!-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH !> @brief homogenization manager, organizing deformation partitioning and stress homogenization !-------------------------------------------------------------------------------------------------- module homogenization use prec use IO use config use math use material use constitutive use discretization use thermal_isothermal use thermal_conduction use damage_none use damage_nonlocal use HDF5_utilities use results implicit none private logical, public :: & terminallyIll = .false. !< at least one material point is terminally ill !-------------------------------------------------------------------------------------------------- ! General variables for the homogenization at a material point real(pReal), dimension(:), allocatable, public :: & homogenization_T, & homogenization_dot_T real(pReal), dimension(:,:,:), allocatable, public :: & homogenization_F0, & !< def grad of IP at start of FE increment homogenization_F !< def grad of IP to be reached at end of FE increment real(pReal), dimension(:,:,:), allocatable, public :: & !, protected :: & Issue with ifort homogenization_P !< first P--K stress of IP real(pReal), dimension(:,:,:,:,:), allocatable, public :: & !, protected :: & homogenization_dPdF !< tangent of first P--K stress at IP !-------------------------------------------------------------------------------------------------- type :: tNumerics integer :: & nMPstate !< materialpoint state loop limit real(pReal) :: & subStepMinHomog, & !< minimum (relative) size of sub-step allowed during cutback in homogenization subStepSizeHomog, & !< size of first substep when cutback in homogenization stepIncreaseHomog !< increase of next substep size when previous substep converged in homogenization end type tNumerics type(tNumerics) :: num !-------------------------------------------------------------------------------------------------- interface module subroutine mech_init(num_homog) class(tNode), pointer, intent(in) :: & num_homog !< pointer to mechanical homogenization numerics data end subroutine mech_init module subroutine thermal_init end subroutine thermal_init module subroutine mech_partition(subF,ip,el) real(pReal), intent(in), dimension(3,3) :: & subF integer, intent(in) :: & ip, & !< integration point el !< element number end subroutine mech_partition module subroutine thermal_partition(T,ce) real(pReal), intent(in) :: T integer, intent(in) :: ce end subroutine thermal_partition module subroutine mech_homogenize(dt,ip,el) real(pReal), intent(in) :: dt integer, intent(in) :: & ip, & !< integration point el !< element number end subroutine mech_homogenize module subroutine mech_results(group_base,h) character(len=*), intent(in) :: group_base integer, intent(in) :: h end subroutine mech_results module function mech_updateState(subdt,subF,ip,el) result(doneAndHappy) real(pReal), intent(in) :: & subdt !< current time step real(pReal), intent(in), dimension(3,3) :: & subF integer, intent(in) :: & ip, & !< integration point el !< element number logical, dimension(2) :: doneAndHappy end function mech_updateState end interface public :: & homogenization_init, & materialpoint_stressAndItsTangent, & homogenization_forward, & homogenization_results, & homogenization_restartRead, & homogenization_restartWrite contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !-------------------------------------------------------------------------------------------------- subroutine homogenization_init class (tNode) , pointer :: & num_homog, & num_homogGeneric print'(/,a)', ' <<<+- homogenization init -+>>>'; flush(IO_STDOUT) num_homog => config_numerics%get('homogenization',defaultVal=emptyDict) num_homogGeneric => num_homog%get('generic',defaultVal=emptyDict) num%nMPstate = num_homogGeneric%get_asInt ('nMPstate', defaultVal=10) num%subStepMinHomog = num_homogGeneric%get_asFloat('subStepMin', defaultVal=1.0e-3_pReal) num%subStepSizeHomog = num_homogGeneric%get_asFloat('subStepSize', defaultVal=0.25_pReal) num%stepIncreaseHomog = num_homogGeneric%get_asFloat('stepIncrease', defaultVal=1.5_pReal) if (num%nMPstate < 1) call IO_error(301,ext_msg='nMPstate') if (num%subStepMinHomog <= 0.0_pReal) call IO_error(301,ext_msg='subStepMinHomog') if (num%subStepSizeHomog <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeHomog') if (num%stepIncreaseHomog <= 0.0_pReal) call IO_error(301,ext_msg='stepIncreaseHomog') call mech_init(num_homog) call thermal_init() if (any(thermal_type == THERMAL_isothermal_ID)) call thermal_isothermal_init(homogenization_T) if (any(thermal_type == THERMAL_conduction_ID)) call thermal_conduction_init(homogenization_T) if (any(damage_type == DAMAGE_none_ID)) call damage_none_init if (any(damage_type == DAMAGE_nonlocal_ID)) call damage_nonlocal_init end subroutine homogenization_init !