! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH ! ! This file is part of DAMASK, ! the Düsseldorf Advanced MAterial Simulation Kit. ! ! DAMASK is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! DAMASK is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with DAMASK. If not, see . ! !-------------------------------------------------------------------------------------------------- ! $Id$ !-------------------------------------------------------------------------------------------------- !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief Basic scheme PETSc solver !-------------------------------------------------------------------------------------------------- module DAMASK_spectral_SolverBasicPETSc use prec, only: & pInt, & pReal use math, only: & math_I3 use DAMASK_spectral_Utilities, only: & tSolutionState, & phaseFieldDataBin, & maxPhaseFields implicit none private #include #include #include character (len=*), parameter, public :: & DAMASK_spectral_SolverBasicPETSC_label = 'basicpetsc' !-------------------------------------------------------------------------------------------------- ! derived types type tSolutionParams real(pReal), dimension(3,3) :: P_BC, rotation_BC real(pReal) :: timeinc real(pReal) :: timeincOld real(pReal) :: temperature real(pReal) :: density integer(pInt) :: nActivePhaseFields type(phaseFieldDataBin) :: phaseFieldData(maxPhaseFields) end type tSolutionParams type(tSolutionParams), private :: params !-------------------------------------------------------------------------------------------------- ! PETSc data DM, private :: da SNES, private :: snes Vec, private :: solution_vec !-------------------------------------------------------------------------------------------------- ! common pointwise data real(pReal), private, dimension(:,:,:,:,:), allocatable :: F_lastInc, Fdot, F_lastInc2 real(pReal), private, dimension(:,:,:,:), allocatable :: & phaseFieldRHS_lastInc, & phaseField_lastInc, & phaseFieldRHS, & phaseFieldDot complex(pReal), private, dimension(:,:,:,:,:), allocatable :: inertiaField_fourier !-------------------------------------------------------------------------------------------------- ! stress, stiffness and compliance average etc. real(pReal), private, dimension(3,3) :: & F_aim = math_I3, & F_aim_lastIter = math_I3, & F_aim_lastInc = math_I3, & P_av = 0.0_pReal, & F_aimDot=0.0_pReal character(len=1024), private :: incInfo real(pReal), private, dimension(3,3,3,3) :: & C_volAvg = 0.0_pReal, & !< current volume average stiffness C_volAvgLastInc = 0.0_pReal, & !< previous volume average stiffness C_minMaxAvg = 0.0_pReal, & !< current (min+max)/2 stiffness S = 0.0_pReal !< current compliance (filled up with zeros) real(pReal), private :: err_stress, err_div, err_divPrev, err_divDummy real(pReal), private, dimension(:), allocatable :: err_phaseField, phaseField_Avg logical, private :: ForwardData integer(pInt), private :: & totalIter = 0_pInt !< total iteration in current increment real(pReal), private, dimension(3,3) :: mask_stress = 0.0_pReal public :: & basicPETSc_init, & basicPETSc_solution ,& basicPETSc_destroy external :: & VecDestroy, & DMDestroy, & DMDACreate3D, & DMCreateGlobalVector, & DMDASetLocalFunction, & PETScFinalize, & SNESDestroy, & SNESGetNumberFunctionEvals, & SNESGetIterationNumber, & SNESSolve, & SNESSetDM, & SNESGetConvergedReason, & SNESSetConvergenceTest, & SNESSetFromOptions, & SNESCreate, & MPI_Abort contains !-------------------------------------------------------------------------------------------------- !