = Huge(sr%dsl) ! set to huge positive values !sr%il = -1 ! set to invalid indexes ! sr%overflow = .false. call search(tp%root) nfound = sr%nfound return end function kdtree2_r_count function kdtree2_r_count_around_point(tp,idxin,correltime,r2) & result(nfound) ! Count the number of neighbors within square distance 'r2' around ! point 'idxin' with decorrelation time 'correltime'. ! type (kdtree2), pointer :: tp integer(pInt), intent (In) :: correltime, idxin real(pReal), intent(in) :: r2 integer(pInt) :: nfound ! .. ! .. ! .. Intrinsic Functions .. intrinsic HUGE ! .. allocate (sr%qv(tp%dimen)) sr%qv = tp%the_data(:,idxin) sr%ballsize = r2 sr%nn = 0 ! flag for fixed r search sr%nfound = 0 sr%centeridx = idxin sr%correltime = correltime nullify(sr%results) sr%nalloc = 0 ! we do not allocate any storage but that's OK ! for counting. sr%ind => tp%ind sr%rearrange = tp%rearrange if (sr%rearrange) then sr%Data => tp%rearranged_data else sr%Data => tp%the_data endif sr%dimen = tp%dimen ! !sr%dsl = Huge(sr%dsl) ! set to huge positive values !sr%il = -1 ! set to invalid indexes ! sr%overflow = .false. call search(tp%root) nfound = sr%nfound return end function kdtree2_r_count_around_point subroutine validate_query_storage(n) ! ! make sure we have enough storage for n ! integer(pInt), intent(in) :: n if (size(sr%results,1) .lt. n) then write (*,*) 'KD_TREE_TRANS: you did not provide enough storage for results(1:n)' stop return endif return end subroutine validate_query_storage function square_distance(d, iv,qv) result (res) ! distance between iv[1:n] and qv[1:n] ! .. Function Return Value .. ! re-implemented to improve vectorization. real(pReal) :: res ! .. ! .. ! .. Scalar Arguments .. integer(pInt) :: d ! .. ! .. Array Arguments .. real(pReal) :: iv(:),qv(:) ! .. ! .. res = sum( (iv(1:d)-qv(1:d))**2 ) end function square_distance recursive subroutine search(node) ! ! This is the innermost core routine of the kd-tree search. Along ! with "process_terminal_node", it is the performance bottleneck. ! ! This version uses a logically complete secondary search of ! "box in bounds", whether the sear ! type (Tree_node), pointer :: node ! .. type(tree_node),pointer :: ncloser, nfarther ! integer(pInt) :: cut_dim, i ! .. real(pReal) :: qval, dis real(pReal) :: ballsize real(pReal), pointer :: qv(:) type(interval), pointer :: box(:) if ((associated(node%left) .and. associated(node%right)) .eqv. .false.) then ! we are on a terminal node if (sr%nn .eq. 0) then call process_terminal_node_fixedball(node) else call process_terminal_node(node) endif else ! we are not on a terminal node qv => sr%qv(1:) cut_dim = node%cut_dim qval = qv(cut_dim) if (qval < node%cut_val) then ncloser => node%left nfarther => node%right dis = (node%cut_val_right - qval)**2 ! extra = node%cut_val - qval else ncloser => node%right nfarther => node%left dis = (node%cut_val_left - qval)**2 ! extra = qval- node%cut_val_left endif if (associated(ncloser)) call search(ncloser) ! we may need to search the second node. if (associated(nfarther)) then ballsize = sr%ballsize ! dis=extra**2 if (dis <= ballsize) then ! ! we do this separately as going on the first cut dimen is often ! a good idea. ! note that if extra**2 < sr%ballsize, then the next ! check will also be false. ! box => node%box(1:) do i=1,sr%dimen if (i .ne. cut_dim) then dis = dis + dis2_from_bnd(qv(i),box(i)%lower,box(i)%upper) if (dis > ballsize) then return endif endif end do ! ! if we are still here