!* $Id$ !************************************ !* Module: CONSTITUTIVE * !************************************ MODULE constitutive_dislotwin !* Include other modules use prec, only: pReal,pInt implicit none !* Lists of states and physical parameters character(len=*), parameter :: constitutive_dislotwin_label = 'dislotwin' character(len=18), dimension(2), parameter:: constitutive_dislotwin_listBasicSlipStates = (/'rhoEdge ', & 'rhoEdgeDip'/) character(len=18), dimension(1), parameter:: constitutive_dislotwin_listBasicTwinStates = (/'twinFraction'/) character(len=18), dimension(4), parameter:: constitutive_dislotwin_listDependentSlipStates =(/'invLambdaSlip ', & 'invLambdaSlipTwin', & 'meanFreePathSlip ', & 'tauSlipThreshold '/) character(len=18), dimension(4), parameter:: constitutive_dislotwin_listDependentTwinStates =(/'invLambdaTwin ', & 'meanFreePathTwin', & 'tauTwinThreshold', & 'twinVolume '/) real(pReal), parameter :: kB = 1.38e-23_pReal ! Boltzmann constant in J/Kelvin !* Definition of global variables integer(pInt), dimension(:), allocatable :: constitutive_dislotwin_sizeDotState, & ! number of dotStates constitutive_dislotwin_sizeState, & ! total number of microstructural state variables constitutive_dislotwin_sizePostResults ! cumulative size of post results integer(pInt), dimension(:,:), allocatable, target :: constitutive_dislotwin_sizePostResult ! size of each post result output character(len=64), dimension(:,:), allocatable, target :: constitutive_dislotwin_output ! name of each post result output character(len=32), dimension(:), allocatable :: constitutive_dislotwin_structureName ! name of the lattice structure integer(pInt), dimension(:), allocatable :: constitutive_dislotwin_structure, & ! number representing the kind of lattice structure constitutive_dislotwin_totalNslip, & ! total number of active slip systems for each instance constitutive_dislotwin_totalNtwin ! total number of active twin systems for each instance integer(pInt), dimension(:,:), allocatable :: constitutive_dislotwin_Nslip, & ! number of active slip systems for each family and instance constitutive_dislotwin_Ntwin, & ! number of active twin systems for each family and instance constitutive_dislotwin_slipFamily, & ! lookup table relating active slip system to slip family for each instance constitutive_dislotwin_twinFamily, & ! lookup table relating active twin system to twin family for each instance constitutive_dislotwin_slipSystemLattice, & ! lookup table relating active slip system index to lattice slip system index for each instance constitutive_dislotwin_twinSystemLattice ! lookup table relating active twin system index to lattice twin system index for each instance real(pReal), dimension(:), allocatable :: constitutive_dislotwin_CoverA, & ! c/a ratio for hex type lattice constitutive_dislotwin_C11, & ! C11 element in elasticity matrix constitutive_dislotwin_C12, & ! C12 element in elasticity matrix constitutive_dislotwin_C13, & ! C13 element in elasticity matrix constitutive_dislotwin_C33, & ! C33 element in elasticity matrix constitutive_dislotwin_C44, & ! C44 element in elasticity matrix constitutive_dislotwin_Gmod, & ! shear modulus constitutive_dislotwin_CAtomicVolume, & ! atomic volume in Bugers vector unit constitutive_dislotwin_D0, & ! prefactor for self-diffusion coefficient constitutive_dislotwin_Qsd, & ! activation energy for dislocation climb constitutive_dislotwin_GrainSize, & ! grain size constitutive_dislotwin_p, & ! p-exponent in glide velocity constitutive_dislotwin_q, & ! q-exponent in glide velocity constitutive_dislotwin_MaxTwinFraction, & ! maximum allowed total twin volume fraction constitutive_dislotwin_r, & ! r-exponent in twin nucleation rate constitutive_dislotwin_CEdgeDipMinDistance, & ! constitutive_dislotwin_Cmfptwin, & ! constitutive_dislotwin_Cthresholdtwin, & ! constitutive_dislotwin_SolidSolutionStrength, & ! Strength due to elements in solid solution constitutive_dislotwin_L0, & ! Length of twin nuclei in Burgers vectors constitutive_dislotwin_aTolRho ! absolute tolerance for integration of dislocation density real(pReal), dimension(:,:,:), allocatable :: constitutive_dislotwin_Cslip_66 ! elasticity matrix in Mandel notation for each instance real(pReal), dimension(:,:,:,:), allocatable :: constitutive_dislotwin_Ctwin_66 ! twin elasticity matrix in Mandel notation for each instance real(pReal), dimension(:,:,:,:,:), allocatable :: constitutive_dislotwin_Cslip_3333 ! elasticity matrix for each instance real(pReal), dimension(:,:,:,:,:,:), allocatable :: constitutive_dislotwin_Ctwin_3333 ! twin elasticity matrix for each instance real(pReal), dimension(:,:), allocatable :: constitutive_dislotwin_rhoEdge0, & ! initial edge dislocation density per slip system for each family and instance constitutive_dislotwin_rhoEdgeDip0, & ! initial edge dipole density per slip system for each family and instance constitutive_dislotwin_burgersPerSlipFamily, & ! absolute length of burgers vector [m] for each slip family and instance constitutive_dislotwin_burgersPerSlipSystem, & ! absolute length of burgers vector [m] for each slip system and instance constitutive_dislotwin_burgersPerTwinFamily, & ! absolute length of burgers vector [m] for each twin family and instance constitutive_dislotwin_burgersPerTwinSystem, & ! absolute length of burgers vector [m] for each twin system and instance constitutive_dislotwin_QedgePerSlipFamily, & ! activation energy for glide [J] for each slip family and instance constitutive_dislotwin_QedgePerSlipSystem, & ! activation energy for glide [J] for each slip system and instance constitutive_dislotwin_v0PerSlipFamily, & ! dislocation velocity prefactor [m/s] for each family and instance constitutive_dislotwin_v0PerSlipSystem, & ! dislocation velocity prefactor [m/s] for each slip system and instance constitutive_dislotwin_Ndot0PerTwinFamily, & ! twin nucleation rate [1/m³s] for each twin family and instance constitutive_dislotwin_Ndot0PerTwinSystem, & ! twin nucleation rate [1/m³s] for each twin system and instance constitutive_dislotwin_twinsizePerTwinFamily, & ! twin thickness [m] for each twin family and instance constitutive_dislotwin_twinsizePerTwinSystem, & ! twin thickness [m] for each twin system and instance constitutive_dislotwin_CLambdaSlipPerSlipFamily, & ! Adj. parameter for distance between 2 forest dislocations for each slip family and instance constitutive_dislotwin_CLambdaSlipPerSlipSystem, & ! Adj. parameter for distance between 2 forest dislocations for each slip system and instance constitutive_dislotwin_interactionSlipSlip, & ! coefficients for slip-slip interaction for each interaction type and instance constitutive_dislotwin_interactionSlipTwin, & ! coefficients for slip-twin interaction for each interaction type and instance constitutive_dislotwin_interactionTwinSlip, & ! coefficients for twin-slip interaction for each interaction type and instance constitutive_dislotwin_interactionTwinTwin ! coefficients for twin-twin interaction for each interaction type and instance real(pReal), dimension(:,:,:), allocatable :: constitutive_dislotwin_interactionMatrixSlipSlip, & ! interaction matrix of the different slip systems for each instance constitutive_dislotwin_interactionMatrixSlipTwin, & ! interaction matrix of slip systems with twin systems for each instance constitutive_dislotwin_interactionMatrixTwinSlip, & ! interaction matrix of twin systems with slip systems for each instance constitutive_dislotwin_interactionMatrixTwinTwin, & ! interaction matrix of the different twin systems for each instance constitutive_dislotwin_forestProjectionEdge ! matrix of forest projections of edge dislocations for each instance CONTAINS !**************************************** !* - constitutive_dislotwin_init !* - constitutive_dislotwin_stateInit !* - constitutive_dislotwin_relevantState !* - constitutive_dislotwin_homogenizedC !* - constitutive_dislotwin_microstructure !* - constitutive_dislotwin_LpAndItsTangent !