> @brief allocates all neccessary fields and fills them with data, potentially from restart info !-------------------------------------------------------------------------------------------------- subroutine basicPETSc_init(temperature,nActivePhaseFields,phaseFieldData) use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment) use IO, only: & IO_intOut, & IO_read_realFile, & IO_timeStamp use debug, only: & debug_level, & debug_spectral, & debug_spectralRestart use FEsolving, only: & restartInc use DAMASK_interface, only: & getSolverJobName use DAMASK_spectral_Utilities, only: & Utilities_init, & Utilities_constitutiveResponse, & Utilities_updateGamma, & grid, & grid1Red, & wgt, & geomSize use mesh, only: & mesh_ipCoordinates, & mesh_deformedCoordsFFT use math, only: & math_invSym3333 implicit none integer(pInt), intent(in) :: nActivePhaseFields type(phaseFieldDataBin), intent(in) :: phaseFieldData(nActivePhaseFields) real(pReal), intent(inOut) :: temperature #include #include #include real(pReal), dimension(:,:,:,:,:), allocatable :: P PetscScalar, dimension(:,:,:,:), pointer :: xx_psc, F PetscErrorCode :: ierr PetscObject :: dummy real(pReal), dimension(3,3) :: & temp33_Real = 0.0_pReal real(pReal), dimension(3,3,3,3) :: & temp3333_Real = 0.0_pReal KSP :: ksp integer(pInt) :: i call Utilities_init() write(6,'(/,a)') ' <<<+- DAMASK_spectral_solverBasicPETSc init -+>>>' write(6,'(a)') ' $Id$' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" !-------------------------------------------------------------------------------------------------- ! allocate global fields allocate (P (3,3,grid(1),grid(2),grid(3)),source = 0.0_pReal) allocate (F_lastInc (3,3,grid(1),grid(2),grid(3)),source = 0.0_pReal) allocate (F_lastInc2(3,3,grid(1),grid(2),grid(3)),source = 0.0_pReal) allocate (Fdot (3,3,grid(1),grid(2),grid(3)),source = 0.0_pReal) allocate (inertiaField_fourier (grid1Red,grid(2),grid(3),3,3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) allocate (phaseFieldRHS_lastInc (nActivePhaseFields,grid(1),grid(2),grid(3)),source = 0.0_pReal) allocate (phaseField_lastInc (nActivePhaseFields,grid(1),grid(2),grid(3)),source = 0.0_pReal) allocate (phaseFieldDot (nActivePhaseFields,grid(1),grid(2),grid(3)),source = 0.0_pReal) allocate (phaseFieldRHS (nActivePhaseFields,grid(1),grid(2),grid(3)),source = 0.0_pReal) allocate (err_phaseField(nActivePhaseFields), source = 0.0_pReal) allocate (phaseField_Avg(nActivePhaseFields), source = 0.0_pReal) !-------------------------------------------------------------------------------------------------- ! initialize solver specific parts of PETSc call SNESCreate(PETSC_COMM_WORLD,snes,ierr); CHKERRQ(ierr) call DMDACreate3d(PETSC_COMM_WORLD, & DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE, & DMDA_STENCIL_BOX,grid(1),grid(2),grid(3),PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE, & 9+nActivePhaseFields,1,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,da,ierr) CHKERRQ(ierr) call DMCreateGlobalVector(da,solution_vec,ierr); CHKERRQ(ierr) call DMDASNESSetFunctionLocal(da,INSERT_VALUES,BasicPETSC_formResidual,dummy,ierr); CHKERRQ(ierr) ! needed for newer versions of petsc !call DMDASetLocalFunction(da,BasicPETSC_formResidual,ierr); CHKERRQ(ierr) call SNESSetDM(snes,da,ierr); CHKERRQ(ierr) call SNESSetConvergenceTest(snes,BasicPETSC_converged,dummy,PETSC_NULL_FUNCTION,ierr); CHKERRQ(ierr) call SNESGetKSP(snes,ksp,ierr); CHKERRQ(ierr) call KSPSetConvergenceTest(ksp,BasicPETSC_convergedKSP,dummy,PETSC_NULL_FUNCTION,ierr); CHKERRQ(ierr) call SNESSetFromOptions(snes,ierr); CHKERRQ(ierr) !