then we need to search mroe. ! call search(nfarther) endif endif end if end subroutine search real(pReal) function dis2_from_bnd(x,amin,amax) result (res) real(pReal), intent(in) :: x, amin,amax if (x > amax) then res = (x-amax)**2; return else if (x < amin) then res = (amin-x)**2; return else res = 0.0 return endif endif return end function dis2_from_bnd logical function box_in_search_range(node, sr) result(res) ! ! Return the distance from 'qv' to the CLOSEST corner of node's ! bounding box ! for all coordinates outside the box. Coordinates inside the box ! contribute nothing to the distance. ! type (tree_node), pointer :: node type (tree_search_record), pointer :: sr integer(pInt) :: dimen, i real(pReal) :: dis, ballsize real(pReal) :: l, u dimen = sr%dimen ballsize = sr%ballsize dis = 0.0 res = .true. do i=1,dimen l = node%box(i)%lower u = node%box(i)%upper dis = dis + (dis2_from_bnd(sr%qv(i),l,u)) if (dis > ballsize) then res = .false. return endif end do res = .true. return end function box_in_search_range subroutine process_terminal_node(node) ! ! Look for actual near neighbors in 'node', and update ! the search results on the sr data structure. ! type (tree_node), pointer :: node ! real(pReal), pointer :: qv(:) integer(pInt), pointer :: ind(:) real(pReal), pointer :: data(:,:) ! integer(pInt) :: dimen, i, indexofi, k, centeridx, correltime real(pReal) :: ballsize, sd, newpri logical :: rearrange type(pq), pointer :: pqp ! ! copy values from sr to local variables ! ! ! Notice, making local pointers with an EXPLICIT lower bound ! seems to generate faster code. ! why? I don't know. qv => sr%qv(1:) pqp => sr%pq dimen = sr%dimen ballsize = sr%ballsize rearrange = sr%rearrange ind => sr%ind(1:) data => sr%Data(1:,1:) centeridx = sr%centeridx correltime = sr%correltime ! doing_correl = (centeridx >= 0) ! Do we have a decorrelation window? ! include_point = .true. ! by default include all points ! search through terminal bucket. mainloop: do i = node%l, node%u if (rearrange) then sd = 0.0 do k = 1,dimen sd = sd + (data(k,i) - qv(k))**2 if (sd>ballsize) cycle mainloop end do indexofi = ind(i) ! only read it if we have not broken out else indexofi = ind(i) sd = 0.0 do k = 1,dimen sd = sd + (data(k,indexofi) - qv(k))**2 if (sd>ballsize) cycle mainloop end do endif if (centeridx > 0) then ! doing correlation interval? if (abs(indexofi-centeridx) < correltime) cycle mainloop endif ! ! two choices for any point. The list so far is either undersized, ! or it is not. ! ! If it is undersized, then add the point and its distance ! unconditionally. If the point added fills up the working ! list then set the sr%ballsize, maximum distance bound (largest distance on ! list) to be that distance, instead of the initialized +infinity. ! ! If the running list is full size, then compute the ! distance but break out immediately if it is larger ! than sr%ballsize, "best squared distance" (of the largest element), ! as it cannot be a good neighbor. ! ! Once computed, compare to best_square distance. ! if it is smaller, then delete the previous largest ! element and add the new one. if (sr%nfound .lt. sr%nn) then ! ! add this point unconditionally to fill list. ! sr%nfound = sr%nfound +1 newpri = pq_insert(pqp,sd,indexofi) if (sr%nfound .eq. sr%nn) ballsize = newpri ! we have just filled the working list. ! put the best square distance to the maximum value ! on the list, which is extractable from the PQ. else ! ! now, if we get