!-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @brief Parse geometry file to set up discretization and geometry for nonlocal model !-------------------------------------------------------------------------------------------------- module discretization_grid #include use PETScsys use prec use system_routines use base64 use zlib use DAMASK_interface use IO use config use results use discretization use geometry_plastic_nonlocal use FEsolving implicit none private integer, dimension(3), public, protected :: & grid !< (global) grid integer, public, protected :: & grid3, & !< (local) grid in 3rd direction grid3Offset !< (local) grid offset in 3rd direction real(pReal), dimension(3), public, protected :: & geomSize !< (global) physical size real(pReal), public, protected :: & size3, & !< (local) size in 3rd direction size3offset !< (local) size offset in 3rd direction public :: & discretization_grid_init contains !-------------------------------------------------------------------------------------------------- !> @brief reads the geometry file to obtain information on discretization !-------------------------------------------------------------------------------------------------- subroutine discretization_grid_init(restart) logical, intent(in) :: restart include 'fftw3-mpi.f03' real(pReal), dimension(3) :: & mySize, & !< domain size of this process origin !< (global) distance to origin integer, dimension(3) :: & myGrid !< domain grid of this process integer, dimension(:), allocatable :: & microstructureAt integer :: & j, & debug_element, & debug_ip integer(C_INTPTR_T) :: & devNull, z, z_offset write(6,'(/,a)') ' <<<+- discretization_grid init -+>>>'; flush(6) if(index(geometryFile,'.vtr') /= 0) then call readVTR(grid,geomSize,origin,microstructureAt) else call readGeom(grid,geomSize,origin,microstructureAt) endif !-------------------------------------------------------------------------------------------------- ! grid solver specific quantities if(worldsize>grid(3)) call IO_error(894, ext_msg='number of processes exceeds grid(3)') call fftw_mpi_init devNull = fftw_mpi_local_size_3d(int(grid(3),C_INTPTR_T), & int(grid(2),C_INTPTR_T), & int(grid(1),C_INTPTR_T)/2+1, & PETSC_COMM_WORLD, & z, & ! domain grid size along z z_offset) ! domain grid offset along z grid3 = int(z) grid3Offset = int(z_offset) size3 = geomSize(3)*real(grid3,pReal) /real(grid(3),pReal) size3Offset = geomSize(3)*real(grid3Offset,pReal)/real(grid(3),pReal) myGrid = [grid(1:2),grid3] mySize = [geomSize(1:2),size3] !------------------------------------------------------------------------------------------------- ! debug parameters debug_element = debug_root%get_asInt('element',defaultVal=1) debug_ip = debug_root%get_asInt('integrationpoint',defaultVal=1) !-------------------------------------------------------------------------------------------------- ! general discretization microstructureAt = microstructureAt(product(grid(1:2))*grid3Offset+1: & product(grid(1:2))*(grid3Offset+grid3)) ! reallocate/shrink in case of MPI call discretization_init(microstructureAt, & IPcoordinates0(myGrid,mySize,grid3Offset), & Nodes0(myGrid,mySize,grid3Offset),& merge((grid(1)+1) * (grid(2)+1) * (grid3+1),& ! write bottom layer (grid(1)+1) * (grid(2)+1) * grid3,& ! do not write bottom layer (is top of rank-1) worldrank<1)) FEsolving_execElem = [1,product(myGrid)] ! parallel loop bounds set to comprise all elements FEsolving_execIP = [1,1] ! parallel loop bounds set to comprise the only IP !-------------------------------------------------------------------------------------------------- ! store geometry information for post processing if(.not. restart) then call results_openJobFile call results_closeGroup(results_addGroup('geometry')) call results_addAttribute('grid', grid, 'geometry') call results_addAttribute('size', geomSize,'geometry') call results_addAttribute('origin',origin, 'geometry') call results_closeJobFile endif !