-------------------------------------------------------------------------------------------------- !> @brief parallelized calculation of stress and corresponding tangent at material points !-------------------------------------------------------------------------------------------------- subroutine materialpoint_stressAndItsTangent(dt,FEsolving_execIP,FEsolving_execElem) real(pReal), intent(in) :: dt !< time increment integer, dimension(2), intent(in) :: FEsolving_execElem, FEsolving_execIP integer :: & NiterationMPstate, & ip, & !< integration point number el, & !< element number myNgrains, co, ce, ho, me, ph real(pReal) :: & subFrac, & subStep logical :: & converged logical, dimension(2) :: & doneAndHappy !$OMP PARALLEL !$OMP DO PRIVATE(ce,me,ho,myNgrains,NiterationMPstate,subFrac,converged,subStep,doneAndHappy) do el = FEsolving_execElem(1),FEsolving_execElem(2) ho = material_homogenizationAt(el) myNgrains = homogenization_Nconstituents(ho) do ip = FEsolving_execIP(1),FEsolving_execIP(2) me = material_homogenizationMemberAt(ip,el) !-------------------------------------------------------------------------------------------------- ! initialize restoration points call constitutive_initializeRestorationPoints(ip,el) subFrac = 0.0_pReal converged = .false. ! pretend failed step ... subStep = 1.0_pReal/num%subStepSizeHomog ! ... larger then the requested calculation if (homogState(ho)%sizeState > 0) homogState(ho)%subState0(:,me) = homogState(ho)%State0(:,me) if (damageState_h(ho)%sizeState > 0) damageState_h(ho)%subState0(:,me) = damageState_h(ho)%State0(:,me) cutBackLooping: do while (.not. terminallyIll .and. subStep > num%subStepMinHomog) if (converged) then subFrac = subFrac + subStep subStep = min(1.0_pReal-subFrac,num%stepIncreaseHomog*subStep) ! introduce flexibility for step increase/acceleration steppingNeeded: if (subStep > num%subStepMinHomog) then ! wind forward grain starting point call constitutive_windForward(ip,el) if(homogState(ho)%sizeState > 0) homogState(ho)%subState0(:,me) = homogState(ho)%State(:,me) if(damageState_h(ho)%sizeState > 0) damageState_h(ho)%subState0(:,me) = damageState_h(ho)%State(:,me) endif steppingNeeded elseif ( (myNgrains == 1 .and. subStep <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite num%subStepSizeHomog * subStep <= num%subStepMinHomog ) then ! would require too small subStep ! cutback makes no sense if (.not. terminallyIll) & ! so first signals terminally ill... print*, ' Integration point ', ip,' at element ', el, ' terminally ill' terminallyIll = .true. ! ...and kills all others else ! cutback makes sense subStep = num%subStepSizeHomog * subStep ! crystallite had severe trouble, so do a significant cutback call constitutive_restore(ip,el,subStep < 1.0_pReal) if(homogState(ho)%sizeState > 0) homogState(ho)%State(:,me) = homogState(ho)%subState0(:,me) if(damageState_h(ho)%sizeState > 0) damageState_h(ho)%State(:,me) = damageState_h(ho)%subState0(:,me) endif if (subStep > num%subStepMinHomog) doneAndHappy = [.false.,.true.] NiterationMPstate = 0 convergenceLooping: do while (.not. (terminallyIll .or. doneAndHappy(1)) & .and. NiterationMPstate < num%nMPstate) NiterationMPstate = NiterationMPstate + 1 !-------------------------------------------------------------------------------------------------- ! deformation partitioning if (.not. doneAndHappy(1)) then ce = (el-1)*discretization_nIPs + ip call mech_partition( homogenization_F0(1:3,1:3,ce) & + (homogenization_F(1:3,1:3,ce)-homogenization_F0(1:3,1:3,ce))*(subStep+subFrac), & ip,el) converged = .true. do co = 1, myNgrains converged = converged .and. crystallite_stress(dt*subStep,co,ip,el) enddo if (.not. converged) then doneAndHappy = [.true.,.false.] else ce = (el-1)*discretization_nIPs + ip doneAndHappy = mech_updateState(dt*subStep, & homogenization_F0(1:3,1:3,ce) & + (homogenization_F(1:3,1:3,ce)-homogenization_F0(1:3,1:3,ce)) & *(subStep+subFrac), & ip,el) converged = all(doneAndHappy) endif endif enddo convergenceLooping enddo cutBackLooping enddo enddo !