# -*- coding: UTF-8 no BOM -*- # damask utility functions import sys,time,random,threading import numpy as np from optparse import OptionParser, Option # ----------------------------- def croak(what, newline = True): # ----------------------------- sys.stderr.write(('\n'.join(map(str,what)) if not hasattr(what, "strip") and hasattr(what, "__getitem__") or hasattr(what, "__iter__") else str(what)) +('\n' if newline else '')) sys.stderr.flush() # ----------------------------- def report(who,what): # ----------------------------- croak( ('\033[1m'+str(who)+'\033[0m' if who else '') + (': '+what if what else '') ) # ----------------------------- def emph(what): # ----------------------------- return '\033[1m'+str(what)+'\033[0m' # ----------------------------- # Matlab like trigonometric functions that take and return angles in degrees. # ----------------------------- for f in ['cos', 'sin', 'tan']: exec('def %sd(deg): return (np.%s(np.deg2rad(deg)))'%(f,f)) exec('def a%sd(val): return (np.rad2deg(np.arc%s(val)))'%(f,f)) # ----------------------------- def gridLocation(idx,res): # ----------------------------- return ( idx % res[0], \ ( idx // res[0]) % res[1], \ ( idx // res[0] // res[1]) % res[2] ) # ----------------------------- def gridIndex(location,res): # ----------------------------- return ( location[0] % res[0] + \ ( location[1] % res[1]) * res[0] + \ ( location[2] % res[2]) * res[1] * res[0] ) # ----------------------------- class extendableOption(Option): # ----------------------------- # used for definition of new option parser action 'extend', which enables to take multiple option arguments # taken from online tutorial http://docs.python.org/library/optparse.html ACTIONS = Option.ACTIONS + ("extend",) STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",) TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",) ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",) def take_action(self, action, dest, opt, value, values, parser): if action == "extend": lvalue = value.split(",") values.ensure_value(dest, []).extend(lvalue) else: Option.take_action(self, action, dest, opt, value, values, parser) # ----------------------------- class backgroundMessage(threading.Thread): # ----------------------------- choices = {'bounce':['_','o','O','°','¯','¯','°','O','o',], 'circle': [u'\u25f4',u'\u25f5',u'\u25f6',u'\u25f7'], 'hexagon': [u'\u2b22',u'\u2b23'], 'pentagon': [u'\u2b20',u'\u2b54'], 'square': [u'\u2596',u'\u2598',u'\u259d',u'\u2597'], 'triangle': [u'\u140a',u'\u140a',u'\u1403',u'\u1405',u'\u1405',u'\u1403'], 'amoeba': [u'\u2596',u'\u258f',u'\u2598',u'\u2594',u'\u259d',u'\u2595',u'\u2597',u'\u2582'], 'beat': [u'\u2581',u'\u2582',u'\u2583',u'\u2584',u'\u2585',u'\u2586',u'\u2587',u'\u2588',u'\u2587',u'\u2586',u'\u2585',u'\u2584',u'\u2583',u'\u2582',], 'prison': [u'\u168b',u'\u168c',u'\u168d',u'\u168f',u'\u168e',u'\u168d',u'\u168c',u'\u168b',], 'breath': [u'\u1690',u'\u1691',u'\u1692',u'\u1693',u'\u1694',u'\u1693',u'\u1692',u'\u1691',u'\u1690'], 'pulse': ['·','•',u'\u25cf',u'\u25cf','•',], 'ant': [u'\u2801',u'\u2802',u'\u2810',u'\u2820',u'\u2804',u'\u2840',u'\u2880',u'\u2820',u'\u2804',u'\u2802',u'\u2810',u'\u2808'], 'classic':['-', '\\', '|', '/',], } def __init__(self, symbol = None, wait = 0.1): threading.Thread.__init__(self) self.message = '' self.new_message = '' self.counter = 0 self.gap = ' ' self.symbols = self.choices[symbol if symbol in self.choices else random.choice(self.choices.keys())] self.waittime = wait def __quit__(self): length = len(self.symbols[self.counter] + self.gap + self.message) sys.stderr.write(chr(8)*length + ' '*length + chr(8)*length) sys.stderr.write('') def run(self): while not threading.enumerate()[0]._Thread__stopped: time.sleep(self.waittime) self.update_message() self.