-------------------------------------------------------------------------------------------------- ! geometry information required by the nonlocal CP model call geometry_plastic_nonlocal_setIPvolume(reshape([(product(mySize/real(myGrid,pReal)),j=1,product(myGrid))], & [1,product(myGrid)])) call geometry_plastic_nonlocal_setIParea (cellSurfaceArea(mySize,myGrid)) call geometry_plastic_nonlocal_setIPareaNormal (cellSurfaceNormal(product(myGrid))) call geometry_plastic_nonlocal_setIPneighborhood(IPneighborhood(myGrid)) !-------------------------------------------------------------------------------------------------- ! sanity checks for debugging if (debug_element < 1 .or. debug_element > product(myGrid)) call IO_error(602,ext_msg='element') ! selected element does not exist if (debug_ip /= 1) call IO_error(602,ext_msg='IP') ! selected IP does not exist end subroutine discretization_grid_init !-------------------------------------------------------------------------------------------------- !> @brief Parses geometry file !> @details important variables have an implicit "save" attribute. Therefore, this function is ! supposed to be called only once! !-------------------------------------------------------------------------------------------------- subroutine readGeom(grid,geomSize,origin,microstructure) integer, dimension(3), intent(out) :: & grid ! grid (for all processes!) real(pReal), dimension(3), intent(out) :: & geomSize, & ! size (for all processes!) origin ! origin (for all processes!) integer, dimension(:), intent(out), allocatable :: & microstructure character(len=:), allocatable :: rawData character(len=65536) :: line integer, allocatable, dimension(:) :: chunkPos integer :: & headerLength = -1, & !< length of header (in lines) fileLength, & !< length of the geom file (in characters) fileUnit, & startPos, endPos, & myStat, & l, & !< line counter c, & !< counter for # microstructures in line o, & !< order of "to" packing e, & !< "element", i.e. spectral collocation point i, j grid = -1 geomSize = -1.0_pReal !-------------------------------------------------------------------------------------------------- ! read raw data as stream inquire(file = trim(geometryFile), size=fileLength) open(newunit=fileUnit, file=trim(geometryFile), access='stream',& status='old', position='rewind', action='read',iostat=myStat) if(myStat /= 0) call IO_error(100,ext_msg=trim(geometryFile)) allocate(character(len=fileLength)::rawData) read(fileUnit) rawData close(fileUnit) !-------------------------------------------------------------------------------------------------- ! get header length endPos = index(rawData,IO_EOL) if(endPos <= index(rawData,'head')) then ! ToDo: Should be 'header' startPos = len(rawData) call IO_error(error_ID=841, ext_msg='readGeom') else chunkPos = IO_stringPos(rawData(1:endPos)) if (chunkPos(1) < 2) call IO_error(error_ID=841, ext_msg='readGeom') headerLength = IO_intValue(rawData(1:endPos),chunkPos,1) startPos = endPos + 1 endif !-------------------------------------------------------------------------------------------------- ! read and interprete header origin = 0.0_pReal l = 0 do while (l < headerLength .and. startPos < len(rawData)) endPos = startPos + index(rawData(startPos:),IO_EOL) - 1 if (endPos < startPos) endPos = len(rawData) ! end of file without new line line = rawData(startPos:endPos) startPos = endPos + 1 l = l + 1 chunkPos = IO_stringPos(trim(line)) if (chunkPos(1) < 2) cycle ! need at least one keyword value pair select case (IO_lc(IO_StringValue(trim(line),chunkPos,1)) ) case ('grid') if (chunkPos(1) > 6) then do j = 2,6,2 select case (IO_lc(IO_stringValue(line,chunkPos,j))) case('a') grid(1) = IO_intValue(line,chunkPos,j+1) case('b') grid(2) = IO_intValue(line,chunkPos,j+1) case('c') grid(3) = IO_intValue(line,chunkPos,j+1) end select enddo endif case ('size') if (chunkPos(1) > 6) then do j = 2,6,2 select case (IO_lc(IO_stringValue(line,chunkPos,j))) case('x') geomSize(1) = IO_floatValue(line,chunkPos,j+1) case('y') geomSize(2) = IO_floatValue(line,chunkPos,j+1) case('z') geomSize(3) = IO_floatValue(line,chunkPos,j+1) end select enddo endif case ('origin') if (chunkPos(1) > 6) then do j = 2,6,2 select case (IO_lc(IO_stringValue(line,chunkPos,j))) case('x') origin(1) = IO_floatValue(line,chunkPos,j+1) case('y') origin(2) = IO_floatValue(line,chunkPos,j+1) case('z') origin(3) = IO_floatValue(line,chunkPos,j+1) end select enddo endif end select enddo !-------------------------------------------------------------------------------------------------- ! sanity checks if(any(grid < 1)) & call IO_error(error_ID = 842, ext_msg='grid (readGeom)') if(any(geomSize < 0.0_pReal)) & call IO_error(error_ID = 842, ext_msg='size (readGeom)') allocate(microstructure(product(grid)), source = -1) ! too large in case of MPI (shrink later, not very elegant) !-------------------------------------------------------------------------------------------------- ! read and interpret content e = 1 do while (startPos < len(rawData)) endPos = startPos + index(rawData(startPos:),IO_EOL) - 1 if (endPos < startPos) endPos = len(rawData) ! end of file without new line line = rawData(startPos:endPos) startPos = endPos + 1 l = l + 1 chunkPos = IO_stringPos(trim(line)) noCompression: if (chunkPos(1) /= 3) then c = chunkPos(1) microstructure(e:e+c-1) = [(IO_intValue(line,chunkPos,i+1), i=0, c-1)] else noCompression compression: if (IO_lc(IO_stringValue(line,chunkPos,2)) == 'of') then c = IO_intValue(line,chunkPos,1) microstructure(e:e+c-1) = [(IO_intValue(line,chunkPos,3),i = 1,IO_intValue(line,chunkPos,1))] else if (IO_lc(IO_stringValue(line,chunkPos,2)) == 'to') then compression c = abs(IO_intValue(line,chunkPos,3) - IO_intValue(line,chunkPos,1)) + 1 o = merge(+1, -1, IO_intValue(line,chunkPos,3) > IO_intValue(line,chunkPos,1)) microstructure(e:e+c-1) = [(i, i = IO_intValue(line,chunkPos,1),IO_intValue(line,chunkPos,3),o)] else compression c = chunkPos(1) microstructure(e:e+c-1) = [(IO_intValue(line,chunkPos,i+1), i=0, c-1)] endif compression endif noCompression e = e+c end do if (e-1 /= product(grid)) call IO_error(error_ID = 843, el=e) end subroutine readGeom !-------------------------------------------------------------------------------------------------- !> @brief Parse vtk rectilinear grid (.vtr) !> @details https://vtk.org/Wiki/VTK_XML_Formats !-------------------------------------------------------------------------------------------------- subroutine readVTR(grid,geomSize,origin,microstructure) integer, dimension(3), intent(out) :: & grid ! grid (for all processes!) real(pReal), dimension(3), intent(out) :: & geomSize, & ! size (for all processes!) origin ! origin (for all processes!) integer, dimension(:), intent(out), allocatable :: & microstructure character(len=:), allocatable :: fileContent, data_type, header_type logical :: inFile,inGrid,readCoordinates,readCellData,compressed integer :: fileUnit, myStat, coord integer(pI64) :: & fileLength, & !< length of the geom file (in characters) startPos, endPos, & s grid = -1 geomSize = -1.0_pReal !-------------------------------------------------------------------------------------------------- ! read raw data as stream inquire(file = trim(geometryFile), size=fileLength) open(newunit=fileUnit, file=trim(geometryFile), access='stream',& status='old', position='rewind', action='read',iostat=myStat) if(myStat /= 0) call IO_error(100,ext_msg=trim(geometryFile)) allocate(character(len=fileLength)::fileContent) read(fileUnit) fileContent close(fileUnit) inFile = .false. inGrid = .false. readCoordinates = .false. readCelldata = .false. !