-------------------------------------------------------------------------------------------------- ! init fields call DMDAVecGetArrayF90(da,solution_vec,xx_psc,ierr); CHKERRQ(ierr) ! get the data out of PETSc to work with F => xx_psc(0:8,:,:,:) if (restartInc == 1_pInt) then ! no deformation (no restart) F_lastInc = spread(spread(spread(math_I3,3,grid(1)),4,grid(2)),5,grid(3)) ! initialize to identity xx_psc(0:8,:,:,:) = reshape(F_lastInc,[9,grid(1),grid(2),grid(3)]) F_lastInc2 = F_lastInc do i = 1, nActivePhaseFields xx_psc(8+i,:,:,:) = phaseFieldData(i)%phaseField0 phaseField_lastInc(i,:,:,:) = phaseFieldData(i)%phaseField0 enddo elseif (restartInc > 1_pInt) then ! using old values from file if (iand(debug_level(debug_spectral),debug_spectralRestart)/= 0) & write(6,'(/,a,'//IO_intOut(restartInc-1_pInt)//',a)') & 'reading values of increment', restartInc - 1_pInt, 'from file' flush(6) call IO_read_realFile(777,'F',trim(getSolverJobName()),size(F)) read (777,rec=1) F close (777) call IO_read_realFile(777,'F_lastInc',trim(getSolverJobName()),size(F_lastInc)) read (777,rec=1) F_lastInc close (777) call IO_read_realFile(777,'F_lastInc2',trim(getSolverJobName()),size(F_lastInc2)) read (777,rec=1) F_lastInc2 close (777) F_aim = reshape(sum(sum(sum(F,dim=4),dim=3),dim=2) * wgt, [3,3]) ! average of F F_aim_lastInc = sum(sum(sum(F_lastInc,dim=5),dim=4),dim=3) * wgt ! average of F_lastInc call IO_read_realFile(777,'F_aimDot',trim(getSolverJobName()),size(f_aimDot)) read (777,rec=1) f_aimDot close (777) call IO_read_realFile(777,'C_volAvg',trim(getSolverJobName()),size(C_volAvg)) read (777,rec=1) C_volAvg close (777) call IO_read_realFile(777,'C_volAvgLastInc',trim(getSolverJobName()),size(C_volAvgLastInc)) read (777,rec=1) C_volAvgLastInc close (777) call IO_read_realFile(777,'C_ref',trim(getSolverJobName()),size(temp3333_Real)) read (777,rec=1) temp3333_Real close (777) endif mesh_ipCoordinates = reshape(mesh_deformedCoordsFFT(geomSize,reshape(& F,[3,3,grid(1),grid(2),grid(3)])),[3,1,product(grid)]) call Utilities_constitutiveResponse(& reshape(F,[3,3,grid(1),grid(2),grid(3)]),& reshape(F,[3,3,grid(1),grid(2),grid(3)]),& temperature,0.0_pReal,P,C_volAvg,C_minmaxAvg,temp33_Real,.false.,math_I3) call DMDAVecRestoreArrayF90(da,solution_vec,xx_psc,ierr); CHKERRQ(ierr) ! write data back into PETSc if (restartInc == 1_pInt) then ! use initial stiffness as reference stiffness temp3333_Real = C_minMaxAvg endif call Utilities_updateGamma(temp3333_Real,.True.) end subroutine basicPETSc_init !-------------------------------------------------------------------------------------------------- !> @brief solution for the Basic PETSC scheme with internal iterations !-------------------------------------------------------------------------------------------------- type(tSolutionState) function basicPETSc_solution( & incInfoIn,guess,timeinc,timeinc_old,loadCaseTime,P_BC,F_BC,temperature_bc,rotation_BC,density, & nActivePhaseFields,phaseFieldData) use numerics, only: & update_gamma, & itmax use math, only: & math_mul33x33 ,& math_rotate_backward33 use mesh, only: & mesh_ipCoordinates,& mesh_deformedCoordsFFT use IO, only: & IO_write_JobRealFile use DAMASK_spectral_Utilities, only: & grid, & geomSize, & tBoundaryCondition, & Utilities_forwardField, & Utilities_calculateRate, & Utilities_maskedCompliance, & Utilities_updateGamma, & cutBack use FEsolving, only: & restartWrite, & terminallyIll use homogenization, only: & materialpoint_heat implicit none #include #include !