* - consistutive_dislotwin_dotState !* - constitutive_dislotwin_dotTemperature !* - consistutive_dislotwin_postResults !**************************************** subroutine constitutive_dislotwin_init(file) !************************************** !* Module initialization * !************************************** use prec, only: pInt,pReal use math, only: math_Mandel3333to66,math_Voigt66to3333,math_mul3x3 use IO use material use lattice !* Input variables integer(pInt), intent(in) :: file !* Local variables integer(pInt), parameter :: maxNchunks = 21 integer(pInt), dimension(1+2*maxNchunks) :: positions integer(pInt) section,maxNinstance,f,i,j,k,l,m,n,o,p,q,r,s,s1,s2,t1,t2,ns,nt,output,mySize,myStructure,maxTotalNslip,maxTotalNtwin character(len=64) tag character(len=1024) line !write(6,*) !write(6,'(a20,a20,a12)') '<<<+- constitutive_',constitutive_dislotwin_label,' init -+>>>' !write(6,*) '$Id$' !write(6,*) maxNinstance = count(phase_constitution == constitutive_dislotwin_label) if (maxNinstance == 0) return !* Space allocation for global variables allocate(constitutive_dislotwin_sizeDotState(maxNinstance)) allocate(constitutive_dislotwin_sizeState(maxNinstance)) allocate(constitutive_dislotwin_sizePostResults(maxNinstance)) allocate(constitutive_dislotwin_sizePostResult(maxval(phase_Noutput),maxNinstance)) allocate(constitutive_dislotwin_output(maxval(phase_Noutput),maxNinstance)) constitutive_dislotwin_sizeDotState = 0_pInt constitutive_dislotwin_sizeState = 0_pInt constitutive_dislotwin_sizePostResults = 0_pInt constitutive_dislotwin_sizePostResult = 0_pInt constitutive_dislotwin_output = '' allocate(constitutive_dislotwin_structureName(maxNinstance)) allocate(constitutive_dislotwin_structure(maxNinstance)) allocate(constitutive_dislotwin_Nslip(lattice_maxNslipFamily,maxNinstance)) allocate(constitutive_dislotwin_Ntwin(lattice_maxNtwinFamily,maxNinstance)) allocate(constitutive_dislotwin_slipFamily(lattice_maxNslip,maxNinstance)) allocate(constitutive_dislotwin_twinFamily(lattice_maxNtwin,maxNinstance)) allocate(constitutive_dislotwin_slipSystemLattice(lattice_maxNslip,maxNinstance)) allocate(constitutive_dislotwin_twinSystemLattice(lattice_maxNtwin,maxNinstance)) allocate(constitutive_dislotwin_totalNslip(maxNinstance)) allocate(constitutive_dislotwin_totalNtwin(maxNinstance)) constitutive_dislotwin_structureName = '' constitutive_dislotwin_structure = 0_pInt constitutive_dislotwin_Nslip = 0_pInt constitutive_dislotwin_Ntwin = 0_pInt constitutive_dislotwin_slipFamily = 0_pInt constitutive_dislotwin_twinFamily = 0_pInt constitutive_dislotwin_slipSystemLattice = 0.0_pReal constitutive_dislotwin_twinSystemLattice = 0.0_pReal constitutive_dislotwin_totalNslip = 0_pInt constitutive_dislotwin_totalNtwin = 0_pInt allocate(constitutive_dislotwin_CoverA(maxNinstance)) allocate(constitutive_dislotwin_C11(maxNinstance)) allocate(constitutive_dislotwin_C12(maxNinstance)) allocate(constitutive_dislotwin_C13(maxNinstance)) allocate(constitutive_dislotwin_C33(maxNinstance)) allocate(constitutive_dislotwin_C44(maxNinstance)) allocate(constitutive_dislotwin_Gmod(maxNinstance)) allocate(constitutive_dislotwin_CAtomicVolume(maxNinstance)) allocate(constitutive_dislotwin_D0(maxNinstance)) allocate(constitutive_dislotwin_Qsd(maxNinstance)) allocate(constitutive_dislotwin_GrainSize(maxNinstance)) allocate(constitutive_dislotwin_p(maxNinstance)) allocate(constitutive_dislotwin_q(maxNinstance)) allocate(constitutive_dislotwin_MaxTwinFraction(maxNinstance)) allocate(constitutive_dislotwin_r(maxNinstance)) allocate(constitutive_dislotwin_CEdgeDipMinDistance(maxNinstance)) allocate(constitutive_dislotwin_Cmfptwin(maxNinstance)) allocate(constitutive_dislotwin_Cthresholdtwin(maxNinstance)) allocate(constitutive_dislotwin_SolidSolutionStrength(maxNinstance)) allocate(constitutive_dislotwin_L0(maxNinstance)) allocate(constitutive_dislotwin_aTolRho(maxNinstance)) allocate(constitutive_dislotwin_Cslip_66(6,6,maxNinstance)) allocate(constitutive_dislotwin_Cslip_3333(3,3,3,3,maxNinstance)) constitutive_dislotwin_CoverA = 0.0_pReal constitutive_dislotwin_C11 = 0.0_pReal constitutive_dislotwin_C12 = 0.0_pReal constitutive_dislotwin_C13 = 0.0_pReal constitutive_dislotwin_C33 = 0.0_pReal constitutive_dislotwin_C44 = 0.0_pReal constitutive_dislotwin_Gmod = 0.0_pReal constitutive_dislotwin_CAtomicVolume = 0.0_pReal constitutive_dislotwin_D0 = 0.0_pReal constitutive_dislotwin_Qsd = 0.0_pReal constitutive_dislotwin_GrainSize = 0.0_pReal constitutive_dislotwin_p = 0.0_pReal constitutive_dislotwin_q = 0.0_pReal constitutive_dislotwin_MaxTwinFraction = 0.0_pReal constitutive_dislotwin_r = 0.0_pReal constitutive_dislotwin_CEdgeDipMinDistance = 0.0_pReal constitutive_dislotwin_Cmfptwin = 0.0_pReal constitutive_dislotwin_Cthresholdtwin = 0.0_pReal constitutive_dislotwin_SolidSolutionStrength= 0.0_pReal constitutive_dislotwin_L0 = 0.0_pReal constitutive_dislotwin_aTolRho = 0.0_pReal constitutive_dislotwin_Cslip_66 = 0.0_pReal constitutive_dislotwin_Cslip_3333 = 0.0_pReal allocate(constitutive_dislotwin_rhoEdge0(lattice_maxNslipFamily,maxNinstance)) allocate(constitutive_dislotwin_rhoEdgeDip0(lattice_maxNslipFamily,maxNinstance)) allocate(constitutive_dislotwin_burgersPerSlipFamily(lattice_maxNslipFamily,maxNinstance)) allocate(constitutive_dislotwin_burgersPerTwinFamily(lattice_maxNtwinFamily,maxNinstance)) allocate(constitutive_dislotwin_QedgePerSlipFamily(lattice_maxNslipFamily,maxNinstance)) allocate(constitutive_dislotwin_v0PerSlipFamily(lattice_maxNslipFamily,maxNinstance)) allocate(constitutive_dislotwin_Ndot0PerTwinFamily(lattice_maxNtwinFamily,maxNinstance)) allocate(constitutive_dislotwin_twinsizePerTwinFamily(lattice_maxNtwinFamily,maxNinstance)) allocate(constitutive_dislotwin_CLambdaSlipPerSlipFamily(lattice_maxNslipFamily,maxNinstance)) constitutive_dislotwin_rhoEdge0 = 0.0_pReal constitutive_dislotwin_rhoEdgeDip0 = 0.0_pReal constitutive_dislotwin_burgersPerSlipFamily = 0.0_pReal constitutive_dislotwin_burgersPerTwinFamily = 0.0_pReal constitutive_dislotwin_QedgePerSlipFamily = 0.0_pReal constitutive_dislotwin_v0PerSlipFamily = 0.0_pReal constitutive_dislotwin_Ndot0PerTwinFamily = 0.0_pReal constitutive_dislotwin_twinsizePerTwinFamily = 0.0_pReal constitutive_dislotwin_CLambdaSlipPerSlipFamily = 0.0_pReal allocate(constitutive_dislotwin_interactionSlipSlip(lattice_maxNinteraction,maxNinstance)) allocate(constitutive_dislotwin_interactionSlipTwin(lattice_maxNinteraction,maxNinstance)) allocate(constitutive_dislotwin_interactionTwinSlip(lattice_maxNinteraction,maxNinstance)) allocate(constitutive_dislotwin_interactionTwinTwin(lattice_maxNinteraction,maxNinstance)) constitutive_dislotwin_interactionSlipSlip = 0.0_pReal constitutive_dislotwin_interactionSlipTwin = 0.0_pReal constitutive_dislotwin_interactionTwinSlip = 0.0_pReal constitutive_dislotwin_interactionTwinTwin = 0.0_pReal !