!-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH !> @brief homogenization manager, organizing deformation partitioning and stress homogenization !-------------------------------------------------------------------------------------------------- module homogenization use prec use IO use config use math use material use phase use discretization use damage_none use damage_nonlocal use HDF5_utilities use results implicit none private logical, public :: & terminallyIll = .false. !< at least one material point is terminally ill !-------------------------------------------------------------------------------------------------- ! General variables for the homogenization at a material point real(pReal), dimension(:,:,:), allocatable, public :: & homogenization_F0, & !< def grad of IP at start of FE increment homogenization_F !< def grad of IP to be reached at end of FE increment real(pReal), dimension(:,:,:), allocatable, public :: & !, protected :: & Issue with ifort homogenization_P !< first P--K stress of IP real(pReal), dimension(:,:,:,:,:), allocatable, public :: & !, protected :: & homogenization_dPdF !< tangent of first P--K stress at IP !-------------------------------------------------------------------------------------------------- type :: tNumerics integer :: & nMPstate !< materialpoint state loop limit end type tNumerics type(tNumerics) :: num !-------------------------------------------------------------------------------------------------- interface module subroutine mech_init(num_homog) class(tNode), pointer, intent(in) :: & num_homog !< pointer to mechanical homogenization numerics data end subroutine mech_init module subroutine thermal_init end subroutine thermal_init module subroutine damage_init end subroutine damage_init module subroutine mech_partition(subF,ip,el) real(pReal), intent(in), dimension(3,3) :: & subF integer, intent(in) :: & ip, & !< integration point el !< element number end subroutine mech_partition module subroutine thermal_partition(ce) integer, intent(in) :: ce end subroutine thermal_partition module subroutine damage_partition(ce) integer, intent(in) :: ce end subroutine damage_partition module subroutine thermal_homogenize(ip,el) integer, intent(in) :: ip,el end subroutine thermal_homogenize module subroutine mech_homogenize(dt,ip,el) real(pReal), intent(in) :: dt integer, intent(in) :: & ip, & !< integration point el !< element number end subroutine mech_homogenize module subroutine mech_results(group_base,h) character(len=*), intent(in) :: group_base integer, intent(in) :: h end subroutine mech_results module function mech_updateState(subdt,subF,ip,el) result(doneAndHappy) real(pReal), intent(in) :: & subdt !< current time step real(pReal), intent(in), dimension(3,3) :: & subF integer, intent(in) :: & ip, & !< integration point el !< element number logical, dimension(2) :: doneAndHappy end function mech_updateState module function thermal_conduction_getConductivity(ip,el) result(K) integer, intent(in) :: & ip, & !< integration point number el !< element number real(pReal), dimension(3,3) :: K end function thermal_conduction_getConductivity module function thermal_conduction_getSpecificHeat(ce) result(c_P) integer, intent(in) :: ce real(pReal) :: c_P end function thermal_conduction_getSpecificHeat module function thermal_conduction_getMassDensity(ce) result(rho) integer, intent(in) :: ce real(pReal) :: rho end function thermal_conduction_getMassDensity module subroutine homogenization_thermal_setField(T,dot_T, ce) integer, intent(in) :: ce real(pReal), intent(in) :: T, dot_T end subroutine homogenization_thermal_setField module subroutine thermal_conduction_results(ho,group) integer, intent(in) :: ho character(len=*), intent(in) :: group end subroutine thermal_conduction_results module function homogenization_thermal_T(ce) result(T) integer, intent(in) :: ce real(pReal) :: T end function homogenization_thermal_T module subroutine thermal_conduction_getSource(Tdot, ip,el) integer, intent(in) :: & ip, & !< integration point number el !< element number real(pReal), intent(out) :: Tdot end subroutine thermal_conduction_getSource module function damage_nonlocal_getMobility(ip,el) result(M) integer, intent(in) :: & ip, & !< integration point number el !< element number real(pReal) :: M end function damage_nonlocal_getMobility module subroutine damage_nonlocal_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi, ip, el) integer, intent(in) :: & ip, & !