here, ! we know that the current node has a squared ! distance smaller than the largest one on the list, and ! belongs on the list. ! Hence we replace that with the current one. ! ballsize = pq_replace_max(pqp,sd,indexofi) endif end do mainloop ! ! Reset sr variables which may have changed during loop ! sr%ballsize = ballsize end subroutine process_terminal_node subroutine process_terminal_node_fixedball(node) ! ! Look for actual near neighbors in 'node', and update ! the search results on the sr data structure, i.e. ! save all within a fixed ball. ! type (tree_node), pointer :: node ! real(pReal), pointer :: qv(:) integer(pInt), pointer :: ind(:) real(pReal), pointer :: data(:,:) ! integer(pInt) :: nfound integer(pInt) :: dimen, i, indexofi, k integer(pInt) :: centeridx, correltime, nn real(pReal) :: ballsize, sd logical :: rearrange ! ! copy values from sr to local variables ! qv => sr%qv(1:) dimen = sr%dimen ballsize = sr%ballsize rearrange = sr%rearrange ind => sr%ind(1:) data => sr%Data(1:,1:) centeridx = sr%centeridx correltime = sr%correltime nn = sr%nn ! number to search for nfound = sr%nfound ! search through terminal bucket. mainloop: do i = node%l, node%u ! ! two choices for any point. The list so far is either undersized, ! or it is not. ! ! If it is undersized, then add the point and its distance ! unconditionally. If the point added fills up the working ! list then set the sr%ballsize, maximum distance bound (largest distance on ! list) to be that distance, instead of the initialized +infinity. ! ! If the running list is full size, then compute the ! distance but break out immediately if it is larger ! than sr%ballsize, "best squared distance" (of the largest element), ! as it cannot be a good neighbor. ! ! Once computed, compare to best_square distance. ! if it is smaller, then delete the previous largest ! element and add the new one. ! which index to the point do we use? if (rearrange) then sd = 0.0 do k = 1,dimen sd = sd + (data(k,i) - qv(k))**2 if (sd>ballsize) cycle mainloop end do indexofi = ind(i) ! only read it if we have not broken out else indexofi = ind(i) sd = 0.0 do k = 1,dimen sd = sd + (data(k,indexofi) - qv(k))**2 if (sd>ballsize) cycle mainloop end do endif if (centeridx > 0) then ! doing correlation interval? if (abs(indexofi-centeridx)<correltime) cycle mainloop endif nfound = nfound+1 if (nfound .gt. sr%nalloc) then ! oh nuts, we have to add another one to the tree but ! there isn't enough room. sr%overflow = .true. else sr%results(nfound)%dis = sd sr%results(nfound)%idx = indexofi endif end do mainloop ! ! Reset sr variables which may have changed during loop ! sr%nfound = nfound end subroutine process_terminal_node_fixedball subroutine kdtree2_n_nearest_brute_force(tp,qv,nn,results) ! find the 'n' nearest neighbors to 'qv' by exhaustive search. ! only use this subroutine for testing, as it is SLOW! The ! whole point of a k-d tree is to avoid doing what this subroutine ! does. type (kdtree2), pointer :: tp real(pReal), intent (In) :: qv(:) integer(pInt), intent (In) :: nn type(kdtree2_result) :: results(:) integer(pInt) :: i, j, k real(pReal), allocatable :: all_distances(:) ! .. allocate (all_distances(tp%n)) do i = 1, tp%n all_distances(i) = square_distance(tp%dimen,qv,tp%the_data(:,i)) end do ! now find 'n' smallest distances do i = 1, nn results(i)%dis = huge(1.0) results(i)%idx = -1 end do do i = 1, tp%n if (all_distances(i)<results(nn)%dis) then ! insert it somewhere on the