* Readout data from material.config file rewind(file) line = '' section = 0 do while (IO_lc(IO_getTag(line,'<','>')) /= 'phase') ! wind forward to <phase> read(file,'(a1024)',END=100) line enddo do ! read thru sections of phase part read(file,'(a1024)',END=100) line if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') exit ! stop at next part if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1 output = 0 ! reset output counter endif if (section > 0 .and. phase_constitution(section) == constitutive_dislotwin_label) then ! one of my sections i = phase_constitutionInstance(section) ! which instance of my constitution is present phase positions = IO_stringPos(line,maxNchunks) tag = IO_lc(IO_stringValue(line,positions,1)) ! extract key select case(tag) case ('(output)') output = output + 1 constitutive_dislotwin_output(output,i) = IO_lc(IO_stringValue(line,positions,2)) case ('lattice_structure') constitutive_dislotwin_structureName(i) = IO_lc(IO_stringValue(line,positions,2)) case ('covera_ratio') constitutive_dislotwin_CoverA(i) = IO_floatValue(line,positions,2) case ('c11') constitutive_dislotwin_C11(i) = IO_floatValue(line,positions,2) case ('c12') constitutive_dislotwin_C12(i) = IO_floatValue(line,positions,2) case ('c13') constitutive_dislotwin_C13(i) = IO_floatValue(line,positions,2) case ('c33') constitutive_dislotwin_C33(i) = IO_floatValue(line,positions,2) case ('c44') constitutive_dislotwin_C44(i) = IO_floatValue(line,positions,2) case ('nslip') forall (j = 1:lattice_maxNslipFamily) & constitutive_dislotwin_Nslip(j,i) = IO_intValue(line,positions,1+j) case ('ntwin') forall (j = 1:lattice_maxNtwinFamily) & constitutive_dislotwin_Ntwin(j,i) = IO_intValue(line,positions,1+j) case ('rhoedge0') forall (j = 1:lattice_maxNslipFamily) & constitutive_dislotwin_rhoEdge0(j,i) = IO_floatValue(line,positions,1+j) case ('rhoedgedip0') forall (j = 1:lattice_maxNslipFamily) & constitutive_dislotwin_rhoEdgeDip0(j,i) = IO_floatValue(line,positions,1+j) case ('slipburgers') forall (j = 1:lattice_maxNslipFamily) & constitutive_dislotwin_burgersPerSlipFamily(j,i) = IO_floatValue(line,positions,1+j) case ('twinburgers') forall (j = 1:lattice_maxNtwinFamily) & constitutive_dislotwin_burgersPerTwinFamily(j,i) = IO_floatValue(line,positions,1+j) case ('qedge') forall (j = 1:lattice_maxNslipFamily) & constitutive_dislotwin_QedgePerSlipFamily(j,i) = IO_floatValue(line,positions,1+j) case ('v0') forall (j = 1:lattice_maxNslipFamily) & constitutive_dislotwin_v0PerSlipFamily(j,i) = IO_floatValue(line,positions,1+j) case ('ndot0') forall (j = 1:lattice_maxNtwinFamily) & constitutive_dislotwin_Ndot0PerTwinFamily(j,i) = IO_floatValue(line,positions,1+j) case ('twinsize') forall (j = 1:lattice_maxNtwinFamily) & constitutive_dislotwin_twinsizePerTwinFamily(j,i) = IO_floatValue(line,positions,1+j) case ('clambdaslip') forall (j = 1:lattice_maxNslipFamily) & constitutive_dislotwin_CLambdaSlipPerSlipFamily(j,i) = IO_floatValue(line,positions,1+j) case ('grainsize') constitutive_dislotwin_GrainSize(i) = IO_floatValue(line,positions,2) case ('maxtwinfraction') constitutive_dislotwin_MaxTwinFraction(i) = IO_floatValue(line,positions,2) case ('pexponent') constitutive_dislotwin_p(i) = IO_floatValue(line,positions,2) case ('qexponent') constitutive_dislotwin_q(i) = IO_floatValue(line,positions,2) case ('rexponent') constitutive_dislotwin_r(i) = IO_floatValue(line,positions,2) case ('d0') constitutive_dislotwin_D0(i) = IO_floatValue(line,positions,2) case ('qsd') constitutive_dislotwin_Qsd(i) = IO_floatValue(line,positions,2) case ('atol_rho') constitutive_dislotwin_aTolRho(i) = IO_floatValue(line,positions,2) case ('cmfptwin') constitutive_dislotwin_Cmfptwin(i) = IO_floatValue(line,positions,2) case ('cthresholdtwin') constitutive_dislotwin_Cthresholdtwin(i) = IO_floatValue(line,positions,2) case ('solidsolutionstrength') constitutive_dislotwin_SolidSolutionStrength(i) = IO_floatValue(line,positions,2) case ('l0') constitutive_dislotwin_L0(i) = IO_floatValue(line,positions,2) case ('cedgedipmindistance') constitutive_dislotwin_CEdgeDipMinDistance(i) = IO_floatValue(line,positions,2) case ('catomicvolume') constitutive_dislotwin_CAtomicVolume(i) = IO_floatValue(line,positions,2) case ('interactionslipslip') forall (j = 1:lattice_maxNinteraction) & constitutive_dislotwin_interactionSlipSlip(j,i) = IO_floatValue(line,positions,1+j) case ('interactionsliptwin') forall (j = 1:lattice_maxNinteraction) & constitutive_dislotwin_interactionSlipTwin(j,i) = IO_floatValue(line,positions,1+j) case ('interactiontwinslip') forall (j = 1:lattice_maxNinteraction) & constitutive_dislotwin_interactionTwinSlip(j,i) = IO_floatValue(line,positions,1+j) case ('interactiontwintwin') forall (j = 1:lattice_maxNinteraction) & constitutive_dislotwin_interactionTwinTwin(j,i) = IO_floatValue(line,positions,1+j) end select endif enddo 100 do i = 1,maxNinstance constitutive_dislotwin_structure(i) = & lattice_initializeStructure(constitutive_dislotwin_structureName(i),constitutive_dislotwin_CoverA(i)) myStructure = constitutive_dislotwin_structure(i) !* Sanity checks if (myStructure < 1 .or. myStructure > 3) call IO_error(205) if (sum(constitutive_dislotwin_Nslip(:,i)) <= 0_pInt) call IO_error(225) if (sum(constitutive_dislotwin_Ntwin(:,i)) < 0_pInt) call IO_error(225) !*** do f = 1,lattice_maxNslipFamily if (constitutive_dislotwin_Nslip(f,i) > 0_pInt) then if (constitutive_dislotwin_rhoEdge0(f,i) < 0.0_pReal) call IO_error(220) if (constitutive_dislotwin_rhoEdgeDip0(f,i) < 0.0_pReal) call IO_error(220) if (constitutive_dislotwin_burgersPerSlipFamily(f,i) <= 0.0_pReal) call IO_error(221) if (constitutive_dislotwin_v0PerSlipFamily(f,i) <= 0.0_pReal) call IO_error(226) endif enddo do f = 1,lattice_maxNtwinFamily if (constitutive_dislotwin_Nslip(f,i) > 0_pInt) then if (constitutive_dislotwin_burgersPerTwinFamily(f,i) <= 0.0_pReal) call IO_error(221) !*** if (constitutive_dislotwin_Ndot0PerTwinFamily(f,i) < 0.0_pReal) call IO_error(226) !*** endif enddo ! if (any(constitutive_dislotwin_interactionSlipSlip(1:maxval(lattice_interactionSlipSlip(:,:,myStructure)),i) < 1.0_pReal)) call IO_error(229) if (constitutive_dislotwin_CAtomicVolume(i) <= 0.0_pReal) call IO_error(230) if (constitutive_dislotwin_D0(i) <= 0.0_pReal) call IO_error(231) if (constitutive_dislotwin_Qsd(i) <= 0.0_pReal) call IO_error(232) if (constitutive_dislotwin_aTolRho(i) <= 0.0_pReal) call IO_error(233) !* Determine total number of active slip or twin systems constitutive_dislotwin_Nslip(:,i) = min(lattice_NslipSystem(:,myStructure),constitutive_dislotwin_Nslip(:,i)) constitutive_dislotwin_Ntwin(:,i) = min(lattice_NtwinSystem(:,myStructure),constitutive_dislotwin_Ntwin(:,i)) constitutive_dislotwin_totalNslip(i) = sum(constitutive_dislotwin_Nslip(:,i)) constitutive_dislotwin_totalNtwin(i) = sum(constitutive_dislotwin_Ntwin(:,i)) enddo !* Allocation of variables whose size depends on the total number of active slip systems maxTotalNslip = maxval(constitutive_dislotwin_totalNslip) maxTotalNtwin = maxval(constitutive_dislotwin_totalNtwin) allocate(constitutive_dislotwin_burgersPerSlipSystem(maxTotalNslip, maxNinstance)) allocate(constitutive_dislotwin_burgersPerTwinSystem(maxTotalNtwin, maxNinstance)) allocate(constitutive_dislotwin_QedgePerSlipSystem(maxTotalNslip, maxNinstance)) allocate(constitutive_dislotwin_v0PerSlipSystem(maxTotalNslip, maxNinstance)) allocate(constitutive_dislotwin_Ndot0PerTwinSystem(maxTotalNtwin, maxNinstance)) allocate(constitutive_dislotwin_twinsizePerTwinSystem(maxTotalNtwin, maxNinstance)) allocate(constitutive_dislotwin_CLambdaSlipPerSlipSystem(maxTotalNslip, maxNinstance)) constitutive_dislotwin_burgersPerSlipSystem = 0.0_pReal constitutive_dislotwin_burgersPerTwinSystem = 0.0_pReal constitutive_dislotwin_QedgePerSlipSystem = 0.0_pReal constitutive_dislotwin_v0PerSlipSystem = 0.0_pReal constitutive_dislotwin_Ndot0PerTwinSystem = 0.0_pReal constitutive_dislotwin_twinsizePerTwinSystem = 0.0_pReal constitutive_dislotwin_CLambdaSlipPerSlipSystem = 0.0_pReal allocate(constitutive_dislotwin_interactionMatrixSlipSlip(maxTotalNslip,maxTotalNslip,maxNinstance)) allocate(constitutive_dislotwin_interactionMatrixSlipTwin(maxTotalNslip,maxTotalNtwin,maxNinstance)) allocate(constitutive_dislotwin_interactionMatrixTwinSlip(maxTotalNtwin,maxTotalNslip,maxNinstance)) allocate(constitutive_dislotwin_interactionMatrixTwinTwin(maxTotalNtwin,maxTotalNtwin,maxNinstance)) allocate(constitutive_dislotwin_forestProjectionEdge(maxTotalNslip,maxTotalNslip,maxNinstance)) constitutive_dislotwin_interactionMatrixSlipSlip = 0.0_pReal constitutive_dislotwin_interactionMatrixSlipTwin = 0.0_pReal constitutive_dislotwin_interactionMatrixTwinSlip = 0.0_pReal constitutive_dislotwin_interactionMatrixTwinTwin = 0.0_pReal constitutive_dislotwin_forestProjectionEdge = 0.0_pReal allocate(constitutive_dislotwin_Ctwin_66(6,6,maxTotalNtwin,maxNinstance)) allocate(constitutive_dislotwin_Ctwin_3333(3,3,3,3,maxTotalNtwin,maxNinstance)) constitutive_dislotwin_Ctwin_66 = 0.0_pReal constitutive_dislotwin_Ctwin_3333 = 0.0_pReal do i = 1,maxNinstance myStructure = constitutive_dislotwin_structure(i) !