-------------------------------------------------------------------------------------------------- ! input data for solution integer(pInt), intent(in) :: nActivePhaseFields type(phaseFieldDataBin), intent(in) :: phaseFieldData(nActivePhaseFields) real(pReal), intent(in) :: & timeinc, & !< increment in time for current solution timeinc_old, & !< increment in time of last increment loadCaseTime, & !< remaining time of current load case temperature_bc, & density logical, intent(in) :: & guess type(tBoundaryCondition), intent(in) :: & P_BC, & F_BC character(len=*), intent(in) :: & incInfoIn real(pReal), dimension(3,3), intent(in) :: rotation_BC integer(pInt) :: i !-------------------------------------------------------------------------------------------------- ! PETSc Data PetscScalar, pointer :: xx_psc(:,:,:,:), F(:,:,:,:) PetscErrorCode :: ierr SNESConvergedReason :: reason incInfo = incInfoIn call DMDAVecGetArrayF90(da,solution_vec,xx_psc,ierr); CHKERRQ(ierr) ! get the data out of PETSc to work with F => xx_psc(0:8,:,:,:) !-------------------------------------------------------------------------------------------------- ! restart information for spectral solver if (restartWrite) then write(6,'(/,a)') ' writing converged results for restart' flush(6) call IO_write_jobRealFile(777,'F',size(F)) ! writing deformation gradient field to file write (777,rec=1) F close (777) call IO_write_jobRealFile(777,'F_lastInc',size(F_lastInc)) ! writing F_lastInc field to file write (777,rec=1) F_lastInc close (777) call IO_write_jobRealFile(777,'F_lastInc2',size(F_lastInc2)) ! writing F_lastInc field to file write (777,rec=1) F_lastInc2 close (777) call IO_write_jobRealFile(777,'F_aimDot',size(F_aimDot)) write (777,rec=1) F_aimDot close(777) call IO_write_jobRealFile(777,'C_volAvg',size(C_volAvg)) write (777,rec=1) C_volAvg close(777) call IO_write_jobRealFile(777,'C_volAvgLastInc',size(C_volAvgLastInc)) write (777,rec=1) C_volAvgLastInc close(777) endif mesh_ipCoordinates = reshape(mesh_deformedCoordsFFT(geomSize,reshape(& F,[3,3,grid(1),grid(2),grid(3)])),[3,1,product(grid)]) if (cutBack) then F_aim = F_aim_lastInc xx_psc(0:8,:,:,:) = reshape(F_lastInc,[9,grid(1),grid(2),grid(3)]) C_volAvg = C_volAvgLastInc do i = 1, nActivePhaseFields xx_psc(8+i,:,:,:) = phaseField_lastInc(i,:,:,:) enddo else C_volAvgLastInc = C_volAvg !-------------------------------------------------------------------------------------------------- ! calculate rate for aim if (F_BC%myType=='l') then ! calculate f_aimDot from given L and current F f_aimDot = F_BC%maskFloat * math_mul33x33(F_BC%values, F_aim) elseif(F_BC%myType=='fdot') then ! f_aimDot is prescribed f_aimDot = F_BC%maskFloat * F_BC%values elseif(F_BC%myType=='f') then ! aim at end of load case is prescribed f_aimDot = F_BC%maskFloat * (F_BC%values -F_aim)/loadCaseTime endif if (guess) f_aimDot = f_aimDot + P_BC%maskFloat * (F_aim - F_aim_lastInc)/timeinc_old F_aim_lastInc = F_aim !