list do j = 1, nn if (all_distances(i)<results(j)%dis) exit end do ! now we know 'j' do k = nn - 1, j, -1 results(k+1) = results(k) end do results(j)%dis = all_distances(i) results(j)%idx = i end if end do deallocate (all_distances) end subroutine kdtree2_n_nearest_brute_force subroutine kdtree2_r_nearest_brute_force(tp,qv,r2,nfound,results) ! find the nearest neighbors to 'qv' with distance**2 <= r2 by exhaustive search. ! only use this subroutine for testing, as it is SLOW! The ! whole point of a k-d tree is to avoid doing what this subroutine ! does. type (kdtree2), pointer :: tp real(pReal), intent (In) :: qv(:) real(pReal), intent (In) :: r2 integer(pInt), intent(out) :: nfound type(kdtree2_result) :: results(:) integer(pInt) :: i, nalloc real(pReal), allocatable :: all_distances(:) ! .. allocate (all_distances(tp%n)) do i = 1, tp%n all_distances(i) = square_distance(tp%dimen,qv,tp%the_data(:,i)) end do nfound = 0 nalloc = size(results,1) do i = 1, tp%n if (all_distances(i)< r2) then ! insert it somewhere on the list if (nfound .lt. nalloc) then nfound = nfound+1 results(nfound)%dis = all_distances(i) results(nfound)%idx = i endif end if enddo deallocate (all_distances) call kdtree2_sort_results(nfound,results) end subroutine kdtree2_r_nearest_brute_force subroutine kdtree2_sort_results(nfound,results) ! Use after search to sort results(1:nfound) in order of increasing ! distance. integer(pInt), intent(in) :: nfound type(kdtree2_result), target :: results(:) ! ! !THIS IS BUGGY WITH INTEL FORTRAN ! If (nfound .Gt. 1) Call heapsort(results(1:nfound)%dis,results(1:nfound)%ind,nfound) ! if (nfound .gt. 1) call heapsort_struct(results,nfound) return end subroutine kdtree2_sort_results subroutine heapsort(a,ind,n) ! ! Sort a(1:n) in ascending order, permuting ind(1:n) similarly. ! ! If ind(k) = k upon input, then it will give a sort index upon output. ! integer(pInt),intent(in) :: n real(pReal), intent(inout) :: a(:) integer(pInt), intent(inout) :: ind(:) ! ! real(pReal) :: value ! temporary for a value from a() integer(pInt) :: ivalue ! temporary for a value from ind() integer(pInt) :: i,j integer(pInt) :: ileft,iright ileft=n/2+1 iright=n ! do i=1,n ! ind(i)=i ! Generate initial idum array ! end do if(n.eq.1) return do if(ileft > 1)then ileft=ileft-1 value=a(ileft); ivalue=ind(ileft) else value=a(iright); ivalue=ind(iright) a(iright)=a(1); ind(iright)=ind(1) iright=iright-1 if (iright == 1) then a(1)=value;ind(1)=ivalue return endif endif i=ileft j=2*ileft do while (j <= iright) if(j < iright) then if(a(j) < a(j+1)) j=j+1 endif if(value < a(j)) then a(i)=a(j); ind(i)=ind(j) i=j j=j+j else j=iright+1 endif end do a(i)=value; ind(i)=ivalue end do end subroutine heapsort subroutine heapsort_struct(a,n) ! ! Sort a(1:n) in ascending order ! ! integer(pInt),intent(in) :: n type(kdtree2_result),intent(inout) :: a(:) ! ! type(kdtree2_result) :: value ! temporary value integer(pInt) :: i,j integer(pInt) :: ileft,iright ileft=n/2+1 iright=n ! do i=1,n ! ind(i)=i ! Generate initial idum array ! end do if(n.eq.1) return do if(ileft > 1)then ileft=ileft-1 value=a(ileft) else value=a(iright) a(iright)=a(1) iright=iright-1 if (iright == 1) then a(1) = value return endif endif i=ileft j=2*ileft do while (j <= iright) if(j < iright) then if(a(j)%dis < a(j+1)%dis) j=j+1 endif if(value%dis < a(j)%dis) then a(i)=a(j); i=j j=j+j else j=iright+1 endif end do a(i)=value end do end subroutine heapsort_struct end module kdtree2_module