$OMP END DO if (.not. terminallyIll ) then !$OMP DO PRIVATE(ho,ph,ce) do el = FEsolving_execElem(1),FEsolving_execElem(2) if (terminallyIll) continue ho = material_homogenizationAt(el) do ip = FEsolving_execIP(1),FEsolving_execIP(2) ce = (el-1)*discretization_nIPs + ip call thermal_partition(homogenization_T(ce),ce) do co = 1, homogenization_Nconstituents(ho) ph = material_phaseAt(co,el) call constitutive_thermal_initializeRestorationPoints(ph,material_phaseMemberAt(co,ip,el)) if (.not. thermal_stress(dt,ph,material_phaseMemberAt(co,ip,el))) then if (.not. terminallyIll) & ! so first signals terminally ill... print*, ' Integration point ', ip,' at element ', el, ' terminally ill' terminallyIll = .true. ! ...and kills all others endif enddo enddo enddo !$OMP END DO !$OMP DO PRIVATE(ho) elementLooping3: do el = FEsolving_execElem(1),FEsolving_execElem(2) ho = material_homogenizationAt(el) IpLooping3: do ip = FEsolving_execIP(1),FEsolving_execIP(2) do co = 1, homogenization_Nconstituents(ho) call crystallite_orientations(co,ip,el) enddo call mech_homogenize(dt,ip,el) enddo IpLooping3 enddo elementLooping3 !$OMP END DO else print'(/,a,/)', ' << HOMOG >> Material Point terminally ill' endif !$OMP END PARALLEL end subroutine materialpoint_stressAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief writes homogenization results to HDF5 output file !-------------------------------------------------------------------------------------------------- subroutine homogenization_results integer :: ho character(len=:), allocatable :: group_base,group call results_closeGroup(results_addGroup('current/homogenization/')) do ho=1,size(material_name_homogenization) group_base = 'current/homogenization/'//trim(material_name_homogenization(ho)) call results_closeGroup(results_addGroup(group_base)) call mech_results(group_base,ho) group = trim(group_base)//'/damage' call results_closeGroup(results_addGroup(group)) select case(damage_type(ho)) case(DAMAGE_NONLOCAL_ID) call damage_nonlocal_results(ho,group) end select group = trim(group_base)//'/thermal' call results_closeGroup(results_addGroup(group)) select case(thermal_type(ho)) case(THERMAL_CONDUCTION_ID) call thermal_conduction_results(ho,group) end select enddo end subroutine homogenization_results !-------------------------------------------------------------------------------------------------- !> @brief Forward data after successful increment. ! ToDo: Any guessing for the current states possible? !-------------------------------------------------------------------------------------------------- subroutine homogenization_forward integer :: ho do ho = 1, size(material_name_homogenization) homogState (ho)%state0 = homogState (ho)%state damageState_h(ho)%state0 = damageState_h(ho)%state enddo end subroutine homogenization_forward !-------------------------------------------------------------------------------------------------- !-------------------------------------------------------------------------------------------------- subroutine homogenization_restartWrite(fileHandle) integer(HID_T), intent(in) :: fileHandle integer(HID_T), dimension(2) :: groupHandle integer :: ho groupHandle(1) = HDF5_addGroup(fileHandle,'homogenization') do ho = 1, size(material_name_homogenization) groupHandle(2) = HDF5_addGroup(groupHandle(1),material_name_homogenization(ho)) call HDF5_read(groupHandle(2),homogState(ho)%state,'omega') ! ToDo: should be done by mech call HDF5_closeGroup(groupHandle(2)) enddo call HDF5_closeGroup(groupHandle(1)) end subroutine homogenization_restartWrite !-------------------------------------------------------------------------------------------------- !-------------------------------------------------------------------------------------------------- subroutine homogenization_restartRead(fileHandle) integer(HID_T), intent(in) :: fileHandle integer(HID_T), dimension(2) :: groupHandle integer :: ho groupHandle(1) = HDF5_openGroup(fileHandle,'homogenization') do ho = 1, size(material_name_homogenization) groupHandle(2) = HDF5_openGroup(groupHandle(1),material_name_homogenization(ho)) call HDF5_write(groupHandle(2),homogState(ho)%state,'omega') ! ToDo: should be done by mech call HDF5_closeGroup(groupHandle(2)) enddo call HDF5_closeGroup(groupHandle(1)) end subroutine homogenization_restartRead end module homogenization