#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,re,sys,math from optparse import OptionParser CoverA=1.587 slipnormal_temp = [ # This is the real slip system information for hex aka titanium for now. [0,0,0,1], [0,0,0,1], [0,0,0,1], [0,1,-1,0], [-1,0,1,0], [1,-1,0,0], [0,1,-1,1], [-1,1,0,1], [-1,0,1,1], [0,-1,1,1], [1,-1,0,1], [1,0,-1,1], [0,1,-1,1], [0,1,-1,1], [-1,1,0,1], [-1,1,0,1], [-1,0,1,1], [-1,0,1,1], [0,-1,1,1], [0,-1,1,1], [1,-1,0,1], [1,-1,0,1], [1,0,-1,1], [1,0,-1,1], ] slipdirection_temp = [ [2,-1,-1,0], [-1,2,-1,0], [-1,-1,2,0], [2,-1,-1,0], [-1,2,-1,0], [-1,-1,2,0], [2,-1,-1,0], [1,1,-2,0], [-1,2,-1,0], [-2,1,1,0], [-1,-1,2,0], [1,-2,1,0], [-1,2,-1,3], [1,1,-2,3], [-2,1,1,3], [-1,2,-1,3], [-1,-1,2,3], [-2,1,1,3], [1,-2,1,3], [-1,-1,2,3], [2,-1,-1,3], [1,-2,1,3], [1,1,-2,3], [2,-1,-1,3], ] # slip normals and directions according to cpfem implementation Nslipsystems = {'fcc': 12, 'bcc': 24, 'hex': 24} slipnormal = { \ 'fcc': [ [1,1,1], [1,1,1], [1,1,1], [-1,-1,1], [-1,-1,1], [-1,-1,1], [1,-1,-1], [1,-1,-1], [1,-1,-1], [-1,1,-1], [-1,1,-1], [-1,1,-1], ], 'bcc': [ [0,1,1], [0,1,1], [0,-1,1], [0,-1,1], [1,0,1], [1,0,1], [-1,0,1], [-1,0,1], [1,1,0], [1,1,0], [-1,1,0], [-1,1,0], [2,1,1], [-2,1,1], [2,-1,1], [2,1,-1], [1,2,1], [-1,2,1], [1,-2,1], [1,2,-1], [1,1,2], [-1,1,2], [1,-1,2], [1,1,-2], ], 'hex': [ # these are dummy numbers and are recalculated based on the above hex real slip systems. [1,1,0], [1,1,0], [1,0,1], [1,0,1], [0,1,1], [0,1,1], [1,-1,0], [1,-1,0], [-1,0,1], [-1,0,1], [0,-1,1], [0,-1,1], [2,-1,1], [1,-2,-1], [1,1,2], [2,1,1], [1,2,-1], [1,-1,2], [2,1,-1], [1,2,1], [1,-1,-2], [2,-1,-1], [1,-2,1], [1,1,-2], ], } slipdirection = { \ 'fcc': [ [0,1,-1], [-1,0,1], [1,-1,0], [0,-1,-1], [1,0,1], [-1,1,0], [0,-1,1], [-1,0,-1], [1,1,0], [0,1,1], [1,0,-1], [-1,-1,0], ], 'bcc': [ [1,-1,1], [-1,-1,1], [1,1,1], [-1,1,1], [-1,1,1], [-1,-1,1], [1,1,1], [1,-1,1], [-1,1,1], [-1,1,-1], [1,1,1], [1,1,-1], [-1,1,1], [1,1,1], [1,1,-1], [1,-1,1], [1,-1,1], [1,1,-1], [1,1,1], [-1,1,1], [1,1,-1], [1,-1,1], [-1,1,1], [1,1,1], ], 'hex': [ # these are dummy numbers and are recalculated based on the above hex real slip systems. [-1,1,1], [1,-1,1], [-1,-1,1], [-1,1,1], [-1,-1,1], [1,-1,1], [1,1,1], [-1,-1,1], [1,-1,1], [1,1,1], [1,1,1], [-1,1,1], [1,1,-1], [1,1,-1], [1,1,-1], [1,-1,-1], [1,-1,-1], [1,-1,-1], [1,-1,1], [1,-1,1], [1,-1,1], [1,1,1], [1,1,1], [1,1,1], ], } # -------------------------------------------------------------------- def applyEulers(phi1,Phi,phi2,x): """ transform x given in crystal coordinates to xbar returned in lab coordinates for Euler angles phi1,Phi,phi2 """ eulerRot = [[ math.cos(phi1)*math.cos(phi2) - math.cos(Phi)*math.sin(phi1)*math.sin(phi2), - math.cos(phi1)*math.sin(phi2) - math.cos(Phi)*math.cos(phi2)*math.sin(phi1), math.sin(Phi)*math.sin(phi1)], \ [ math.cos(phi2)*math.sin(phi1) + math.cos(Phi)*math.cos(phi1)*math.sin(phi2), math.cos(Phi)*math.cos(phi1)*math.cos(phi2) - math.sin(phi1)*math.sin(phi2), -math.sin(Phi)*math.cos(phi1)], \ [ math.sin(Phi)*math.sin(phi2), math.sin(Phi)*math.cos(phi2), math.cos(Phi)]] xbar = [0,0,0] if len(x) == 3: for i in range(3): xbar[i] = sum([eulerRot[i][j]*x[j] for j in range(3)]) return xbar # -------------------------------------------------------------------- def normalize(x): norm = math.sqrt(sum([x[i]*x[i] for i in range(len(x))])) return [x[i]/norm for i in range(len(x))] # -------------------------------------------------------------------- def crossproduct(x,y): return [ x[1]*y[2]-y[1]*x[2], x[2]*y[0]-y[2]*x[0], x[0]*y[1]-y[0]*x[1], ] # -------------------------------------------------------------------- # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(usage='%prog [options] [file]', description = """ Add columns listing Schmid factors (and optional trace vector of selected system) for given Euler angles. Column headings need to have names 'phi1', 'Phi', 'phi2'. $Id$ """) parser.add_option('-l','--lattice', dest='lattice', choices=('fcc','bcc','hex'), \ help='key for lattice type [%default]') parser.add_option('-d','--forcedirection', dest='forcedirection', type='int', nargs=3, \ help='force direction in lab coordinates [%default]') parser.add_option('-n','--stressnormal', dest='stressnormal', type='int', nargs=3, \ help='stress plane normal in lab coordinates [%default]') parser.add_option('-t','--trace', dest='traceplane', type='int', nargs=3, \ help="normal (in lab coordinates) of plane on which the plane trace of the Schmid factor(s) is reported [%default]") parser.add_option('-r','--rank', dest='rank', type='int', \ help="report trace of r'th highest Schmid factor [%default]") parser.set_defaults(lattice = 'fcc') parser.set_defaults(forcedirection = [0, 0, 1]) parser.set_defaults(stressnormal = None) parser.set_defaults(traceplane = None) parser.set_defaults(rank = 0) (options,filename) = parser.parse_args() options.forcedirection = normalize(options.forcedirection) if options.stressnormal: if abs(sum([options.forcedirection[i] * options.stressnormal[i] for i in range(3)])) < 1e-3: options.stressnormal = normalize(options.stressnormal) else: parser.error('stress plane normal not orthogonal to force direction') else: options.stressnormal = options.forcedirection if options.traceplane: options.traceplane = normalize(options.traceplane) options.rank = min(options.rank,Nslipsystems[options.lattice]) # read from standard input unless input file specified if filename == []: file = sys.stdin elif os.path.exists(filename[0]): file = open(filename[0]) # read data content = file.readlines() file.close() # get labels by either read the first row, or - if keyword header is present - the last line of the header headerlines = 1 m = re.search('(\d+)\s*head', content[0].lower()) if m: headerlines = int(m.group(1))+1 labels = content[headerlines-1].split() data = content[headerlines:] # Convert 4 Miller indices notation of hex to orthogonal 3 Miller indices notation if options.lattice=="hex": for i in