* Inverse lookup of my slip system family l = 0_pInt do f = 1,lattice_maxNslipFamily do k = 1,constitutive_dislotwin_Nslip(f,i) l = l + 1 constitutive_dislotwin_slipFamily(l,i) = f constitutive_dislotwin_slipSystemLattice(l,i) = sum(lattice_NslipSystem(1:f-1,myStructure)) + k enddo; enddo !* Inverse lookup of my twin system family l = 0_pInt do f = 1,lattice_maxNtwinFamily do k = 1,constitutive_dislotwin_Ntwin(f,i) l = l + 1 constitutive_dislotwin_twinFamily(l,i) = f constitutive_dislotwin_twinSystemLattice(l,i) = sum(lattice_NtwinSystem(1:f-1,myStructure)) + k enddo; enddo !* Determine size of state array ns = constitutive_dislotwin_totalNslip(i) nt = constitutive_dislotwin_totalNtwin(i) constitutive_dislotwin_sizeDotState(i) = & size(constitutive_dislotwin_listBasicSlipStates)*ns+size(constitutive_dislotwin_listBasicTwinStates)*nt constitutive_dislotwin_sizeState(i) = & constitutive_dislotwin_sizeDotState(i)+ & size(constitutive_dislotwin_listDependentSlipStates)*ns+size(constitutive_dislotwin_listDependentTwinStates)*nt !* Determine size of postResults array do o = 1,maxval(phase_Noutput) select case(constitutive_dislotwin_output(o,i)) case('edge_density', & 'dipole_density', & 'shear_rate_slip', & 'mfp_slip', & 'resolved_stress_slip', & 'threshold_stress_slip', & 'edge_dipole_distance', & 'stress_exponent' & ) mySize = constitutive_dislotwin_totalNslip(i) case('twin_fraction', & 'shear_rate_twin', & 'mfp_twin', & 'resolved_stress_twin', & 'threshold_stress_twin' & ) mySize = constitutive_dislotwin_totalNtwin(i) case default mySize = 0_pInt end select if (mySize > 0_pInt) then ! any meaningful output found constitutive_dislotwin_sizePostResult(o,i) = mySize constitutive_dislotwin_sizePostResults(i) = constitutive_dislotwin_sizePostResults(i) + mySize endif enddo !* Elasticity matrix and shear modulus according to material.config select case (myStructure) case(1:2) ! cubic(s) forall(k=1:3) forall(j=1:3) & constitutive_dislotwin_Cslip_66(k,j,i) = constitutive_dislotwin_C12(i) constitutive_dislotwin_Cslip_66(k,k,i) = constitutive_dislotwin_C11(i) constitutive_dislotwin_Cslip_66(k+3,k+3,i) = constitutive_dislotwin_C44(i) end forall case(3:) ! all hex constitutive_dislotwin_Cslip_66(1,1,i) = constitutive_dislotwin_C11(i) constitutive_dislotwin_Cslip_66(2,2,i) = constitutive_dislotwin_C11(i) constitutive_dislotwin_Cslip_66(3,3,i) = constitutive_dislotwin_C33(i) constitutive_dislotwin_Cslip_66(1,2,i) = constitutive_dislotwin_C12(i) constitutive_dislotwin_Cslip_66(2,1,i) = constitutive_dislotwin_C12(i) constitutive_dislotwin_Cslip_66(1,3,i) = constitutive_dislotwin_C13(i) constitutive_dislotwin_Cslip_66(3,1,i) = constitutive_dislotwin_C13(i) constitutive_dislotwin_Cslip_66(2,3,i) = constitutive_dislotwin_C13(i) constitutive_dislotwin_Cslip_66(3,2,i) = constitutive_dislotwin_C13(i) constitutive_dislotwin_Cslip_66(4,4,i) = constitutive_dislotwin_C44(i) constitutive_dislotwin_Cslip_66(5,5,i) = constitutive_dislotwin_C44(i) constitutive_dislotwin_Cslip_66(6,6,i) = 0.5_pReal*(constitutive_dislotwin_C11(i)-constitutive_dislotwin_C12(i)) end select constitutive_dislotwin_Cslip_66(:,:,i) = math_Mandel3333to66(math_Voigt66to3333(constitutive_dislotwin_Cslip_66(:,:,i))) constitutive_dislotwin_Cslip_3333(:,:,:,:,i) = math_Voigt66to3333(constitutive_dislotwin_Cslip_66(:,:,i)) constitutive_dislotwin_Gmod(i) = & 0.2_pReal*(constitutive_dislotwin_C11(i)-constitutive_dislotwin_C12(i))+0.3_pReal*constitutive_dislotwin_C44(i) !* Construction of the twin elasticity matrices do j=1,lattice_maxNtwinFamily do k=1,constitutive_dislotwin_Ntwin(j,i) do l=1,3 ; do m=1,3 ; do n=1,3 ; do o=1,3 ; do p=1,3 ; do q=1,3 ; do r=1,3 ; do s=1,3 constitutive_dislotwin_Ctwin_3333(l,m,n,o,sum(constitutive_dislotwin_Nslip(1:j-1,i))+k,i) = & constitutive_dislotwin_Ctwin_3333(l,m,n,o,sum(constitutive_dislotwin_Nslip(1:j-1,i))+k,i) + & constitutive_dislotwin_Cslip_3333(p,q,r,s,i)*& lattice_Qtwin(l,p,sum(lattice_NslipSystem(1:j-1,myStructure))+k,myStructure)* & lattice_Qtwin(m,q,sum(lattice_NslipSystem(1:j-1,myStructure))+k,myStructure)* & lattice_Qtwin(n,r,sum(lattice_NslipSystem(1:j-1,myStructure))+k,myStructure)* & lattice_Qtwin(o,s,sum(lattice_NslipSystem(1:j-1,myStructure))+k,myStructure) enddo ; enddo ; enddo ; enddo ; enddo ; enddo ; enddo ; enddo constitutive_dislotwin_Ctwin_66(:,:,k,i) = math_Mandel3333to66(constitutive_dislotwin_Ctwin_3333(:,:,:,:,k,i)) enddo enddo !* Burgers vector, dislocation velocity prefactor, mean free path prefactor and minimum dipole distance for each slip system do s = 1,constitutive_dislotwin_totalNslip(i) f = constitutive_dislotwin_slipFamily(s,i) constitutive_dislotwin_burgersPerSlipSystem(s,i) = constitutive_dislotwin_burgersPerSlipFamily(f,i) constitutive_dislotwin_QedgePerSlipSystem(s,i) = constitutive_dislotwin_QedgePerSlipFamily(f,i) constitutive_dislotwin_v0PerSlipSystem(s,i) = constitutive_dislotwin_v0PerSlipFamily(f,i) constitutive_dislotwin_CLambdaSlipPerSlipSystem(s,i) = constitutive_dislotwin_CLambdaSlipPerSlipFamily(f,i) enddo !* Burgers vector, nucleation rate prefactor and twin size for each twin system do s = 1,constitutive_dislotwin_totalNtwin(i) f = constitutive_dislotwin_twinFamily(s,i) constitutive_dislotwin_burgersPerTwinSystem(s,i) = constitutive_dislotwin_burgersPerTwinFamily(f,i) constitutive_dislotwin_Ndot0PerTwinSystem(s,i) = constitutive_dislotwin_Ndot0PerTwinFamily(f,i) constitutive_dislotwin_twinsizePerTwinSystem(s,i) = constitutive_dislotwin_twinsizePerTwinFamily(f,i) enddo !* Construction of interaction matrices do s1 = 1,constitutive_dislotwin_totalNslip(i) do s2 = 1,constitutive_dislotwin_totalNslip(i) constitutive_dislotwin_interactionMatrixSlipSlip(s1,s2,i) = & constitutive_dislotwin_interactionSlipSlip(lattice_interactionSlipSlip(constitutive_dislotwin_slipSystemLattice(s1,i), & constitutive_dislotwin_slipSystemLattice(s2,i), & myStructure),i) enddo; enddo do s1 = 1,constitutive_dislotwin_totalNslip(i) do t2 = 1,constitutive_dislotwin_totalNtwin(i) constitutive_dislotwin_interactionMatrixSlipTwin(s1,t2,i) = & constitutive_dislotwin_interactionSlipTwin(lattice_interactionSlipTwin(constitutive_dislotwin_slipSystemLattice(s1,i), & constitutive_dislotwin_twinSystemLattice(t2,i), & myStructure),i) enddo; enddo do t1 = 1,constitutive_dislotwin_totalNtwin(i) do s2 = 1,constitutive_dislotwin_totalNslip(i) constitutive_dislotwin_interactionMatrixTwinSlip(t1,s2,i) = & constitutive_dislotwin_interactionTwinSlip(lattice_interactionTwinSlip(constitutive_dislotwin_twinSystemLattice(t1,i), & constitutive_dislotwin_slipSystemLattice(s2,i), & myStructure),i) enddo; enddo do t1 = 1,constitutive_dislotwin_totalNtwin(i) do t2 = 1,constitutive_dislotwin_totalNtwin(i) constitutive_dislotwin_interactionMatrixTwinTwin(t1,t2,i) = & constitutive_dislotwin_interactionTwinTwin(lattice_interactionTwinTwin(constitutive_dislotwin_twinSystemLattice(t1,i), & constitutive_dislotwin_twinSystemLattice(t2,i), & myStructure),i) enddo; enddo !* Calculation of forest projections for edge dislocations do s1 = 1,constitutive_dislotwin_totalNslip(i) do s2 = 1,constitutive_dislotwin_totalNslip(i) constitutive_dislotwin_forestProjectionEdge(s1,s2,i) = & abs(math_mul3x3(lattice_sn(:,constitutive_dislotwin_slipSystemLattice(s1,i),myStructure), & lattice_st(:,constitutive_dislotwin_slipSystemLattice(s2,i),myStructure))) enddo; enddo enddo return end subroutine function constitutive_dislotwin_stateInit(myInstance) !********************************************************************* !* initial microstructural state * !********************************************************************* use prec, only: pReal,pInt use math, only: pi use lattice, only: lattice_maxNslipFamily,lattice_maxNtwinFamily implicit none !* Input-Output variables integer(pInt) :: myInstance real(pReal), dimension(constitutive_dislotwin_sizeState(myInstance)) :: constitutive_dislotwin_stateInit !