< integration point number el !< element number real(pReal), intent(in) :: & phi real(pReal) :: & phiDot, dPhiDot_dPhi end subroutine damage_nonlocal_getSourceAndItsTangent module subroutine damage_nonlocal_putNonLocalDamage(phi,ip,el) integer, intent(in) :: & ip, & !< integration point number el !< element number real(pReal), intent(in) :: & phi end subroutine damage_nonlocal_putNonLocalDamage module subroutine damage_nonlocal_results(homog,group) integer, intent(in) :: homog character(len=*), intent(in) :: group end subroutine damage_nonlocal_results end interface public :: & homogenization_init, & materialpoint_stressAndItsTangent, & thermal_conduction_getSpecificHeat, & thermal_conduction_getConductivity, & thermal_conduction_getMassDensity, & thermal_conduction_getSource, & damage_nonlocal_getMobility, & damage_nonlocal_getSourceAndItsTangent, & damage_nonlocal_putNonLocalDamage, & homogenization_thermal_setfield, & homogenization_thermal_T, & homogenization_forward, & homogenization_results, & homogenization_restartRead, & homogenization_restartWrite contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !-------------------------------------------------------------------------------------------------- subroutine homogenization_init() class (tNode) , pointer :: & num_homog, & num_homogGeneric print'(/,a)', ' <<<+- homogenization init -+>>>'; flush(IO_STDOUT) num_homog => config_numerics%get('homogenization',defaultVal=emptyDict) num_homogGeneric => num_homog%get('generic',defaultVal=emptyDict) num%nMPstate = num_homogGeneric%get_asInt ('nMPstate', defaultVal=10) if (num%nMPstate < 1) call IO_error(301,ext_msg='nMPstate') call mech_init(num_homog) call thermal_init() call damage_init() if (any(damage_type == DAMAGE_none_ID)) call damage_none_init if (any(damage_type == DAMAGE_nonlocal_ID)) call damage_nonlocal_init end subroutine homogenization_init !-------------------------------------------------------------------------------------------------- !> @brief parallelized calculation of stress and corresponding tangent at material points !-------------------------------------------------------------------------------------------------- subroutine materialpoint_stressAndItsTangent(dt,FEsolving_execIP,FEsolving_execElem) real(pReal), intent(in) :: dt !< time increment integer, dimension(2), intent(in) :: FEsolving_execElem, FEsolving_execIP integer :: & NiterationMPstate, & ip, & !< integration point number el, & !< element number myNgrains, co, ce, ho, me, ph logical :: & converged logical, dimension(2) :: & doneAndHappy !$OMP PARALLEL !$OMP DO PRIVATE(ce,me,ho,myNgrains,NiterationMPstate,converged,doneAndHappy) do el = FEsolving_execElem(1),FEsolving_execElem(2) ho = material_homogenizationAt(el) myNgrains = homogenization_Nconstituents(ho) do ip = FEsolving_execIP(1),FEsolving_execIP(2) ce = (el-1)*discretization_nIPs + ip me = material_homogenizationMemberAt2(ce) call constitutive_restore(ce,.false.) ! wrong name (is more a forward function) if(homogState(ho)%sizeState > 0) homogState(ho)%State(:,me) = homogState(ho)%State0(:,me) if(damageState_h(ho)%sizeState > 0) damageState_h(ho)%State(:,me) = damageState_h(ho)%State0(:,me) doneAndHappy = [.false.,.true.] NiterationMPstate = 0 convergenceLooping: do while (.not. (terminallyIll .or. doneAndHappy(1)) & .and. NiterationMPstate < num%nMPstate) NiterationMPstate = NiterationMPstate + 1 if (.not. doneAndHappy(1)) then call mech_partition(homogenization_F(1:3,1:3,ce),ip,el) converged = .true. do co = 1, myNgrains converged = converged .and. crystallite_stress(dt,co,ip,el) enddo if (.not. converged) then doneAndHappy = [.true.,.false.] else doneAndHappy = mech_updateState(dt,homogenization_F(1:3,1:3,ce),ip,el) converged = all(doneAndHappy) endif endif enddo convergenceLooping if (.not. converged) then if (.not. terminallyIll) print*, ' Integration point ', ip,' at element ', el, ' terminally ill' terminallyIll = .true. endif enddo enddo !$OMP END DO if (.not. terminallyIll ) then !$OMP DO PRIVATE(ho,ph,ce) do el = FEsolving_execElem(1),FEsolving_execElem(2) if (terminallyIll) continue ho = material_homogenizationAt(el) do ip = FEsolving_execIP(1),FEsolving_execIP(2) ce = (el-1)*discretization_nIPs + ip call thermal_partition(ce) do co = 1, homogenization_Nconstituents(ho) ph = material_phaseAt(co,el) if (.not. thermal_stress(dt,ph,material_phaseMemberAt(co,ip,el))) then if (.not. terminallyIll) & ! so first signals terminally ill... print*, ' Integration point ', ip,' at element ', el, ' terminally ill' terminallyIll = .true. ! ...and kills all others endif call thermal_homogenize(ip,el) enddo enddo enddo !