range(Nslipsystems[options.lattice]): slipnormal[options.lattice][i][0]=slipnormal_temp[i][0] slipnormal[options.lattice][i][1]=(slipnormal_temp[i][0]+2.0*slipnormal_temp[i][1])/math.sqrt(3.0) slipnormal[options.lattice][i][2]=slipnormal_temp[i][3]/CoverA slipdirection[options.lattice][i][0]=slipdirection_temp[i][0]*1.5 # direction [uvtw]->[3u/2 (u+2v)*sqrt(3)/2 w*(c/a)] , slipdirection[options.lattice][i][1]=(slipdirection_temp[i][0]+2.0*slipdirection_temp[i][1])*(0.5*math.sqrt(3.0)) slipdirection[options.lattice][i][2]=slipdirection_temp[i][3]*CoverA for i in range(Nslipsystems[options.lattice]): slipnormal[options.lattice][i]=normalize(slipnormal[options.lattice][i]) slipdirection[options.lattice][i]=normalize(slipdirection[options.lattice][i]) for c in range(len(labels)): m = re.search('.*([Pp]hi\d*).*', labels[c]) if m: if m.group(1).lower() == "phi1": phi1Column = c elif m.group(1).lower() == "phi": PhiColumn = c elif m.group(1).lower() == "phi2": phi2Column = c output = '1\theader\n' + \ '\t'.join(map(str,labels)) + \ '\t' + \ '\t'.join(['(%i)S(%i %i %i)[%i %i %i]'%(i+1, slipnormal[options.lattice][i][0], slipnormal[options.lattice][i][1], slipnormal[options.lattice][i][2], slipdirection[options.lattice][i][0], slipdirection[options.lattice][i][1], slipdirection[options.lattice][i][2], ) for i in range(Nslipsystems[options.lattice])]) if options.traceplane: if options.rank > 0: output += '\ttrace_x\ttrace_y\ttrace_z\tsystem' else: output += '\t' + '\t'.join(['(%i)tx\tty\ttz'%(i+1) for i in range(Nslipsystems[options.lattice])]) output += '\n' for line in data: items = line.split()[:len(labels)] if items == []: continue phi1 = math.radians(float(items[phi1Column])) Phi = math.radians(float(items[PhiColumn])) phi2 = math.radians(float(items[phi2Column])) S = [ sum( [applyEulers(phi1,Phi,phi2,normalize( slipnormal[options.lattice][slipsystem]))[i]*options.stressnormal[i] for i in range(3)] ) * \ sum( [applyEulers(phi1,Phi,phi2,normalize(slipdirection[options.lattice][slipsystem]))[i]*options.forcedirection[i] for i in range(3)] ) \ for slipsystem in range(Nslipsystems[options.lattice]) ] output += '\t'.join(items + map(str,S)) if options.traceplane: trace = [crossproduct(options.traceplane,applyEulers(phi1,Phi,phi2,normalize(slipnormal[options.lattice][slipsystem]))) \ for slipsystem in range(Nslipsystems[options.lattice]) ] if options.rank == 0: output += '\t' + '\t'.join(map(lambda x:'%f\t%f\t%f'%(x[0],x[1],x[2]),trace)) elif options.rank > 0: SabsSorted = sorted([(abs(S[i]),i) for i in range(len(S))]) output += '\t' + '\t'.join(map(str,trace[SabsSorted[-options.rank][1]])) + '\t%i'%(1+SabsSorted[-options.rank][1]) # for t in [normalize(crossproduct(options.traceplane,applyEulers(phi1,Phi,phi2,normalize(slipnormal[options.lattice][i])))) for i in range(12,24)]: # print '\t'.join(map(str,t)) # print '\t'.join(map(lambda x: str(-x),t)) # print '\t'.join(['0','0','0']) # print output += '\n' if filename == []: print output else: file = open(filename[0],'w') file.write(output) file.close()