* Local variables integer(pInt) s0,s1,s,t,f,ns,nt real(pReal), dimension(constitutive_dislotwin_totalNslip(myInstance)) :: rhoEdge0, & rhoEdgeDip0, & invLambdaSlip0, & MeanFreePathSlip0, & tauSlipThreshold0 real(pReal), dimension(constitutive_dislotwin_totalNtwin(myInstance)) :: MeanFreePathTwin0,TwinVolume0 ns = constitutive_dislotwin_totalNslip(myInstance) nt = constitutive_dislotwin_totalNtwin(myInstance) constitutive_dislotwin_stateInit = 0.0_pReal !* Initialize basic slip state variables s1 = 0_pInt do f = 1,lattice_maxNslipFamily s0 = s1 + 1_pInt s1 = s0 + constitutive_dislotwin_Nslip(f,myInstance) - 1_pInt do s = s0,s1 rhoEdge0(s) = constitutive_dislotwin_rhoEdge0(f,myInstance) rhoEdgeDip0(s) = constitutive_dislotwin_rhoEdgeDip0(f,myInstance) enddo enddo constitutive_dislotwin_stateInit(1:ns) = rhoEdge0 constitutive_dislotwin_stateInit(ns+1:2*ns) = rhoEdgeDip0 !* Initialize dependent slip microstructural variables forall (s = 1:ns) & invLambdaSlip0(s) = sqrt(dot_product((rhoEdge0+rhoEdgeDip0),constitutive_dislotwin_forestProjectionEdge(1:ns,s,myInstance)))/ & constitutive_dislotwin_CLambdaSlipPerSlipSystem(s,myInstance) constitutive_dislotwin_stateInit(2*ns+nt+1:3*ns+nt) = invLambdaSlip0 forall (s = 1:ns) & MeanFreePathSlip0(s) = & constitutive_dislotwin_GrainSize(myInstance)/(1.0_pReal+invLambdaSlip0(s)*constitutive_dislotwin_GrainSize(myInstance)) constitutive_dislotwin_stateInit(4*ns+2*nt+1:5*ns+2*nt) = MeanFreePathSlip0 forall (s = 1:ns) & tauSlipThreshold0(s) = constitutive_dislotwin_SolidSolutionStrength(myInstance)+ & constitutive_dislotwin_Gmod(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(s,myInstance)* & sqrt(dot_product((rhoEdge0+rhoEdgeDip0),constitutive_dislotwin_interactionMatrixSlipSlip(1:ns,s,myInstance))) constitutive_dislotwin_stateInit(5*ns+3*nt+1:6*ns+3*nt) = tauSlipThreshold0 !* Initialize dependent twin microstructural variables forall (t = 1:nt) & MeanFreePathTwin0(t) = constitutive_dislotwin_GrainSize(myInstance) constitutive_dislotwin_stateInit(5*ns+2*nt+1:5*ns+3*nt) = MeanFreePathTwin0 forall (t = 1:nt) & TwinVolume0(t) = & (pi/6.0_pReal)*constitutive_dislotwin_twinsizePerTwinSystem(t,myInstance)*MeanFreePathTwin0(t)**(2.0_pReal) constitutive_dislotwin_stateInit(6*ns+4*nt+1:6*ns+5*nt) = TwinVolume0 !write(6,*) '#STATEINIT#' !write(6,*) !write(6,'(a,/,4(3(f30.20,x)/))') 'RhoEdge',rhoEdge0 !write(6,'(a,/,4(3(f30.20,x)/))') 'RhoEdgedip',rhoEdgeDip0 !write(6,'(a,/,4(3(f30.20,x)/))') 'invLambdaSlip',invLambdaSlip0 !write(6,'(a,/,4(3(f30.20,x)/))') 'MeanFreePathSlip',MeanFreePathSlip0 !write(6,'(a,/,4(3(f30.20,x)/))') 'tauSlipThreshold', tauSlipThreshold0 !write(6,'(a,/,4(3(f30.20,x)/))') 'MeanFreePathTwin', MeanFreePathTwin0 !write(6,'(a,/,4(3(f30.20,x)/))') 'TwinVolume', TwinVolume0 return end function pure function constitutive_dislotwin_aTolState(myInstance) !********************************************************************* !* absolute state tolerance * !********************************************************************* use prec, only: pReal, pInt implicit none !* Input-Output variables integer(pInt), intent(in) :: myInstance real(pReal), dimension(constitutive_dislotwin_sizeState(myInstance)) :: constitutive_dislotwin_aTolState constitutive_dislotwin_aTolState = constitutive_dislotwin_aTolRho(myInstance) return endfunction pure function constitutive_dislotwin_homogenizedC(state,g,ip,el) !********************************************************************* !* calculates homogenized elacticity matrix * !* - state : microstructure quantities * !* - g : component-ID of current integration point * !* - ip : current integration point * !* - el : current element * !********************************************************************* use prec, only: pReal,pInt,p_vec use mesh, only: mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains,material_phase,phase_constitutionInstance implicit none !* Input-Output variables integer(pInt), intent(in) :: g,ip,el type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state real(pReal), dimension(6,6) :: constitutive_dislotwin_homogenizedC !* Local variables integer(pInt) myInstance,ns,nt,i real(pReal) sumf !* Shortened notation myInstance = phase_constitutionInstance(material_phase(g,ip,el)) ns = constitutive_dislotwin_totalNslip(myInstance) nt = constitutive_dislotwin_totalNtwin(myInstance) !* Total twin volume fraction sumf = sum(state(g,ip,el)%p((2*ns+1):(2*ns+nt))) ! safe for nt == 0 !* Homogenized elasticity matrix constitutive_dislotwin_homogenizedC = (1.0_pReal-sumf)*constitutive_dislotwin_Cslip_66(:,:,myInstance) do i=1,nt constitutive_dislotwin_homogenizedC = & constitutive_dislotwin_homogenizedC + state(g,ip,el)%p(2*ns+i)*constitutive_dislotwin_Ctwin_66(:,:,i,myInstance) enddo return end function subroutine constitutive_dislotwin_microstructure(Temperature,state,g,ip,el) !********************************************************************* !* calculates quantities characterizing the microstructure * !* - Temperature : temperature * !* - state : microstructure quantities * !* - ipc : component-ID of current integration point * !* - ip : current integration point * !* - el : current element * !********************************************************************* use prec, only: pReal,pInt,p_vec use math, only: pi use mesh, only: mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains,material_phase,phase_constitutionInstance use lattice, only: lattice_interactionSlipTwin,lattice_interactionTwinTwin !use debug, only: debugger implicit none !* Input-Output variables integer(pInt), intent(in) :: g,ip,el real(pReal), intent(in) :: Temperature type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(inout) :: state !* Local variables integer(pInt) myInstance,myStructure,ns,nt,s,t real(pReal) sumf,sfe real(pReal), dimension(constitutive_dislotwin_totalNtwin(phase_constitutionInstance(material_phase(g,ip,el)))) :: fOverStacksize !* Shortened notation myInstance = phase_constitutionInstance(material_phase(g,ip,el)) myStructure = constitutive_dislotwin_structure(myInstance) ns = constitutive_dislotwin_totalNslip(myInstance) nt = constitutive_dislotwin_totalNtwin(myInstance) !* State: 1 : ns rho_edge !* State: ns+1 : 2*ns rho_dipole !* State: 2*ns+1 : 2*ns+nt f !* State: 2*ns+nt+1 : 3*ns+nt 1/lambda_slip !* State: 3*ns+nt+1 : 4*ns+nt 1/lambda_sliptwin !* State: 4*ns+nt+1 : 4*ns+2*nt 1/lambda_twin !* State: 4*ns+2*nt+1 : 5*ns+2*nt mfp_slip !* State: 5*ns+2*nt+1 : 5*ns+3*nt mfp_twin !* State: 5*ns+3*nt+1 : 6*ns+3*nt threshold_stress_slip !* State: 6*ns+3*nt+1 : 6*ns+4*nt threshold_stress_twin !* State: 6*ns+4*nt+1 : 6*ns+5*nt twin volume !* Total twin volume fraction sumf = sum(state(g,ip,el)%p((2*ns+1):(2*ns+nt))) ! safe for nt == 0 !* Stacking fault energy sfe = 0.0002_pReal*Temperature-0.0396_pReal !* rescaled twin volume fraction for topology forall (t = 1:nt) & fOverStacksize(t) = & state(g,ip,el)%p(2*ns+t)/constitutive_dislotwin_twinsizePerTwinSystem(t,myInstance) !* 1/mean free distance between 2 forest dislocations seen by a moving dislocation forall (s = 1:ns) & state(g,ip,el)%p(2*ns+nt+s) = & sqrt(dot_product((state(g,ip,el)%p(1:ns)+state(g,ip,el)%p(ns+1:2*ns)),& constitutive_dislotwin_forestProjectionEdge(1:ns,s,myInstance)))/ & constitutive_dislotwin_CLambdaSlipPerSlipSystem(s,myInstance) !* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation !$OMP CRITICAL (evilmatmul) state(g,ip,el)%p((3*ns+nt+1):(4*ns+nt)) = 0.0_pReal if (nt > 0_pInt) & state(g,ip,el)%p((3*ns+nt+1):(4*ns+nt)) = & matmul(constitutive_dislotwin_interactionMatrixSlipTwin(1:ns,1:nt,myInstance),fOverStacksize(1:nt))/(1.0_pReal-sumf) !$OMP END CRITICAL (evilmatmul) !* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin !$OMP CRITICAL (evilmatmul) if (nt > 0_pInt) & state(g,ip,el)%p((4*ns+nt+1):(4*ns+2*nt)) = & matmul(constitutive_dislotwin_interactionMatrixTwinTwin(1:nt,1:nt,myInstance),fOverStacksize(1:nt))/(1.0_pReal-sumf) !$OMP END CRITICAL (evilmatmul) !