-------------------------------------------------------------------------------------------------- ! update coordinates and rate and forward last inc mesh_ipCoordinates = reshape(mesh_deformedCoordsFFT(geomSize,reshape(& F,[3,3,grid(1),grid(2),grid(3)])),[3,1,product(grid)]) Fdot = Utilities_calculateRate(math_rotate_backward33(f_aimDot,params%rotation_BC), & timeinc_old,guess,F_lastInc,reshape(F,[3,3,grid(1),grid(2),grid(3)])) do i = 1, nActivePhaseFields phaseFieldDot(i,:,:,:) = (xx_psc(8+i,:,:,:) - phaseField_lastInc(i,:,:,:))/timeinc_old phaseField_lastInc(i,:,:,:) = xx_psc(8+i,:,:,:) phaseFieldRHS_lastInc(i,:,:,:) = phaseFieldRHS(i,:,:,:) enddo F_lastInc2 = F_lastInc F_lastInc = reshape(F,[3,3,grid(1),grid(2),grid(3)]) endif F_aim = F_aim + f_aimDot * timeinc F = reshape(Utilities_forwardField(timeinc,F_lastInc,Fdot,math_rotate_backward33(F_aim, & rotation_BC)),[9,grid(1),grid(2),grid(3)]) do i = 1, nActivePhaseFields xx_psc(8+i,:,:,:) = phaseField_lastInc(i,:,:,:) + phaseFieldDot(i,:,:,:)*timeinc enddo call DMDAVecRestoreArrayF90(da,solution_vec,xx_psc,ierr); CHKERRQ(ierr) !-------------------------------------------------------------------------------------------------- ! update stiffness (and gamma operator) S = Utilities_maskedCompliance(rotation_BC,P_BC%maskLogical,C_volAvg) if (update_gamma) call Utilities_updateGamma(C_minmaxAvg,restartWrite) ForwardData = .True. !-------------------------------------------------------------------------------------------------- ! set module wide availabe data mask_stress = P_BC%maskFloat params%P_BC = P_BC%values params%rotation_BC = rotation_BC params%timeinc = timeinc params%timeincOld = timeinc_old params%temperature = temperature_BC params%density = density params%nActivePhaseFields = nActivePhaseFields params%phaseFieldData(1:nActivePhaseFields) = phaseFieldData(1:nActivePhaseFields) call SNESSolve(snes,PETSC_NULL_OBJECT,solution_vec,ierr); CHKERRQ(ierr) call SNESGetConvergedReason(snes,reason,ierr); CHKERRQ(ierr) basicPETSc_solution%termIll = terminallyIll terminallyIll = .false. if (reason < 1) then basicPETSC_solution%converged = .false. basicPETSC_solution%iterationsNeeded = itmax else basicPETSC_solution%converged = .true. basicPETSC_solution%iterationsNeeded = totalIter endif end function BasicPETSc_solution !-------------------------------------------------------------------------------------------------- !> @brief forms the AL residual vector !-------------------------------------------------------------------------------------------------- subroutine BasicPETSC_formResidual(in,x_scal,f_scal,dummy,ierr) use numerics, only: & itmax, & itmin use math, only: & math_rotate_backward33, & math_transpose33, & math_mul3333xx33 use debug, only: & debug_level, & debug_spectral, & debug_spectralRotation use DAMASK_spectral_Utilities, only: & grid, & geomSize, & wgt, & field_real, & field_fourier, & phaseField_real, & phaseField_fourier, & Utilities_FFTforward, & Utilities_FFTbackward, & utilities_scalarFFTforward, & utilities_scalarFFTbackward, & Utilities_fourierConvolution, & Utilities_inverseLaplace, & Utilities_diffusion, & Utilities_constitutiveResponse, & Utilities_divergenceRMS use IO, only: & IO_intOut use crystallite, only: & crystallite_temperature use homogenization, only: & materialpoint_heat, & materialpoint_P use constitutive, only: & crystallite_damage implicit none DMDALocalInfo, dimension(DMDA_LOCAL_INFO_SIZE) :: & in PetscScalar, target, dimension(9+params%nActivePhaseFields, & XG_RANGE,YG_RANGE,ZG_RANGE) :: & x_scal PetscScalar, target, dimension(9+params%nActivePhaseFields, & X_RANGE,Y_RANGE,Z_RANGE) :: & f_scal PetscScalar, pointer, dimension(:,:,:,:) :: & F, & residual_F PetscInt :: & PETScIter, & nfuncs PetscObject :: dummy PetscErrorCode :: ierr integer(pInt) :: i F => x_scal(1:9,1:grid(1),1:grid(2),1:grid(3)) residual_F => f_scal(1:9,1:grid(1),1:grid(2),1:grid(3)) call SNESGetNumberFunctionEvals(snes,nfuncs,ierr); CHKERRQ(ierr) call SNESGetIterationNumber(snes,PETScIter,ierr); CHKERRQ(ierr) if(nfuncs== 0 .and. PETScIter == 0) totalIter = -1_pInt ! new increment if (totalIter <= PETScIter) then ! new iteration !