-------------------------------------------------------------------------------------------------- ! interprete XML file startPos = 1_pI64 do while (startPos < len(fileContent,kind=pI64)) endPos = startPos + index(fileContent(startPos:),IO_EOL,kind=pI64) - 2_pI64 if (endPos < startPos) endPos = len(fileContent,kind=pI64) ! end of file without new line if(.not. inFile) then if(index(fileContent(startPos:endPos),'',kind=pI64) /= 0_pI64) then readCellData = .true. startPos = endPos + 2_pI64 do while (index(fileContent(startPos:endPos),'',kind=pI64) == 0_pI64) endPos = startPos + index(fileContent(startPos:),IO_EOL,kind=pI64) - 2_pI64 if(index(fileContent(startPos:endPos),'',kind=pI64) /= 0_pI64) then readCoordinates = .true. startPos = endPos + 2_pI64 coord = 0 do while (startPos',kind=pI64) /= 0_pI64) exit startPos = endPos + 2_pI64 enddo endif endif endif if(readCellData .and. readCoordinates) exit startPos = endPos + 2_pI64 end do if(.not. allocated(microstructure)) call IO_error(error_ID = 844, ext_msg='materialpoint not found') if(size(microstructure) /= product(grid)) call IO_error(error_ID = 844, ext_msg='size(materialpoint)') if(any(geomSize<=0)) call IO_error(error_ID = 844, ext_msg='size') if(any(grid<1)) call IO_error(error_ID = 844, ext_msg='grid') contains !------------------------------------------------------------------------------------------------ !> @brief determine size and origin from coordinates !------------------------------------------------------------------------------------------------ !ToDo: check for regular spacing subroutine origin_and_size(base64_str,header_type,compressed,data_type,direction) character(len=*), intent(in) :: base64_str, & ! base64 encoded string of 1D coordinates header_type, & ! header type (UInt32 or Uint64) data_type ! data type (Int32, Int64, Float32, Float64) logical, intent(in) :: compressed ! indicate whether data is zlib compressed integer, intent(in) :: direction ! direction (1=x,2=y,3=z) real(pReal), dimension(:), allocatable :: coords coords = as_pReal(base64_str,header_type,compressed,data_type) origin(direction) = coords(1) geomSize(direction) = coords(size(coords)) - coords(1) end subroutine !------------------------------------------------------------------------------------------------ !> @brief Interpret Base64 string in vtk XML file as integer of default kind !------------------------------------------------------------------------------------------------ function as_Int(base64_str,header_type,compressed,data_type) character(len=*), intent(in) :: base64_str, & ! base64 encoded string header_type, & ! header type (UInt32 or Uint64) data_type ! data type (Int32, Int64, Float32, Float64) logical, intent(in) :: compressed ! indicate whether data is zlib compressed integer, dimension(:), allocatable :: as_Int select case(data_type) case('Int32') as_Int = int(bytes_to_C_INT32_T(asBytes(base64_str,header_type,compressed))) case('Int64') as_Int = int(bytes_to_C_INT64_T(asBytes(base64_str,header_type,compressed))) case('Float32') as_Int = int(bytes_to_C_FLOAT (asBytes(base64_str,header_type,compressed))) case('Float64') as_Int = int(bytes_to_C_DOUBLE (asBytes(base64_str,header_type,compressed))) case default call IO_error(844_pInt,ext_msg='unknown data type: '//trim(data_type)) end select end function as_Int !------------------------------------------------------------------------------------------------ !> @brief Interpret Base64 string in vtk XML file as integer of pReal kind !