* mean free path between 2 obstacles seen by a moving dislocation do s = 1,ns if (nt > 0_pInt) then state(g,ip,el)%p(4*ns+2*nt+s) = & constitutive_dislotwin_GrainSize(myInstance)/(1.0_pReal+constitutive_dislotwin_GrainSize(myInstance)*& (state(g,ip,el)%p(2*ns+nt+s)+state(g,ip,el)%p(3*ns+nt+s))) else state(g,ip,el)%p(4*ns+s) = & constitutive_dislotwin_GrainSize(myInstance)/& (1.0_pReal+constitutive_dislotwin_GrainSize(myInstance)*(state(g,ip,el)%p(2*ns+s))) endif enddo !* mean free path between 2 obstacles seen by a growing twin forall (t = 1:nt) & state(g,ip,el)%p(5*ns+2*nt+t) = & (constitutive_dislotwin_Cmfptwin(myInstance)*constitutive_dislotwin_GrainSize(myInstance))/& (1.0_pReal+constitutive_dislotwin_GrainSize(myInstance)*state(g,ip,el)%p(4*ns+nt+t)) !* threshold stress for dislocation motion forall (s = 1:ns) & state(g,ip,el)%p(5*ns+3*nt+s) = constitutive_dislotwin_SolidSolutionStrength(myInstance)+ & constitutive_dislotwin_Gmod(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(s,myInstance)*& sqrt(dot_product((state(g,ip,el)%p(1:ns)+state(g,ip,el)%p(ns+1:2*ns)),& constitutive_dislotwin_interactionMatrixSlipSlip(1:ns,s,myInstance))) !* threshold stress for growing twin forall (t = 1:nt) & state(g,ip,el)%p(6*ns+3*nt+t) = & constitutive_dislotwin_Cthresholdtwin(myInstance)*& (sfe/(3.0_pReal*constitutive_dislotwin_burgersPerTwinSystem(t,myInstance))+& 3.0_pReal*constitutive_dislotwin_burgersPerTwinSystem(t,myInstance)*constitutive_dislotwin_Gmod(myInstance)/& (constitutive_dislotwin_L0(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(t,myInstance))) !* final twin volume after growth forall (t = 1:nt) & state(g,ip,el)%p(6*ns+4*nt+t) = & (pi/6.0_pReal)*constitutive_dislotwin_twinsizePerTwinSystem(t,myInstance)*state(g,ip,el)%p(5*ns+2*nt+t)**(2.0_pReal) !if ((ip==1).and.(el==1)) then ! write(6,*) '#MICROSTRUCTURE#' ! write(6,*) ! write(6,'(a,/,4(3(f10.4,x)/))') 'rhoEdge',state(g,ip,el)%p(1:ns)/1e9 ! write(6,'(a,/,4(3(f10.4,x)/))') 'rhoEdgeDip',state(g,ip,el)%p(ns+1:2*ns)/1e9 ! write(6,'(a,/,4(3(f10.4,x)/))') 'Fraction',state(g,ip,el)%p(2*ns+1:2*ns+nt) !endif return end subroutine subroutine constitutive_dislotwin_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperature,state,g,ip,el) !********************************************************************* !* calculates plastic velocity gradient and its tangent * !* INPUT: * !* - Temperature : temperature * !* - state : microstructure quantities * !* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) * !* - ipc : component-ID at current integration point * !* - ip : current integration point * !* - el : current element * !* OUTPUT: * !* - Lp : plastic velocity gradient * !* - dLp_dTstar : derivative of Lp (4th-rank tensor) * !********************************************************************* use prec, only: pReal,pInt,p_vec use math, only: math_Plain3333to99 use mesh, only: mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains,material_phase,phase_constitutionInstance use lattice, only: lattice_Sslip,lattice_Sslip_v,lattice_Stwin,lattice_Stwin_v,lattice_maxNslipFamily,lattice_maxNtwinFamily, & lattice_NslipSystem,lattice_NtwinSystem,lattice_shearTwin implicit none !* Input-Output variables integer(pInt), intent(in) :: g,ip,el real(pReal), intent(in) :: Temperature real(pReal), dimension(6), intent(in) :: Tstar_v type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(inout) :: state real(pReal), dimension(3,3), intent(out) :: Lp real(pReal), dimension(9,9), intent(out) :: dLp_dTstar !* Local variables integer(pInt) myInstance,myStructure,ns,nt,f,i,j,k,l,m,n,index_myFamily real(pReal) sumf,StressRatio_p,StressRatio_pminus1,StressRatio_r,BoltzmannRatio,DotGamma0 real(pReal), dimension(3,3,3,3) :: dLp_dTstar3333 real(pReal), dimension(constitutive_dislotwin_totalNslip(phase_constitutionInstance(material_phase(g,ip,el)))) :: & gdot_slip,dgdot_dtauslip,tau_slip real(pReal), dimension(constitutive_dislotwin_totalNtwin(phase_constitutionInstance(material_phase(g,ip,el)))) :: & gdot_twin,dgdot_dtautwin,tau_twin !* Shortened notation myInstance = phase_constitutionInstance(material_phase(g,ip,el)) myStructure = constitutive_dislotwin_structure(myInstance) ns = constitutive_dislotwin_totalNslip(myInstance) nt = constitutive_dislotwin_totalNtwin(myInstance) !* Total twin volume fraction sumf = sum(state(g,ip,el)%p((2*ns+1):(2*ns+nt))) ! safe for nt == 0 Lp = 0.0_pReal dLp_dTstar3333 = 0.0_pReal dLp_dTstar = 0.0_pReal !* Dislocation glide part gdot_slip = 0.0_pReal dgdot_dtauslip = 0.0_pReal j = 0_pInt do f = 1,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1,myStructure)) ! at which index starts my family do i = 1,constitutive_dislotwin_Nslip(f,myInstance) ! process each (active) slip system in family j = j+1_pInt !* Calculation of Lp !* Resolved shear stress on slip system tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure)) !* Stress ratios StressRatio_p = (abs(tau_slip(j))/state(g,ip,el)%p(5*ns+3*nt+j))**constitutive_dislotwin_p(myInstance) StressRatio_pminus1 = (abs(tau_slip(j))/state(g,ip,el)%p(5*ns+3*nt+j))**(constitutive_dislotwin_p(myInstance)-1.0_pReal) !* Boltzmann ratio BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(f,myInstance)/(kB*Temperature) !* Initial shear rates DotGamma0 = & state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*& constitutive_dislotwin_v0PerSlipSystem(f,myInstance) !* Shear rates due to slip gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1-StressRatio_p)**constitutive_dislotwin_q(myInstance))*& sign(1.0_pReal,tau_slip(j)) !* Derivatives of shear rates dgdot_dtauslip(j) = & ((abs(gdot_slip(j))*BoltzmannRatio*& constitutive_dislotwin_p(myInstance)*constitutive_dislotwin_q(myInstance))/state(g,ip,el)%p(5*ns+3*nt+j))*& StressRatio_pminus1*(1-StressRatio_p)**(constitutive_dislotwin_q(myInstance)-1.0_pReal) !* Plastic velocity gradient for dislocation glide Lp = Lp + (1.0_pReal - sumf)*gdot_slip(j)*lattice_Sslip(:,:,index_myFamily+i,myStructure) !* Calculation of the tangent of Lp forall (k=1:3,l=1:3,m=1:3,n=1:3) & dLp_dTstar3333(k,l,m,n) = & dLp_dTstar3333(k,l,m,n) + dgdot_dtauslip(j)*& lattice_Sslip(k,l,index_myFamily+i,myStructure)*& lattice_Sslip(m,n,index_myFamily+i,myStructure) enddo enddo !* Mechanical twinning part gdot_twin = 0.0_pReal dgdot_dtautwin = 0.0_pReal j = 0_pInt do f = 1,lattice_maxNtwinFamily ! loop over all slip families index_myFamily = sum(lattice_NtwinSystem(1:f-1,myStructure)) ! at which index starts my family do i = 1,constitutive_dislotwin_Ntwin(f,myInstance) ! process each (active) slip system in family j = j+1_pInt !* Calculation of Lp !* Resolved shear stress on twin system tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,myStructure)) !* Stress ratios StressRatio_r = (state(g,ip,el)%p(6*ns+3*nt+j)/tau_twin(j))**constitutive_dislotwin_r(myInstance) !* Shear rates and their derivatives due to twin if ( tau_twin(j) > 0.0_pReal ) then gdot_twin(j) = & (constitutive_dislotwin_MaxTwinFraction(myInstance)-sumf)*lattice_shearTwin(index_myFamily+i,myStructure)*& state(g,ip,el)%p(6*ns+4*nt+j)*constitutive_dislotwin_Ndot0PerTwinSystem(f,myInstance)*exp(-StressRatio_r) dgdot_dtautwin(j) = ((gdot_twin(j)*constitutive_dislotwin_r(myInstance))/tau_twin(j))*StressRatio_r endif !* Plastic velocity gradient for mechanical twinning Lp = Lp + gdot_twin(j)*lattice_Stwin(:,:,index_myFamily+i,myStructure) !* Calculation of the tangent of Lp forall (k=1:3,l=1:3,m=1:3,n=1:3) & dLp_dTstar3333(k,l,m,n) = & dLp_dTstar3333(k,l,m,n) + dgdot_dtautwin(j)*& lattice_Stwin(k,l,index_myFamily+i,myStructure)*& lattice_Stwin(m,n,index_myFamily+i,myStructure) enddo enddo dLp_dTstar = math_Plain3333to99(dLp_dTstar3333) !if ((ip==1).and.(el==1)) then ! write(6,*) '#LP/TANGENT#' ! write(6,*) ! write(6,*) 'Tstar_v', Tstar_v ! write(6,*) 'tau_slip', tau_slip ! write(6,'(a10,/,4(3(e20.8,x),/))') 'state',state(1,1,1)%p ! write(6,'(a,/,3(3(f10.4,x)/))') 'Lp',Lp ! write(6,'(a,/,9(9(f10.4,x)/))') 'dLp_dTstar',dLp_dTstar !endif return end subroutine function constitutive_dislotwin_dotState(Tstar_v,Temperature,state,g,ip,el) !********************************************************************* !