-------------------------------------------------------------------------------------------------- ! report begin of new iteration totalIter = totalIter + 1_pInt write(6,'(1x,a,3(a,'//IO_intOut(itmax)//'))') trim(incInfo), & ' @ Iteration ', itmin, '≤',totalIter, '≤', itmax if (iand(debug_level(debug_spectral),debug_spectralRotation) /= 0) & write(6,'(/,a,/,3(3(f12.7,1x)/))',advance='no') ' deformation gradient aim (lab) =', & math_transpose33(math_rotate_backward33(F_aim,params%rotation_BC)) write(6,'(/,a,/,3(3(f12.7,1x)/))',advance='no') ' deformation gradient aim =', & math_transpose33(F_aim) flush(6) endif !-------------------------------------------------------------------------------------------------- ! evaluate inertia dynamic: if (params%density > 0.0_pReal) then residual_F = ((F - reshape(F_lastInc,[9,grid(1),grid(2),grid(3)]))/params%timeinc - & reshape(F_lastInc - F_lastInc2, [9,grid(1),grid(2),grid(3)])/params%timeincOld)/& ((params%timeinc + params%timeincOld)/2.0_pReal) residual_F = params%density*product(geomSize/grid)*residual_F field_real = 0.0_pReal field_real(1:grid(1),1:grid(2),1:grid(3),1:3,1:3) = reshape(residual_F,[grid(1),grid(2),grid(3),3,3],& order=[4,5,1,2,3]) ! field real has a different order call Utilities_FFTforward() call Utilities_inverseLaplace() inertiaField_fourier = field_fourier else dynamic inertiaField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal) endif dynamic !-------------------------------------------------------------------------------------------------- ! evaluate constitutive response do i = 1, params%nActivePhaseFields if(params%phaseFieldData(i)%label == 'thermal') & crystallite_temperature(1,1_pInt:product(grid)) = & reshape(x_scal(9+i,1:grid(1),1:grid(2),1:grid(3)),[product(grid)]) enddo call Utilities_constitutiveResponse(F_lastInc,F,params%temperature,params%timeinc, & residual_F,C_volAvg,C_minmaxAvg,P_av,ForwardData,params%rotation_BC) ForwardData = .false. do i = 1, params%nActivePhaseFields if(params%phaseFieldData(i)%label == 'fracture') & residual_F = residual_F * spread(x_scal(9+i,1:grid(1),1:grid(2),1:grid(3)),dim=1,ncopies=9) enddo write(6,'(/,a,/,3(3(f12.7,1x)/))',advance='no') ' stress (MPa) =', & math_transpose33(sum(sum(sum(residual_F,dim=4),dim=3),dim=2)*wgt/1e6) !-------------------------------------------------------------------------------------------------- ! stress BC handling F_aim_lastIter = F_aim F_aim = F_aim - math_mul3333xx33(S, ((P_av - params%P_BC))) ! S = 0.0 for no bc err_stress = maxval(abs(mask_stress * (P_av - params%P_BC))) ! mask = 0.0 for no bc !-------------------------------------------------------------------------------------------------- ! updated deformation gradient using fix point algorithm of basic scheme field_real = 0.0_pReal field_real(1:grid(1),1:grid(2),1:grid(3),1:3,1:3) = reshape(residual_F,[grid(1),grid(2),grid(3),3,3],& order=[4,5,1,2,3]) ! field real has a different order call Utilities_FFTforward() field_fourier = field_fourier + inertiaField_fourier err_divDummy = Utilities_divergenceRMS() call Utilities_fourierConvolution(math_rotate_backward33(F_aim_lastIter-F_aim,params%rotation_BC)) call Utilities_FFTbackward() !