------------------------------------------------------------------------------------------------ function as_pReal(base64_str,header_type,compressed,data_type) character(len=*), intent(in) :: base64_str, & ! base64 encoded string header_type, & ! header type (UInt32 or Uint64) data_type ! data type (Int32, Int64, Float32, Float64) logical, intent(in) :: compressed ! indicate whether data is zlib compressed real(pReal), dimension(:), allocatable :: as_pReal select case(data_type) case('Int32') as_pReal = real(bytes_to_C_INT32_T(asBytes(base64_str,header_type,compressed)),pReal) case('Int64') as_pReal = real(bytes_to_C_INT64_T(asBytes(base64_str,header_type,compressed)),pReal) case('Float32') as_pReal = real(bytes_to_C_FLOAT (asBytes(base64_str,header_type,compressed)),pReal) case('Float64') as_pReal = real(bytes_to_C_DOUBLE (asBytes(base64_str,header_type,compressed)),pReal) case default call IO_error(844_pInt,ext_msg='unknown data type: '//trim(data_type)) end select end function as_pReal !------------------------------------------------------------------------------------------------ !> @brief Interpret Base64 string in vtk XML file as bytes !------------------------------------------------------------------------------------------------ function asBytes(base64_str,header_type,compressed) result(bytes) character(len=*), intent(in) :: base64_str, & ! base64 encoded string header_type ! header type (UInt32 or Uint64) logical, intent(in) :: compressed ! indicate whether data is zlib compressed integer(C_SIGNED_CHAR), dimension(:), allocatable :: bytes if(compressed) then bytes = asBytes_compressed(base64_str,header_type) else bytes = asBytes_uncompressed(base64_str,header_type) endif end function asBytes !------------------------------------------------------------------------------------------------ !> @brief Interpret compressed Base64 string in vtk XML file as bytes !> @details A compressed Base64 string consists of a header block and a data block ! [#blocks/#u-size/#p-size/#c-size-1/#c-size-2/.../#c-size-#blocks][DATA-1/DATA-2...] ! #blocks = Number of blocks ! #u-size = Block size before compression ! #p-size = Size of last partial block (zero if it not needed) ! #c-size-i = Size in bytes of block i after compression !------------------------------------------------------------------------------------------------ function asBytes_compressed(base64_str,header_type) result(bytes) character(len=*), intent(in) :: base64_str, & ! base64 encoded string header_type ! header type (UInt32 or Uint64) integer(C_SIGNED_CHAR), dimension(:), allocatable :: bytes, bytes_inflated integer(pI64), dimension(:), allocatable :: temp, size_inflated, size_deflated integer(pI64) :: header_len, N_blocks, b,s,e if (header_type == 'UInt32') then temp = int(bytes_to_C_INT32_T(base64_to_bytes(base64_str(:base64_nChar(4_pI64)))),pI64) N_blocks = int(temp(1),pI64) header_len = 4_pI64 * (3_pI64 + N_blocks) temp = int(bytes_to_C_INT32_T(base64_to_bytes(base64_str(:base64_nChar(header_len)))),pI64) elseif(header_type == 'UInt64') then temp = int(bytes_to_C_INT64_T(base64_to_bytes(base64_str(:base64_nChar(8_pI64)))),pI64) N_blocks = int(temp(1),pI64) header_len = 8_pI64 * (3_pI64 + N_blocks) temp = int(bytes_to_C_INT64_T(base64_to_bytes(base64_str(:base64_nChar(header_len)))),pI64) endif allocate(size_inflated(N_blocks),source=temp(2)) size_inflated(N_blocks) = merge(temp(3),temp(2),temp(3)/=0_pI64) size_deflated = temp(4:) bytes_inflated = base64_to_bytes(base64_str(base64_nChar(header_len)+1_pI64:)) allocate(bytes(0)) e = 0_pI64 do b = 1, N_blocks s = e + 1_pI64 e = s + size_deflated(b) - 1_pI64 bytes = [bytes,zlib_inflate(bytes_inflated(s:e),size_inflated(b))] enddo end function asBytes_compressed !------------------------------------------------------------------------------------------------ !> @brief Interprete uncompressed Base64 string in vtk XML file as bytes !> @details An uncompressed Base64 string consists of N headers blocks and a N data blocks ![#bytes-1/DATA-1][#bytes-2/DATA-2]... !