* rate of change of microstructure * !* INPUT: * !* - Temperature : temperature * !* - state : microstructure quantities * !* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) * !* - ipc : component-ID at current integration point * !* - ip : current integration point * !* - el : current element * !* OUTPUT: * !* - constitutive_dotState : evolution of state variable * !********************************************************************* use prec, only: pReal,pInt,p_vec use math, only: pi use mesh, only: mesh_NcpElems, mesh_maxNips use material, only: homogenization_maxNgrains, material_phase, phase_constitutionInstance use lattice, only: lattice_Sslip,lattice_Sslip_v, & lattice_Stwin,lattice_Stwin_v, & lattice_maxNslipFamily,lattice_maxNtwinFamily, & lattice_NslipSystem,lattice_NtwinSystem, & lattice_shearTwin implicit none !* Input-Output variables integer(pInt), intent(in) :: g,ip,el real(pReal), intent(in) :: Temperature real(pReal), dimension(6), intent(in) :: Tstar_v type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state real(pReal), dimension(constitutive_dislotwin_sizeDotState(phase_constitutionInstance(material_phase(g,ip,el)))) :: & constitutive_dislotwin_dotState !* Local variables integer(pInt) MyInstance,MyStructure,ns,nt,f,i,j,index_myFamily real(pReal) sumf,StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0,& EdgeDipMinDistance,AtomicVolume,VacancyDiffusion,StressRatio_r real(pReal), dimension(constitutive_dislotwin_totalNslip(phase_constitutionInstance(material_phase(g,ip,el)))) :: & gdot_slip,tau_slip,DotRhoMultiplication,EdgeDipDistance,DotRhoEdgeEdgeAnnihilation,DotRhoEdgeDipAnnihilation,& ClimbVelocity,DotRhoEdgeDipClimb,DotRhoDipFormation real(pReal), dimension(constitutive_dislotwin_totalNtwin(phase_constitutionInstance(material_phase(g,ip,el)))) :: & tau_twin !* Shortened notation myInstance = phase_constitutionInstance(material_phase(g,ip,el)) MyStructure = constitutive_dislotwin_structure(myInstance) ns = constitutive_dislotwin_totalNslip(myInstance) nt = constitutive_dislotwin_totalNtwin(myInstance) !* Total twin volume fraction sumf = sum(state(g,ip,el)%p((2*ns+1):(2*ns+nt))) ! safe for nt == 0 constitutive_dislotwin_dotState = 0.0_pReal !* Dislocation density evolution gdot_slip = 0.0_pReal j = 0_pInt do f = 1,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1,MyStructure)) ! at which index starts my family do i = 1,constitutive_dislotwin_Nslip(f,myInstance) ! process each (active) slip system in family j = j+1_pInt !* Resolved shear stress on slip system tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure)) !* Stress ratios StressRatio_p = (abs(tau_slip(j))/state(g,ip,el)%p(5*ns+3*nt+j))**constitutive_dislotwin_p(myInstance) StressRatio_pminus1 = (abs(tau_slip(j))/state(g,ip,el)%p(5*ns+3*nt+j))**(constitutive_dislotwin_p(myInstance)-1.0_pReal) !* Boltzmann ratio BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(f,myInstance)/(kB*Temperature) !* Initial shear rates DotGamma0 = & state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*& constitutive_dislotwin_v0PerSlipSystem(f,myInstance) !* Shear rates due to slip gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1-StressRatio_p)**constitutive_dislotwin_q(myInstance))*& sign(1.0_pReal,tau_slip(j)) !* Multiplication DotRhoMultiplication(j) = abs(gdot_slip(j))/& (constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*state(g,ip,el)%p(4*ns+2*nt+j)) !* Dipole formation EdgeDipMinDistance = & constitutive_dislotwin_CEdgeDipMinDistance(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance) if (tau_slip(j) == 0.0_pReal) then DotRhoDipFormation(j) = 0.0_pReal else EdgeDipDistance(j) = & (3.0_pReal*constitutive_dislotwin_Gmod(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance))/& (16.0_pReal*pi*abs(tau_slip(j))) if (EdgeDipDistance(j)>state(g,ip,el)%p(4*ns+2*nt+j)) EdgeDipDistance(j)=state(g,ip,el)%p(4*ns+2*nt+j) if (EdgeDipDistance(j)<EdgeDipMinDistance) EdgeDipDistance(j)=EdgeDipMinDistance DotRhoDipFormation(j) = & ((2.0_pReal*EdgeDipDistance(j))/constitutive_dislotwin_burgersPerSlipSystem(f,myInstance))*& state(g,ip,el)%p(j)*abs(gdot_slip(j)) endif !* Spontaneous annihilation of 2 single edge dislocations DotRhoEdgeEdgeAnnihilation(j) = & ((2.0_pReal*EdgeDipMinDistance)/constitutive_dislotwin_burgersPerSlipSystem(f,myInstance))*& state(g,ip,el)%p(j)*abs(gdot_slip(j)) !* Spontaneous annihilation of a single edge dislocation with a dipole constituent DotRhoEdgeDipAnnihilation(j) = & ((2.0_pReal*EdgeDipMinDistance)/constitutive_dislotwin_burgersPerSlipSystem(f,myInstance))*& state(g,ip,el)%p(ns+j)*abs(gdot_slip(j)) !* Dislocation dipole climb AtomicVolume = & constitutive_dislotwin_CAtomicVolume(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)**(3.0_pReal) VacancyDiffusion = & constitutive_dislotwin_D0(myInstance)*exp(-constitutive_dislotwin_Qsd(myInstance)/(kB*Temperature)) if (tau_slip(j) == 0.0_pReal) then DotRhoEdgeDipClimb(j) = 0.0_pReal else ClimbVelocity(j) = & ((3.0_pReal*constitutive_dislotwin_Gmod(myInstance)*VacancyDiffusion*AtomicVolume)/(2.0_pReal*pi*kB*Temperature))*& (1/(EdgeDipDistance(j)+EdgeDipMinDistance)) DotRhoEdgeDipClimb(j) = & (4.0_pReal*ClimbVelocity(j)*state(g,ip,el)%p(ns+j))/(EdgeDipDistance(j)-EdgeDipMinDistance) endif !* Edge dislocation density rate of change constitutive_dislotwin_dotState(j) = & DotRhoMultiplication(j)-DotRhoDipFormation(j)-DotRhoEdgeEdgeAnnihilation(j) !* Edge dislocation dipole density rate of change constitutive_dislotwin_dotState(ns+j) = & DotRhoDipFormation(j)-DotRhoEdgeDipAnnihilation(j)-DotRhoEdgeDipClimb(j) enddo enddo !* Twin volume fraction evolution j = 0_pInt do f = 1,lattice_maxNtwinFamily ! loop over all twin families index_myFamily = sum(lattice_NtwinSystem(1:f-1,MyStructure)) ! at which index starts my family do i = 1,constitutive_dislotwin_Ntwin(f,myInstance) ! process each (active) twin system in family j = j+1_pInt !* Resolved shear stress on twin system tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,myStructure)) !* Stress ratios StressRatio_r = (state(g,ip,el)%p(6*ns+3*nt+j)/tau_twin(j))**constitutive_dislotwin_r(myInstance) !* Shear rates and their derivatives due to twin if ( tau_twin(j) > 0.0_pReal ) then constitutive_dislotwin_dotState(2*ns+j) = & (constitutive_dislotwin_MaxTwinFraction(myInstance)-sumf)*& state(g,ip,el)%p(6*ns+4*nt+j)*constitutive_dislotwin_Ndot0PerTwinSystem(f,myInstance)*exp(-StressRatio_r) endif enddo enddo !write(6,*) '#DOTSTATE#' !write(6,*) !write(6,'(a,/,4(3(f30.20,x)/))') 'tau slip',tau_slip !write(6,'(a,/,4(3(f30.20,x)/))') 'gamma slip',gdot_slip !write(6,'(a,/,4(3(f30.20,x)/))') 'RhoEdge',state(g,ip,el)%p(1:ns) !write(6,'(a,/,4(3(f30.20,x)/))') 'Threshold Slip', state(g,ip,el)%p(5*ns+3*nt+1:6*ns+3*nt) !write(6,'(a,/,4(3(f30.20,x)/))') 'Multiplication',DotRhoMultiplication !write(6,'(a,/,4(3(f30.20,x)/))') 'DipFormation',DotRhoDipFormation !write(6,'(a,/,4(3(f30.20,x)/))') 'SingleSingle',DotRhoEdgeEdgeAnnihilation !write(6,'(a,/,4(3(f30.20,x)/))') 'SingleDipole',DotRhoEdgeDipAnnihilation !write(6,'(a,/,4(3(f30.20,x)/))') 'DipClimb',DotRhoEdgeDipClimb return end function pure function constitutive_dislotwin_dotTemperature(Tstar_v,Temperature,state,g,ip,el) !********************************************************************* !* rate of change of microstructure * !* INPUT: * !* - Temperature : temperature * !* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) * !* - ipc : component-ID at current integration point * !* - ip : current integration point * !* - el : current element * !* OUTPUT: * !* - constitutive_dotTemperature : evolution of Temperature * !********************************************************************* use prec, only: pReal,pInt,p_vec use mesh, only: mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains implicit none !