-------------------------------------------------------------------------------------------------- ! constructing phase field residual do i = 1, params%nActivePhaseFields select case (params%phaseFieldData(i)%label) case ('thermal') phaseField_real = 0.0_pReal phaseField_real(1:grid(1),1:grid(2),1:grid(3)) = & phaseField_lastInc(i,1:grid(1),1:grid(2),1:grid(3)) call utilities_scalarFFTforward() call utilities_diffusion(params%phaseFieldData(i)%diffusion,params%timeinc) call utilities_scalarFFTbackward() f_scal(9+i,1:grid(1),1:grid(2),1:grid(3)) = & phaseField_real(1:grid(1),1:grid(2),1:grid(3)) phaseFieldRHS(i,1:grid(1),1:grid(2),1:grid(3)) = & reshape(materialpoint_heat(1,1_pInt:product(grid)),[grid(1),grid(2),grid(3)]) phaseField_real = 0.0_pReal phaseField_real(1:grid(1),1:grid(2),1:grid(3)) = & params%timeinc*params%phaseFieldData(i)%mobility* & (phaseFieldRHS_lastInc(i,1:grid(1),1:grid(2),1:grid(3)) + & phaseFieldRHS (i,1:grid(1),1:grid(2),1:grid(3)))/2.0_pReal call utilities_scalarFFTforward() call utilities_diffusion(params%phaseFieldData(i)%diffusion,params%timeinc/2.0_pReal) call utilities_scalarFFTbackward() f_scal(9+i,1:grid(1),1:grid(2),1:grid(3)) = & x_scal(9+i,1:grid(1),1:grid(2),1:grid(3)) - & f_scal(9+i,1:grid(1),1:grid(2),1:grid(3)) - & phaseField_real(1:grid(1),1:grid(2),1:grid(3)) err_phaseField(i) = maxval(abs(f_scal(9+i,1:grid(1),1:grid(2),1:grid(3)))) phaseField_Avg(i) = sum(x_scal(9+i,1:grid(1),1:grid(2),1:grid(3)))*wgt case ('fracture') phaseField_real = 0.0_pReal phaseField_real(1:grid(1),1:grid(2),1:grid(3)) = & phaseField_lastInc(i,1:grid(1),1:grid(2),1:grid(3)) call utilities_scalarFFTforward() call utilities_diffusion(2.0_pReal*maxval(geomSize/real(grid,pReal))* & params%phaseFieldData(i)%diffusion,params%timeinc) call utilities_scalarFFTbackward() f_scal(9+i,1:grid(1),1:grid(2),1:grid(3)) = & phaseField_real(1:grid(1),1:grid(2),1:grid(3)) phaseFieldRHS(i,1:grid(1),1:grid(2),1:grid(3)) = & - params%phaseFieldData(i)%mobility* & sum(residual_F* & (F-reshape(spread(spread(spread(math_I3,3,grid(1)),4,grid(2)),5,grid(3)),[9,grid(1),grid(2),grid(3)])),dim=1) & - params%phaseFieldData(i)%diffusion*(x_scal(9+i,1:grid(1),1:grid(2),1:grid(3)) - 1.0_pReal)/ & 8.0_pReal/maxval(geomSize/real(grid,pReal)) phaseField_real = 0.0_pReal phaseField_real(1:grid(1),1:grid(2),1:grid(3)) = & params%timeinc*params%phaseFieldData(i)%mobility* & (phaseFieldRHS_lastInc(i,1:grid(1),1:grid(2),1:grid(3)) + & phaseFieldRHS (i,1:grid(1),1:grid(2),1:grid(3)))/2.0_pReal call utilities_scalarFFTforward() call utilities_diffusion(2.0_pReal*maxval(geomSize/real(grid,pReal))* & params%phaseFieldData(i)%diffusion,params%timeinc/2.0_pReal) call utilities_scalarFFTbackward() f_scal(9+i,1:grid(1),1:grid(2),1:grid(3)) = & x_scal(9+i,1:grid(1),1:grid(2),1:grid(3)) - & f_scal(9+i,1:grid(1),1:grid(2),1:grid(3)) - & phaseField_real(1:grid(1),1:grid(2),1:grid(3)) err_phaseField(i) = maxval(abs(f_scal(9+i,1:grid(1),1:grid(2),1:grid(3)))) phaseField_Avg(i) = sum(x_scal(9+i,1:grid(1),1:grid(2),1:grid(3)))*wgt end select enddo !-------------------------------------------------------------------------------------------------- ! constructing residual residual_F = reshape(field_real(1:grid(1),1:grid(2),1:grid(3),1:3,1:3),& [9,grid(1),grid(2),grid(3)],order=[2,3,4,1]) end subroutine BasicPETSc_formResidual !-------------------------------------------------------------------------------------------------- !> @brief convergence check !