__quit__() def set_message(self, new_message): self.new_message = new_message self.print_message() def print_message(self): length = len(self.symbols[self.counter] + self.gap + self.message) sys.stderr.write(chr(8)*length + ' '*length + chr(8)*length) # delete former message sys.stderr.write(self.symbols[self.counter] + self.gap + self.new_message) # print new message self.message = self.new_message def update_message(self): self.counter = (self.counter + 1)%len(self.symbols) self.print_message() ''' Non-linear least square fitting (Levenberg-Marquardt method) with the bounded parameters. the codes of transformation between int <-> ext refers to the work of Jonathan J. Helmus: https://github.com/jjhelmus/leastsqbound-scipy other codes refers to the source code of minpack.py: ..\Lib\site-packages\scipy\optimize\minpack.py ''' from numpy import (array, arcsin, asarray, cos, dot, eye, empty_like, isscalar,finfo, take, triu, transpose, sqrt, sin) from scipy.optimize import _minpack def _check_func(checker, argname, thefunc, x0, args, numinputs, output_shape=None): from numpy import atleast_1d, shape, issubdtype, dtype, inexact ''' The same as that of minpack.py, ''' res = atleast_1d(thefunc(*((x0[:numinputs],) + args))) if (output_shape is not None) and (shape(res) != output_shape): if (output_shape[0] != 1): if len(output_shape) > 1: if output_shape[1] == 1: return shape(res) msg = "%s: there is a mismatch between the input and output " \ "shape of the '%s' argument" % (checker, argname) func_name = getattr(thefunc, '__name__', None) if func_name: msg += " '%s'." % func_name else: msg += "." raise TypeError(msg) if issubdtype(res.dtype, inexact): dt = res.dtype else: dt = dtype(float) return shape(res), dt def _int2extGrad(p_int, bounds): """ Calculate the gradients of transforming the internal (unconstrained) to external (constained) parameter. """ grad = empty_like(p_int) for i, (x, bound) in enumerate(zip(p_int, bounds)): lower, upper = bound if lower is None and upper is None: # No constraints grad[i] = 1.0 elif upper is None: # only lower bound grad[i] = x/sqrt(x*x + 1.0) elif lower is None: # only upper bound grad[i] = -x/sqrt(x*x + 1.0) else: # lower and upper bounds grad[i] = (upper - lower)*cos(x)/2.0 return grad def _int2extFunc(bounds): ''' transform internal parameters into external parameters. ''' local = [_int2extLocal(b) for b in bounds] def _transform_i2e(p_int): p_ext = empty_like(p_int) p_ext[:] = [i(j) for i, j in zip(local, p_int)] return p_ext return _transform_i2e def _ext2intFunc(bounds): ''' transform external parameters into internal parameters. ''' local = [_ext2intLocal(b) for b in bounds] def _transform_e2i(p_ext): p_int = empty_like(p_ext) p_int[:] = [i(j) for i, j in zip(local, p_ext)] return p_int return _transform_e2i def _int2extLocal(bound): ''' transform a single internal parameter to an external parameter. ''' lower, upper = bound if lower is None and upper is None: # no constraints return lambda x: x elif upper is None: # only lower bound return lambda x: lower - 1.0 + sqrt(x*x + 1.0) elif lower is None: # only upper bound return lambda x: upper + 1.0 - sqrt(x*x + 1.0) else: return lambda x: lower + ((upper - lower)/2.0)*(sin(x) + 1.0) def _ext2intLocal(bound): ''' transform a single external parameter to an internal parameter. ''' lower, upper = bound if lower is None and upper is None: # no constraints return lambda x: x elif upper is None: # only lower bound return lambda x: sqrt((x - lower + 1.0)**2 - 1.0) elif lower is None: # only upper bound return lambda x: sqrt((x - upper - 1.0)**2 - 1.0) else: return lambda x: arcsin((2.0*(x - lower)/(upper - lower)) - 1.0) def leastsqBound(func, x0, args=(), bounds=None, Dfun=None, full_output=0, col_deriv=0, ftol=1.49012e-8, xtol=1.49012e-8, gtol=0.0, maxfev=0, epsfcn=None, factor=100, diag=None): ''' An internal parameter list is used to enforce contraints on the fitting parameters. The transfomation is based on that of MINUIT package. please see: F. James and M. Winkler. MINUIT User's Guide, 2004. bounds : list (min, max) pairs for each parameter, use None for 'min' or 'max' when there is no bound in that direction. For example: if there are two parameters needed to be fitting, then bounds is [(min1,max1), (min2,max2)] This function is based on 'leastsq' of minpack.py, the annotation of other parameters can be found in 'leastsq'. ..