------------------------------------------------------------------------------------------------ function asBytes_uncompressed(base64_str,header_type) result(bytes) character(len=*), intent(in) :: base64_str, & ! base64 encoded string header_type ! header type (UInt32 or Uint64) integer(pI64) :: s integer(pI64), dimension(1) :: N_bytes integer(C_SIGNED_CHAR), dimension(:), allocatable :: bytes allocate(bytes(0)) s=0_pI64 if (header_type == 'UInt32') then do while(s+base64_nChar(4_pI64)<(len(base64_str,pI64))) N_bytes = int(bytes_to_C_INT32_T(base64_to_bytes(base64_str(s+1_pI64:s+base64_nChar(4_pI64)))),pI64) bytes = [bytes,base64_to_bytes(base64_str(s+1_pI64:s+base64_nChar(4_pI64+N_bytes(1))),5_pI64)] s = s + base64_nChar(4_pI64+N_bytes(1)) enddo elseif(header_type == 'UInt64') then do while(s+base64_nChar(8_pI64)<(len(base64_str,pI64))) N_bytes = int(bytes_to_C_INT64_T(base64_to_bytes(base64_str(s+1_pI64:s+base64_nChar(8_pI64)))),pI64) bytes = [bytes,base64_to_bytes(base64_str(s+1_pI64:s+base64_nChar(8_pI64+N_bytes(1))),9_pI64)] s = s + base64_nChar(8_pI64+N_bytes(1)) enddo endif end function asBytes_uncompressed !------------------------------------------------------------------------------------------------ !> @brief Get XML string value for given key !------------------------------------------------------------------------------------------------ ! ToDo: check if "=" is between key and value pure function getXMLValue(line,key) character(len=*), intent(in) :: line, key character(len=:), allocatable :: getXMLValue integer :: s,e #ifdef __INTEL_COMPILER character :: q #endif s = index(line," "//key,back=.true.) if(s==0) then getXMLValue = '' else s = s + 1 + scan(line(s+1:),"'"//'"') #ifdef __INTEL_COMPILER q = line(s-1:s-1) e = s + index(line(s:),q) - 1 #else e = s + index(line(s:),merge("'",'"',line(s-1:s-1)=="'")) - 1 #endif getXMLValue = line(s:e-1) endif end function !------------------------------------------------------------------------------------------------ !> @brief figure out if file format is understandable !------------------------------------------------------------------------------------------------ pure function fileOk(line) character(len=*),intent(in) :: line logical :: fileOk fileOk = getXMLValue(line,'type') == 'RectilinearGrid' .and. & getXMLValue(line,'byte_order') == 'LittleEndian' .and. & getXMLValue(line,'compressor') /= 'vtkLZ4DataCompressor' .and. & getXMLValue(line,'compressor') /= 'vtkLZMADataCompressor' end function fileOk !------------------------------------------------------------------------------------------------ !> @brief get grid information from '' !------------------------------------------------------------------------------------------------ function getGrid(line) character(len=*),intent(in) :: line integer,dimension(3) :: getGrid integer :: s,e,i s=scan(line,'"'//"'",back=.False.) e=scan(line,'"'//"'",back=.True.) getGrid = [(IO_intValue(line(s+1:e-1),IO_stringPos(line(s+1:e-1)),i*2),i=1,3)] end function getGrid end subroutine readVTR !--------------------------------------------------------------------------------------------------- !> @brief Calculate undeformed position of IPs/cell centers (pretend to be an element) !--------------------------------------------------------------------------------------------------- function IPcoordinates0(grid,geomSize,grid3Offset) integer, dimension(3), intent(in) :: grid ! grid (for this process!) real(pReal), dimension(3), intent(in) :: geomSize ! size (for this process!) integer, intent(in) :: grid3Offset ! grid(3) offset real(pReal), dimension(3,product(grid)) :: ipCoordinates0 integer :: & a,b,c, & i i = 0 do c = 1, grid(3); do b = 1, grid(2); do a = 1, grid(1) i = i + 1 IPcoordinates0(1:3,i) = geomSize/real(grid,pReal) * (real([a,b,grid3Offset+c],pReal) -0.5_pReal) enddo; enddo; enddo end function IPcoordinates0 !