-------------------------------------------------------------------------------------------------- subroutine BasicPETSc_converged(snes_local,PETScIter,xnorm,snorm,fnorm,reason,dummy,ierr) use numerics, only: & itmax, & itmin, & err_div_tolRel, & err_div_tolAbs, & err_stress_tolRel, & err_stress_tolAbs use FEsolving, only: & terminallyIll implicit none SNES :: snes_local PetscInt :: PETScIter PetscReal :: & xnorm, & snorm, & fnorm SNESConvergedReason :: reason PetscObject :: dummy PetscErrorCode :: ierr real(pReal) :: & divTol, & stressTol divTol = max(maxval(abs(P_av))*err_div_tolRel,err_div_tolAbs) stressTol = max(maxval(abs(P_av))*err_stress_tolrel,err_stress_tolabs) err_divPrev = err_div; err_div = err_divDummy converged: if ((totalIter >= itmin .and. & all([ err_div/divTol, err_stress/stressTol] < 1.0_pReal) .and. & maxval(err_phaseField/phaseField_Avg) < 1.0e-3_pReal) & .or. terminallyIll) then reason = 1 elseif (totalIter >= itmax) then converged reason = -1 else converged reason = 0 endif converged !-------------------------------------------------------------------------------------------------- ! report write(6,'(1/,a)') ' ... reporting .............................................................' write(6,'(1/,a,f12.2,a,es8.2,a,es9.2,a)') ' error divergence = ', & err_div/divTol, ' (',err_div,' / m, tol =',divTol,')' write(6,'(a,f12.2,a,es8.2,a,es9.2,a)') ' error stress BC = ', & err_stress/stressTol, ' (',err_stress, ' Pa, tol =',stressTol,')' write(6,'(a,f10.2,a,es8.2,a,es9.2,a)') ' error phase field = ', & maxval(err_phaseField/phaseField_Avg)/1.0e-3, ' (',maxval(err_phaseField/phaseField_Avg), ' Pa, tol =',1.0e-3,')' write(6,'(/,a)') ' ===========================================================================' flush(6) end subroutine BasicPETSc_converged !-------------------------------------------------------------------------------------------------- !> @brief convergence check !-------------------------------------------------------------------------------------------------- subroutine BasicPETSc_convergedKSP(ksp_local,PETScIter,fnorm,reason,dummy,ierr) use numerics, only: & itmax, & itmin, & err_div_tolRel, & err_div_tolAbs use FEsolving, only: & terminallyIll use DAMASK_spectral_Utilities, only: & wgt implicit none KSP :: ksp_local PetscInt :: PETScIter, SNESIter PetscReal :: & fnorm, & SNESfnorm, & estimatedErrDiv KSPConvergedReason :: reason PetscObject :: dummy PetscErrorCode :: ierr real(pReal) :: & divTol, & r_tol call SNESGetIterationNumber(snes,SNESIter,ierr); CHKERRQ(ierr) call SNESGetFunctionNorm(snes,SNESfnorm,ierr); CHKERRQ(ierr) if (SNESIter == 0_pInt) then ! Eisenstat-Walker calculation of relative tolerance for inexact newton r_tol = 0.3 else r_tol = (err_div/err_divPrev)**1.618 endif divTol = max(maxval(abs(P_av))*err_div_tolRel,err_div_tolAbs) estimatedErrDiv = fnorm*err_div/SNESfnorm ! Estimated error divergence converged: if ((PETScIter >= itmin .and. & any([fnorm/snesFnorm/r_tol, & estimatedErrDiv/divTol] < 1.0_pReal)) & .or. terminallyIll) then reason = 1 elseif (totalIter >= itmax) then converged reason = -1 else converged reason = 0 endif converged end subroutine BasicPETSc_convergedKSP !-------------------------------------------------------------------------------------------------- !> @brief destroy routine !-------------------------------------------------------------------------------------------------- subroutine BasicPETSc_destroy() use DAMASK_spectral_Utilities, only: & Utilities_destroy implicit none PetscErrorCode :: ierr call VecDestroy(solution_vec,ierr); CHKERRQ(ierr) call SNESDestroy(snes,ierr); CHKERRQ(ierr) call DMDestroy(da,ierr); CHKERRQ(ierr) call PetscFinalize(ierr); CHKERRQ(ierr) call Utilities_destroy() end subroutine BasicPETSc_destroy end module DAMASK_spectral_SolverBasicPETSc