\Lib\site-packages\scipy\optimize\minpack.py ''' i2e = _int2extFunc(bounds) e2i = _ext2intFunc(bounds) x0 = asarray(x0).flatten() n = len(x0) if len(bounds) != n: raise ValueError('the length of bounds is inconsistent with the number of parameters ') if not isinstance(args, tuple): args = (args,) shape, dtype = _check_func('leastsq', 'func', func, x0, args, n) m = shape[0] if n > m: raise TypeError('Improper input: N=%s must not exceed M=%s' % (n, m)) if epsfcn is None: epsfcn = finfo(dtype).eps # wrapped func def funcWarp(x, *args): return func(i2e(x), *args) xi0 = e2i(x0) if Dfun is None: if maxfev == 0: maxfev = 200*(n + 1) retval = _minpack._lmdif(funcWarp, xi0, args, full_output, ftol, xtol, gtol, maxfev, epsfcn, factor, diag) else: if col_deriv: _check_func('leastsq', 'Dfun', Dfun, x0, args, n, (n, m)) else: _check_func('leastsq', 'Dfun', Dfun, x0, args, n, (m, n)) if maxfev == 0: maxfev = 100*(n + 1) # wrapped Dfun def DfunWarp(x, *args): return Dfun(i2e(x), *args) retval = _minpack._lmder(funcWarp, DfunWarp, xi0, args, full_output, col_deriv, ftol, xtol, gtol, maxfev, factor, diag) errors = {0: ["Improper input parameters.", TypeError], 1: ["Both actual and predicted relative reductions " "in the sum of squares\n are at most %f" % ftol, None], 2: ["The relative error between two consecutive " "iterates is at most %f" % xtol, None], 3: ["Both actual and predicted relative reductions in " "the sum of squares\n are at most %f and the " "relative error between two consecutive " "iterates is at \n most %f" % (ftol, xtol), None], 4: ["The cosine of the angle between func(x) and any " "column of the\n Jacobian is at most %f in " "absolute value" % gtol, None], 5: ["Number of calls to function has reached " "maxfev = %d." % maxfev, ValueError], 6: ["ftol=%f is too small, no further reduction " "in the sum of squares\n is possible.""" % ftol, ValueError], 7: ["xtol=%f is too small, no further improvement in " "the approximate\n solution is possible." % xtol, ValueError], 8: ["gtol=%f is too small, func(x) is orthogonal to the " "columns of\n the Jacobian to machine " "precision." % gtol, ValueError], 'unknown': ["Unknown error.", TypeError]} info = retval[-1] # The FORTRAN return value if info not in [1, 2, 3, 4] and not full_output: if info in [5, 6, 7, 8]: warnings.warn(errors[info][0], RuntimeWarning) else: try: raise errors[info][1](errors[info][0]) except KeyError: raise errors['unknown'][1](errors['unknown'][0]) mesg = errors[info][0] x = i2e(retval[0]) if full_output: grad = _int2extGrad(retval[0], bounds) retval[1]['fjac'] = (retval[1]['fjac'].T / take(grad, retval[1]['ipvt'] - 1)).T cov_x = None if info in [1, 2, 3, 4]: from numpy.dual import inv from numpy.linalg import LinAlgError perm = take(eye(n), retval[1]['ipvt'] - 1, 0) r = triu(transpose(retval[1]['fjac'])[:n, :]) R = dot(r, perm) try: cov_x = inv(dot(transpose(R), R)) except LinAlgError as inverror: print inverror pass return (x, cov_x) + retval[1:-1] + (mesg, info) else: return (x, info) def _general_function(params, ydata, xdata, function): return function(xdata, *params) - ydata def _weighted_general_function(params, ydata, xdata, function, weights): return (function(xdata, *params) - ydata)*weights def curve_fit_bound(f, xdata, ydata, p0=None, sigma=None, bounds=None, **kw): ''' Similar as 'curve_fit' in minpack.py''' if p0 is None: # determine number of parameters by inspecting the function import inspect args, varargs, varkw, defaults = inspect.getargspec(f) if len(args) < 2: msg = "Unable to determine number of fit parameters." raise ValueError(msg) if 'self' in args: p0 = [1.0] * (len(args)-2) else: p0 = [1.0] * (len(args)-1) if isscalar(p0): p0 = array([p0]) args = (ydata, xdata, f) if sigma is None: func = _general_function else: func = _weighted_general_function args += (1.0/asarray(sigma),) return_full = kw.pop('full_output', False) res = leastsqBound(func, p0, args=args, bounds = bounds, full_output=True, **kw) (popt, pcov, infodict, errmsg, ier) = res if ier not in [1, 2, 3, 4]: msg = "Optimal parameters not found: " + errmsg raise RuntimeError(msg) if (len(ydata) > len(p0)) and pcov is not None: s_sq = (func(popt, *args)**2).sum()/(len(ydata)-len(p0)) pcov = pcov * s_sq else: pcov = inf if return_full: return popt, pcov, infodict, errmsg, ier else: return popt, pcov