import numpy as np from .rotation import Lattice from .rotation import Rotation class Orientation: """ Crystallographic orientation. A crystallographic orientation contains a rotation and a lattice. """ __slots__ = ['rotation','lattice'] def __repr__(self): """Report lattice type and orientation.""" return self.lattice.__repr__()+'\n'+self.rotation.__repr__() def __init__(self, rotation, lattice): """ New orientation from rotation and lattice. Parameters ---------- rotation : Rotation Rotation specifying the lattice orientation. lattice : Lattice Lattice type of the crystal. """ if isinstance(lattice, Lattice): self.lattice = lattice else: self.lattice = Lattice(lattice) # assume string if isinstance(rotation, Rotation): self.rotation = rotation else: self.rotation = Rotation.fromQuaternion(rotation) # assume quaternion def disorientation(self, other, SST = True, symmetries = False): """ Disorientation between myself and given other orientation. Rotation axis falls into SST if SST == True. (Currently requires same symmetry for both orientations. Look into A. Heinz and P. Neumann 1991 for cases with differing sym.) """ if self.lattice.symmetry != other.lattice.symmetry: raise NotImplementedError('disorientation between different symmetry classes not supported yet.') mySymEqs = self.equivalentOrientations() if SST else self.equivalentOrientations([0]) # take all or only first sym operation otherSymEqs = other.equivalentOrientations() for i,sA in enumerate(mySymEqs): aInv = sA.rotation.inversed() for j,sB in enumerate(otherSymEqs): b = sB.rotation r = b*aInv for k in range(2): r.inverse() breaker = self.lattice.symmetry.inFZ(r.asRodrigues(vector=True)) \ and (not SST or other.lattice.symmetry.inDisorientationSST(r.asRodrigues(vector=True))) if breaker: break if breaker: break if breaker: break return (Orientation(r,self.lattice), i,j, k == 1) if symmetries else r # disorientation ... # ... own sym, other sym, # self-->other: True, self<--other: False def inFZ(self): return self.lattice.symmetry.inFZ(self.rotation.asRodrigues(vector=True)) def equivalentOrientations(self,members=[]): """List of orientations which are symmetrically equivalent.""" try: iter(members) # asking for (even empty) list of members? except TypeError: return self.__class__(self.lattice.symmetry.symmetryOperations(members)*self.rotation,self.lattice) # no, return rotation object else: return [self.__class__(q*self.rotation,self.lattice) \ for q in self.lattice.symmetry.symmetryOperations(members)] # yes, return list of rotations def relatedOrientations(self,model): """List of orientations related by the given orientation relationship.""" r = self.lattice.relationOperations(model) return [self.__class__(o*self.rotation,r['lattice']) for o in r['rotations']] def reduced(self): """Transform orientation to fall into fundamental zone according to symmetry.""" for me in self.equivalentOrientations(): if self.lattice.symmetry.inFZ(me.rotation.asRodrigues(vector=True)): break return self.__class__(me.rotation,self.lattice) def inversePole(self, axis, proper = False, SST = True): """Axis rotated according to orientation (using crystal symmetry to ensure location falls into SST).""" if SST: # pole requested to be within SST for i,o in enumerate(self.equivalentOrientations()): # test all symmetric equivalent quaternions pole = o.rotation*axis # align crystal direction to axis if self.lattice.symmetry.inSST(pole,proper): break # found SST version else: pole = self.rotation*axis # align crystal direction to axis return (pole,i if SST else 0) def IPFcolor(self,axis): """TSL color of inverse pole figure for given axis.""" color = np.zeros(3,'d') for o in self.equivalentOrientations(): pole = o.rotation*axis # align crystal direction to axis inSST,color = self.lattice.symmetry.inSST(pole,color=True) if inSST: break return color @staticmethod def fromAverage(orientations, weights = []): """Create orientation from average of list of orientations.""" if not all(isinstance(item, Orientation) for item in orientations): raise TypeError("Only instances of Orientation can be averaged.") closest = [] ref = orientations[0] for o in orientations: closest.append(o.equivalentOrientations( ref.disorientation(o, SST = False, # select (o[ther]'s) sym orientation symmetries = True)[2]).rotation) # with lowest misorientation return Orientation(Rotation.fromAverage(closest,weights),ref.lattice) def average(self,other): """Calculate the average rotation.""" return Orientation.fromAverage([self,other])