!******************************************************************** ! Material subroutine for MSC.Marc Version 0.1 ! ! written by F. Roters, P. Eisenlohr, L. Hantcherli, W.A. Counts ! MPI fuer Eisenforschung, Duesseldorf ! ! last modified: 28.03.2007 !******************************************************************** ! Usage: ! - choose material as hypela2 ! - set statevariable 2 to index of material ! - set statevariable 3 to index of texture ! - choose output of user variables if desired ! - make sure the file "mattex.mpie" exists in the working ! directory ! - use nonsymmetric option for solver (e.g. direct ! profile or multifrontal sparse, the latter seems ! to be faster!) !******************************************************************** ! Marc subroutines used: ! - hypela2 ! - plotv ! - quit !******************************************************************** ! Marc common blocks included: ! - concom: lovl, ncycle, inc, incsub ! - creeps: timinc !******************************************************************** ! include "prec.f90" include "math.f90" include "IO.f90" include "mesh.f90" include "constitutive.f90" include "CPFEM.f90" ! SUBROUTINE hypela2(d,g,e,de,s,t,dt,ngens,n,nn,kcus,matus,ndi,& nshear,disp,dispt,coord,ffn,frotn,strechn,eigvn,ffn1,& frotn1,strechn1,eigvn1,ncrd,itel,ndeg,ndm,& nnode,jtype,lclass,ifr,ifu) !******************************************************************** ! This is the Marc material routine !******************************************************************** ! ! ************* user subroutine for defining material behavior ************** ! ! ! CAUTION : Due to calculation of the Deformation gradients, Stretch Tensors and ! Rotation tensors at previous and current states, the analysis can be ! computationally expensive. Please use the user subroutine -> hypela ! if these kinematic quantities are not needed in the constitutive model ! ! ! IMPORTANT NOTES : ! ! (1) F,R,U are only available for continuum and membrane elements (not for ! shells and beams). ! ! (2) For total Lagrangian formulation use the -> 'Elasticity,1' card(= ! total Lagrange with large disp) in the parameter section of input deck. ! For updated Lagrangian formulation use the -> 'Plasticity,3' card(= ! update+finite+large disp+constant d) in the parameter section of ! input deck. ! ! ! d stress strain law to be formed ! g change in stress due to temperature effects ! e total elastic strain ! de increment of strain ! s stress - should be updated by user ! t state variables (comes in at t=n, must be updated ! to have state variables at t=n+1) ! dt increment of state variables ! ngens size of stress - strain law ! n element number ! nn integration point number ! kcus(1) layer number ! kcus(2) internal layer number ! matus(1) user material identification number ! matus(2) internal material identification number ! ndi number of direct components ! nshear number of shear components ! disp incremental displacements ! dispt displacements at t=n (at assembly, lovl=4) and ! displacements at t=n+1 (at stress recovery, lovl=6) ! coord coordinates ! ncrd number of coordinates ! ndeg number of degrees of freedom ! itel dimension of F and R, either 2 or 3 ! nnode number of nodes per element ! jtype element type ! lclass element class ! ifr set to 1 if R has been calculated ! ifu set to 1 if strech has been calculated ! ! at t=n : ! ! ffn deformation gradient ! frotn rotation tensor ! strechn square of principal stretch ratios, lambda(i) ! eigvn(i,j) i principal direction components for j eigenvalues ! ! at t=n+1 : ! ! ffn1 deformation gradient ! frotn1 rotation tensor ! strechn1 square of principal stretch ratios, lambda(i) ! eigvn1(i,j) i principal direction components for j eigenvalues ! ! The following operation obtains U (stretch tensor) at t=n+1 : ! ! call scla(un1,0.d0,itel,itel,1) ! do 3 k=1,3 ! do 2 i=1,3 ! do 1 j=1,3 ! un1(i,j)=un1(i,j)+dsqrt(strechn1(k))*eigvn1(i,k)*eigvn1(j,k) !1 continue !2 continue !3 continue ! ! use prec, only: pReal,pInt use math, only: invnrmMandel, nrmMandel use mesh, only: mesh_FEasCP use CPFEM, only: CPFEM_general,CPFEM_stress_all, CPFEM_jaco_old implicit real(pReal) (a-h,o-z) ! ! Marc common blocks are in fixed format so they have to be pasted in here ! Beware of changes in newer Marc versions -- these are from 2005r3 ! concom is needed for inc, subinc, ncycle, lovl ! include 'concom' common/concom/ & iacous, iasmbl, iautth, ibear, icompl, iconj, icreep, ideva(50), idyn, idynt,& ielas, ielcma, ielect, iform, ifour, iharm, ihcps, iheat, iheatt, ihresp,& ijoule, ilem, ilnmom, iloren, inc, incext, incsub, ipass, iplres, ipois,& ipoist, irpflo, ismall, ismalt, isoil, ispect, ispnow, istore, iswep, ithcrp,& itherm, iupblg, iupdat, jacflg, jel, jparks, largst, lfond, loadup, loaduq,& lodcor, lovl, lsub, magnet, ncycle, newtnt, newton, noshr, linear, ivscpl,& icrpim, iradrt, ipshft, itshr, iangin, iupmdr, iconjf, jincfl, jpermg, jhour,& isolvr, jritz, jtable, jshell, jdoubl, jform, jcentr, imini, kautth, iautof,& ibukty, iassum, icnstd, icnstt, kmakmas, imethvp,iradrte,iradrtp, iupdate,iupdatp,& ncycnt, marmen ,idynme, ihavca, ispf, kmini, imixed, largtt, kdoela, iautofg,& ipshftp,idntrc, ipore, jtablm, jtablc, isnecma,itrnspo,imsdif, jtrnspo,mcnear,& imech, imecht, ielcmat, ielectt,magnett, imsdift,noplas, jtabls, jactch, jtablth,& kgmsto ,jpzo, ifricsh, iremkin,iremfor, ishearp,jspf, machining, jlshell,icompsol,& iupblgfo,jcondir,nstcrp, nactive,ipassref, nstspnt,ibeart,icheckmpc, noline, icuring,& ishrink,ioffsflg,isetoff, iharmt, inc_incdat, iautspc,ibrake ! creeps is needed for timinc (time increment) ! include 'creeps' common/creeps/ & cptim,timinc,timinc_p,timinc_s,timincm,timinc_a,timinc_b,creept(33),icptim,icfte,icfst,& icfeq,icftm,icetem,mcreep,jcreep,icpa,icftmp,icfstr,icfqcp,icfcpm,icrppr,icrcha,icpb,iicpmt,iicpa ! integer(pInt) cp_en, i ! dimension e(*),de(*),t(*),dt(*),g(*),d(ngens,*),s(*), n(2),coord(ncrd,*),disp(ndeg,*),matus(2),dispt(ndeg,*),ffn(itel,*),& frotn(itel,*),strechn(itel),eigvn(itel,*),ffn1(itel,*),frotn1(itel,*),strechn1(itel),eigvn1(itel,*),kcus(2) ! ! call general material routine only in cycle 0 and for lovl==6 (stress recovery) ! subroutine cpfem_general(mpie_ffn, mpie_ffn1, mpie_cn, mpie_tinc, mpie_enp, mpie_in) !******************************************************************** ! This routine calculates the material behaviour !******************************************************************** ! mpie_ffn deformation gradient for t=t0 ! mpie_ffn1 deformation gradient for t=t1 ! mpie_cn number of cycle ! mpie_tinc time increment ! mpie_en element number ! mpie_in intergration point number !******************************************************************** if ((lovl==6).or.(ncycle==0)) then call CPFEM_general(ffn, ffn1, inc, incsub, ncycle, timinc, n(1), nn) endif ! return stress and jacobi ! Mandel: 11, 22, 33, 12, 23, 13 ! Marc: 11, 22, 33, 12, 23, 13 cp_en = mesh_FEasCP('elem', n(1)) s(1:ngens)=invnrmMandel(1:ngens)*CPFEM_stress_all(1:ngens, nn, cp_en) d(1:ngens,1:ngens)=CPFEM_jaco_old(1:ngens,1:ngens, nn, cp_en) forall(i=1:ngens) d(1:ngens,i)=d(1:ngens,i)*invnrmMandel(1:ngens) return END SUBROUTINE ! ! SUBROUTINE plotv(v,s,sp,etot,eplas,ecreep,t,m,nn,layer,ndi,nshear,jpltcd) !******************************************************************** ! This routine sets user defined output variables for Marc !******************************************************************** ! ! select a variable contour plotting (user subroutine). ! ! v variable ! s (idss) stress array ! sp stresses in preferred direction ! etot total strain (generalized) ! eplas total plastic strain ! ecreep total creep strain ! t current temperature ! m element number ! nn integration point number ! layer layer number ! ndi (3) number of direct stress components ! nshear (3) number of shear stress components ! !******************************************************************** use prec, only: pReal,pInt use CPFEM, only: CPFEM_results, CPFEM_Nresults use constitutive, only: constitutive_maxNresults use mesh, only: mesh_FEasCP implicit none ! real(pReal) s(*),etot(*),eplas(*),ecreep(*),sp(*) real(pReal) v, t(*) integer(pInt) m, nn, layer, ndi, nshear, jpltcd ! ! assign result variable v=CPFEM_results(mod(jpltcd, CPFEM_Nresults+constitutive_maxNresults),& int(jpltcd/(CPFEM_Nresults+constitutive_maxNresults)),& nn, mesh_FEasCP('elem', m)) return END SUBROUTINE ! ! ! subroutine utimestep(timestep,timestepold,icall,time,timeloadcase) !******************************************************************** ! This routine modifies the addaptive time step of Marc !******************************************************************** ! use prec, only: pReal,pInt ! use CPFEM, only : CPFEM_timefactor_max ! implicit none ! ! real(pReal) timestep, timestepold, time,timeloadcase ! integer(pInt) icall ! ! user subroutine for modifying the time step in auto step ! ! timestep : the current time step as suggested by marc ! to be modified in this routine ! timestepold : the current time step before it was modified by marc ! icall : =1 for setting the initial time step ! =2 if this routine is called during an increment ! =3 if this routine is called at the beginning ! of the increment ! time : time at the start of the current increment ! timeloadcase: time period of the current load case ! ! it is in general not recommended to increase the time step ! during the increment. ! this routine is called right after the time step has (possibly) ! been updated by marc. ! ! user coding ! reduce timestep during increment in case mpie_timefactor is too large ! if(icall==2_pInt) then ! if(mpie_timefactor_max>1.25_pReal) then ! timestep=min(timestep,timestepold*0.8_pReal) ! end if ! return ! modify timestep at beginning of new increment ! else if(icall==3_pInt) then ! if(mpie_timefactor_max<=0.8_pReal) then ! timestep=min(timestep,timestepold*1.25_pReal) ! else if (mpie_timefactor_max<=1.0_pReal) then ! timestep=min(timestep,timestepold/mpie_timefactor_max) ! else if (mpie_timefactor_max<=1.25_pReal) then ! timestep=min(timestep,timestepold*1.01_pReal) ! else ! timestep=min(timestep,timestepold*0.8_pReal) ! end if ! end if ! return ! end