--------------------------------------------------------------------------------------------------- !> @brief Calculate position of undeformed nodes (pretend to be an element) !--------------------------------------------------------------------------------------------------- pure function nodes0(grid,geomSize,grid3Offset) integer, dimension(3), intent(in) :: grid ! grid (for this process!) real(pReal), dimension(3), intent(in) :: geomSize ! size (for this process!) integer, intent(in) :: grid3Offset ! grid(3) offset real(pReal), dimension(3,product(grid+1)) :: nodes0 integer :: & a,b,c, & n n = 0 do c = 0, grid3; do b = 0, grid(2); do a = 0, grid(1) n = n + 1 nodes0(1:3,n) = geomSize/real(grid,pReal) * real([a,b,grid3Offset+c],pReal) enddo; enddo; enddo end function nodes0 !-------------------------------------------------------------------------------------------------- !> @brief Calculate IP interface areas !-------------------------------------------------------------------------------------------------- pure function cellSurfaceArea(geomSize,grid) real(pReal), dimension(3), intent(in) :: geomSize ! size (for this process!) integer, dimension(3), intent(in) :: grid ! grid (for this process!) real(pReal), dimension(6,1,product(grid)) :: cellSurfaceArea cellSurfaceArea(1:2,1,:) = geomSize(2)/real(grid(2)) * geomSize(3)/real(grid(3)) cellSurfaceArea(3:4,1,:) = geomSize(3)/real(grid(3)) * geomSize(1)/real(grid(1)) cellSurfaceArea(5:6,1,:) = geomSize(1)/real(grid(1)) * geomSize(2)/real(grid(2)) end function cellSurfaceArea !-------------------------------------------------------------------------------------------------- !> @brief Calculate IP interface areas normals !-------------------------------------------------------------------------------------------------- pure function cellSurfaceNormal(nElems) integer, intent(in) :: nElems real(pReal), dimension(3,6,1,nElems) :: cellSurfaceNormal cellSurfaceNormal(1:3,1,1,:) = spread([+1.0_pReal, 0.0_pReal, 0.0_pReal],2,nElems) cellSurfaceNormal(1:3,2,1,:) = spread([-1.0_pReal, 0.0_pReal, 0.0_pReal],2,nElems) cellSurfaceNormal(1:3,3,1,:) = spread([ 0.0_pReal,+1.0_pReal, 0.0_pReal],2,nElems) cellSurfaceNormal(1:3,4,1,:) = spread([ 0.0_pReal,-1.0_pReal, 0.0_pReal],2,nElems) cellSurfaceNormal(1:3,5,1,:) = spread([ 0.0_pReal, 0.0_pReal,+1.0_pReal],2,nElems) cellSurfaceNormal(1:3,6,1,:) = spread([ 0.0_pReal, 0.0_pReal,-1.0_pReal],2,nElems) end function cellSurfaceNormal !-------------------------------------------------------------------------------------------------- !> @brief Build IP neighborhood relations !-------------------------------------------------------------------------------------------------- pure function IPneighborhood(grid) integer, dimension(3), intent(in) :: grid ! grid (for this process!) integer, dimension(3,6,1,product(grid)) :: IPneighborhood !< 6 neighboring IPs as [element ID, IP ID, face ID] integer :: & x,y,z, & e e = 0 do z = 0,grid(3)-1; do y = 0,grid(2)-1; do x = 0,grid(1)-1 e = e + 1 ! element ID IPneighborhood(1,1,1,e) = z * grid(1) * grid(2) & + y * grid(1) & + modulo(x+1,grid(1)) & + 1 IPneighborhood(1,2,1,e) = z * grid(1) * grid(2) & + y * grid(1) & + modulo(x-1,grid(1)) & + 1 IPneighborhood(1,3,1,e) = z * grid(1) * grid(2) & + modulo(y+1,grid(2)) * grid(1) & + x & + 1 IPneighborhood(1,4,1,e) = z * grid(1) * grid(2) & + modulo(y-1,grid(2)) * grid(1) & + x & + 1 IPneighborhood(1,5,1,e) = modulo(z+1,grid(3)) * grid(1) * grid(2) & + y * grid(1) & + x & + 1 IPneighborhood(1,6,1,e) = modulo(z-1,grid(3)) * grid(1) * grid(2) & + y * grid(1) & + x & + 1 ! IP ID IPneighborhood(2,:,1,e) = 1 ! face ID IPneighborhood(3,1,1,e) = 2 IPneighborhood(3,2,1,e) = 1 IPneighborhood(3,3,1,e) = 4 IPneighborhood(3,4,1,e) = 3 IPneighborhood(3,5,1,e) = 6 IPneighborhood(3,6,1,e) = 5 enddo; enddo; enddo end function IPneighborhood end module discretization_grid