#!/usr/bin/env python3 import os import sys from optparse import OptionParser import numpy as np import damask scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptID = ' '.join([scriptName,damask.version]) def merge_dicts(*dict_args): """Given any number of dicts, shallow copy and merge into a new dict, with precedence going to key value pairs in latter dicts.""" result = {} for dictionary in dict_args: result.update(dictionary) return result def divFFT(geomdim,field): """Calculate divergence of a vector or tensor field by transforming into Fourier space.""" shapeFFT = np.array(np.shape(field))[0:3] grid = np.array(np.shape(field)[2::-1]) N = grid.prod() # field size n = np.array(np.shape(field)[3:]).prod() # data size field_fourier = np.fft.rfftn(field,axes=(0,1,2),s=shapeFFT) # differentiation in Fourier space TWOPIIMG = 2.0j*np.pi einsums = { 3:'ijkl,ijkl->ijk', # vector, 3 -> 1 9:'ijkm,ijklm->ijkl', # tensor, 3x3 -> 3 } k_sk = np.where(np.arange(grid[2])>grid[2]//2,np.arange(grid[2])-grid[2],np.arange(grid[2]))/geomdim[0] if grid[2]%2 == 0: k_sk[grid[2]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011) k_sj = np.where(np.arange(grid[1])>grid[1]//2,np.arange(grid[1])-grid[1],np.arange(grid[1]))/geomdim[1] if grid[1]%2 == 0: k_sj[grid[1]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011) k_si = np.arange(grid[0]//2+1)/geomdim[2] kk, kj, ki = np.meshgrid(k_sk,k_sj,k_si,indexing = 'ij') k_s = np.concatenate((ki[:,:,:,None],kj[:,:,:,None],kk[:,:,:,None]),axis = 3).astype('c16') div_fourier = np.einsum(einsums[n],k_s,field_fourier)*TWOPIIMG return np.fft.irfftn(div_fourier,axes=(0,1,2),s=shapeFFT).reshape([N,n//3]) # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog option(s) [ASCIItable(s)]', description = """ Add column(s) containing curl of requested column(s). Operates on periodic ordered three-dimensional data sets of vector and tensor fields. """, version = scriptID) parser.add_option('-p','--pos','--periodiccellcenter', dest = 'pos', type = 'string', metavar = 'string', help = 'label of coordinates [%default]') parser.add_option('-l','--label', dest = 'data', action = 'extend', metavar = '', help = 'label(s) of field values') parser.set_defaults(pos = 'pos', ) (options,filenames) = parser.parse_args() if options.data is None: parser.error('no data column specified.') # --- define possible data types ------------------------------------------------------------------- datatypes = { 3: {'name': 'vector', 'shape': [3], }, 9: {'name': 'tensor', 'shape': [3,3], }, } # --- loop over input files ------------------------------------------------------------------------ if filenames == []: filenames = [None] for name in filenames: try: table = damask.ASCIItable(name = name,buffered = False) except: continue damask.util.report(scriptName,name) # --- interpret header ---------------------------------------------------------------------------- table.head_read() remarks = [] errors = [] active = [] coordDim = table.label_dimension(options.pos) if coordDim != 3: errors.append('coordinates "{}" must be three-dimensional.'.format(options.pos)) else: coordCol = table.label_index(options.pos) for me in options.data: dim = table.label_dimension(me) if dim in datatypes: active.append(merge_dicts({'label':me},datatypes[dim])) remarks.append('differentiating {} "{}"...'.format(datatypes[dim]['name'],me)) else: remarks.append('skipping "{}" of dimension {}...'.format(me,dim) if dim != -1 else \ '"{}" not found...'.format(me) ) if remarks != []: damask.util.croak(remarks) if errors != []: damask.util.croak(errors) table.close(dismiss = True) continue # ------------------------------------------ assemble header -------------------------------------- table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) for data in active: table.labels_append(['divFFT({})'.format(data['label']) if data['shape'] == [3] \ else '{}_divFFT({})'.format(i+1,data['label']) for i in range(np.prod(np.array(data['shape']))//3)]) # extend ASCII header with new labels table.head_write() # --------------- figure out size and grid --------------------------------------------------------- table.data_readArray() grid,size = damask.util.coordGridAndSize(table.data[:,table.label_indexrange(options.pos)]) # ------------------------------------------ process value field ----------------------------------- stack = [table.data] for data in active: # we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation stack.append(divFFT(size[::-1], table.data[:,table.label_indexrange(data['label'])]. reshape(grid[::-1].tolist()+data['shape']))) # ------------------------------------------ output result ----------------------------------------- if len(stack) > 1: table.data = np.hstack(tuple(stack)) table.data_writeArray('%.12g') # ------------------------------------------ output finalization ----------------------------------- table.close() # close input ASCII table (works for stdin)