* Input-Output variables integer(pInt), intent(in) :: g,ip,el real(pReal), intent(in) :: Temperature real(pReal), dimension(6), intent(in) :: Tstar_v type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state real(pReal) constitutive_dislotwin_dotTemperature constitutive_dislotwin_dotTemperature = 0.0_pReal return end function pure function constitutive_dislotwin_postResults(Tstar_v,Temperature,dt,state,g,ip,el) !********************************************************************* !* return array of constitutive results * !* INPUT: * !* - Temperature : temperature * !* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) * !* - dt : current time increment * !* - ipc : component-ID at current integration point * !* - ip : current integration point * !* - el : current element * !********************************************************************* use prec, only: pReal,pInt,p_vec use math, only: pi use mesh, only: mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains,material_phase,phase_constitutionInstance,phase_Noutput use lattice, only: lattice_Sslip_v,lattice_Stwin_v,lattice_maxNslipFamily,lattice_maxNtwinFamily, & lattice_NslipSystem,lattice_NtwinSystem,lattice_shearTwin implicit none !* Definition of variables integer(pInt), intent(in) :: g,ip,el real(pReal), intent(in) :: dt,Temperature real(pReal), dimension(6), intent(in) :: Tstar_v type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state integer(pInt) myInstance,myStructure,ns,nt,f,o,i,c,j,index_myFamily real(pReal) sumf,tau,StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0,StressRatio_r,gdot_slip,dgdot_dtauslip real(pReal), dimension(constitutive_dislotwin_sizePostResults(phase_constitutionInstance(material_phase(g,ip,el)))) :: & constitutive_dislotwin_postResults !* Shortened notation myInstance = phase_constitutionInstance(material_phase(g,ip,el)) myStructure = constitutive_dislotwin_structure(myInstance) ns = constitutive_dislotwin_totalNslip(myInstance) nt = constitutive_dislotwin_totalNtwin(myInstance) !* Total twin volume fraction sumf = sum(state(g,ip,el)%p((2*ns+1):(2*ns+nt))) ! safe for nt == 0 !* Required output c = 0_pInt constitutive_dislotwin_postResults = 0.0_pReal do o = 1,phase_Noutput(material_phase(g,ip,el)) select case(constitutive_dislotwin_output(o,myInstance)) case ('edge_density') constitutive_dislotwin_postResults(c+1:c+ns) = state(g,ip,el)%p(1:ns) c = c + ns case ('dipole_density') constitutive_dislotwin_postResults(c+1:c+ns) = state(g,ip,el)%p(ns+1:2*ns) c = c + ns case ('shear_rate_slip') j = 0_pInt do f = 1,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1,myStructure)) ! at which index starts my family do i = 1,constitutive_dislotwin_Nslip(f,myInstance) ! process each (active) slip system in family j = j + 1_pInt !* Resolved shear stress on slip system tau = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure)) !* Stress ratios StressRatio_p = (abs(tau)/state(g,ip,el)%p(5*ns+3*nt+j))**constitutive_dislotwin_p(myInstance) StressRatio_pminus1 = (abs(tau)/state(g,ip,el)%p(5*ns+3*nt+j))**(constitutive_dislotwin_p(myInstance)-1.0_pReal) !* Boltzmann ratio BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(f,myInstance)/(kB*Temperature) !* Initial shear rates DotGamma0 = & state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)* & constitutive_dislotwin_v0PerSlipSystem(f,myInstance) !* Shear rates due to slip constitutive_dislotwin_postResults(c+j) = & DotGamma0*exp(-BoltzmannRatio*(1-StressRatio_p)**constitutive_dislotwin_q(myInstance))*sign(1.0_pReal,tau) enddo ; enddo c = c + ns case ('mfp_slip') constitutive_dislotwin_postResults(c+1:c+ns) = state(g,ip,el)%p((4*ns+2*nt+1):(5*ns+2*nt)) c = c + ns case ('resolved_stress_slip') j = 0_pInt do f = 1,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1,myStructure)) ! at which index starts my family do i = 1,constitutive_dislotwin_Nslip(f,myInstance) ! process each (active) slip system in family j = j + 1_pInt constitutive_dislotwin_postResults(c+j) = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure)) enddo; enddo c = c + ns case ('threshold_stress_slip') constitutive_dislotwin_postResults(c+1:c+ns) = state(g,ip,el)%p((5*ns+3*nt+1):(6*ns+3*nt)) c = c + ns case ('edge_dipole_distance') j = 0_pInt do f = 1,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1,myStructure)) ! at which index starts my family do i = 1,constitutive_dislotwin_Nslip(f,myInstance) ! process each (active) slip system in family j = j + 1_pInt constitutive_dislotwin_postResults(c+j) = & (3.0_pReal*constitutive_dislotwin_Gmod(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance))/& (16.0_pReal*pi*abs(dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure)))) constitutive_dislotwin_postResults(c+j) = min(constitutive_dislotwin_postResults(c+j),state(g,ip,el)%p(4*ns+2*nt+j)) ! constitutive_dislotwin_postResults(c+j) = max(constitutive_dislotwin_postResults(c+j),state(g,ip,el)%p(4*ns+2*nt+j)) enddo; enddo c = c + ns case ('twin_fraction') constitutive_dislotwin_postResults(c+1:c+nt) = state(g,ip,el)%p((2*ns+1):(2*ns+nt)) c = c + nt case ('shear_rate_twin') if (nt > 0_pInt) then j = 0_pInt do f = 1,lattice_maxNtwinFamily ! loop over all twin families index_myFamily = sum(lattice_NtwinSystem(1:f-1,myStructure)) ! at which index starts my family do i = 1,constitutive_dislotwin_Ntwin(f,myInstance) ! process each (active) twin system in family j = j + 1_pInt !* Resolved shear stress on twin system tau = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,myStructure)) !* Stress ratios StressRatio_r = (state(g,ip,el)%p(6*ns+3*nt+j)/tau)**constitutive_dislotwin_r(myInstance) !* Shear rates and their derivatives due to twin if ( tau > 0.0_pReal ) then constitutive_dislotwin_postResults(c+j) = & (constitutive_dislotwin_MaxTwinFraction(myInstance)-sumf)*& state(g,ip,el)%p(6*ns+4*nt+j)*constitutive_dislotwin_Ndot0PerTwinSystem(f,myInstance)*exp(-StressRatio_r) endif enddo ; enddo endif c = c + nt case ('mfp_twin') constitutive_dislotwin_postResults(c+1:c+nt) = state(g,ip,el)%p((5*ns+2*nt+1):(5*ns+3*nt)) c = c + nt case ('resolved_stress_twin') if (nt > 0_pInt) then j = 0_pInt do f = 1,lattice_maxNtwinFamily ! loop over all slip families index_myFamily = sum(lattice_NtwinSystem(1:f-1,myStructure)) ! at which index starts my family do i = 1,constitutive_dislotwin_Ntwin(f,myInstance) ! process each (active) slip system in family j = j + 1_pInt constitutive_dislotwin_postResults(c+j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,myStructure)) enddo; enddo endif c = c + nt case ('threshold_stress_twin') constitutive_dislotwin_postResults(c+1:c+nt) = state(g,ip,el)%p((6*ns+3*nt+1):(6*ns+4*nt)) c = c + nt case ('stress_exponent') j = 0_pInt do f = 1,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1,myStructure)) ! at which index starts my family do i = 1,constitutive_dislotwin_Nslip(f,myInstance) ! process each (active) slip system in family j = j + 1_pInt !* Resolved shear stress on slip system tau = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure)) !* Stress ratios StressRatio_p = (abs(tau)/state(g,ip,el)%p(5*ns+3*nt+j))**constitutive_dislotwin_p(myInstance) StressRatio_pminus1 = (abs(tau)/state(g,ip,el)%p(5*ns+3*nt+j))**(constitutive_dislotwin_p(myInstance)-1.0_pReal) !* Boltzmann ratio BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(f,myInstance)/(kB*Temperature) !* Initial shear rates DotGamma0 = & state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)* & constitutive_dislotwin_v0PerSlipSystem(f,myInstance) !* Shear rates due to slip gdot_slip = & DotGamma0*exp(-BoltzmannRatio*(1-StressRatio_p)**constitutive_dislotwin_q(myInstance))*sign(1.0_pReal,tau) !* Derivatives of shear rates dgdot_dtauslip = & ((abs(gdot_slip)*BoltzmannRatio*& constitutive_dislotwin_p(myInstance)*constitutive_dislotwin_q(myInstance))/state(g,ip,el)%p(5*ns+3*nt+j))*& StressRatio_pminus1*(1-StressRatio_p)**(constitutive_dislotwin_q(myInstance)-1.0_pReal) !* Stress exponent if (gdot_slip==0.0_pReal) then constitutive_dislotwin_postResults(c+j) = 0.0_pReal else constitutive_dislotwin_postResults(c+j) = (tau/gdot_slip)*dgdot_dtauslip endif enddo ; enddo c = c + ns end select enddo return end function END MODULE