$OMP END DO ! !$OMP DO PRIVATE(ho,ph,ce) ! do el = FEsolving_execElem(1),FEsolving_execElem(2) ! if (terminallyIll) continue ! ho = material_homogenizationAt(el) ! do ip = FEsolving_execIP(1),FEsolving_execIP(2) ! ce = (el-1)*discretization_nIPs + ip ! call damage_partition(ce) ! do co = 1, homogenization_Nconstituents(ho) ! ph = material_phaseAt(co,el) ! if (.not. thermal_stress(dt,ph,material_phaseMemberAt(co,ip,el))) then ! if (.not. terminallyIll) & ! so first signals terminally ill... ! print*, ' Integration point ', ip,' at element ', el, ' terminally ill' ! terminallyIll = .true. ! ...and kills all others ! endif ! call thermal_homogenize(ip,el) ! enddo ! enddo ! enddo ! !$OMP END DO !$OMP DO PRIVATE(ho) elementLooping3: do el = FEsolving_execElem(1),FEsolving_execElem(2) ho = material_homogenizationAt(el) IpLooping3: do ip = FEsolving_execIP(1),FEsolving_execIP(2) do co = 1, homogenization_Nconstituents(ho) call crystallite_orientations(co,ip,el) enddo call mech_homogenize(dt,ip,el) enddo IpLooping3 enddo elementLooping3 !$OMP END DO else print'(/,a,/)', ' << HOMOG >> Material Point terminally ill' endif !$OMP END PARALLEL end subroutine materialpoint_stressAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief writes homogenization results to HDF5 output file !-------------------------------------------------------------------------------------------------- subroutine homogenization_results integer :: ho character(len=:), allocatable :: group_base,group call results_closeGroup(results_addGroup('current/homogenization/')) do ho=1,size(material_name_homogenization) group_base = 'current/homogenization/'//trim(material_name_homogenization(ho)) call results_closeGroup(results_addGroup(group_base)) call mech_results(group_base,ho) group = trim(group_base)//'/damage' call results_closeGroup(results_addGroup(group)) select case(damage_type(ho)) case(DAMAGE_NONLOCAL_ID) call damage_nonlocal_results(ho,group) end select group = trim(group_base)//'/thermal' call results_closeGroup(results_addGroup(group)) select case(thermal_type(ho)) case(THERMAL_CONDUCTION_ID) call thermal_conduction_results(ho,group) end select enddo end subroutine homogenization_results !-------------------------------------------------------------------------------------------------- !> @brief Forward data after successful increment. ! ToDo: Any guessing for the current states possible? !-------------------------------------------------------------------------------------------------- subroutine homogenization_forward integer :: ho do ho = 1, size(material_name_homogenization) homogState (ho)%state0 = homogState (ho)%state damageState_h(ho)%state0 = damageState_h(ho)%state enddo end subroutine homogenization_forward !-------------------------------------------------------------------------------------------------- !-------------------------------------------------------------------------------------------------- subroutine homogenization_restartWrite(fileHandle) integer(HID_T), intent(in) :: fileHandle integer(HID_T), dimension(2) :: groupHandle integer :: ho groupHandle(1) = HDF5_addGroup(fileHandle,'homogenization') do ho = 1, size(material_name_homogenization) groupHandle(2) = HDF5_addGroup(groupHandle(1),material_name_homogenization(ho)) call HDF5_read(groupHandle(2),homogState(ho)%state,'omega') ! ToDo: should be done by mech call HDF5_closeGroup(groupHandle(2)) enddo call HDF5_closeGroup(groupHandle(1)) end subroutine homogenization_restartWrite !-------------------------------------------------------------------------------------------------- !-------------------------------------------------------------------------------------------------- subroutine homogenization_restartRead(fileHandle) integer(HID_T), intent(in) :: fileHandle integer(HID_T), dimension(2) :: groupHandle integer :: ho groupHandle(1) = HDF5_openGroup(fileHandle,'homogenization') do ho = 1, size(material_name_homogenization) groupHandle(2) = HDF5_openGroup(groupHandle(1),material_name_homogenization(ho)) call HDF5_write(groupHandle(2),homogState(ho)%state,'omega') ! ToDo: should be done by mech call HDF5_closeGroup(groupHandle(2)) enddo call HDF5_closeGroup(groupHandle(1)) end subroutine homogenization_restartRead end module homogenization