#!/usr/bin/env python2.7 # -*- coding: UTF-8 no BOM -*- import os,sys,math import numpy as np from optparse import OptionParser import damask scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptID = ' '.join([scriptName,damask.version]) #-------------------------------------------------------------------------------------------------- # MAIN #-------------------------------------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Generate geometry description and material configuration from input files used by R.A. Lebensohn. """, version = scriptID) parser.add_option('--column', dest='column', type='int', metavar = 'int', help='data column to discriminate between both phases [%default]') parser.add_option('-t','--threshold', dest='threshold', type='float', metavar = 'float', help='threshold value for phase discrimination [%default]') parser.add_option('--homogenization', dest='homogenization', type='int', metavar = 'int', help='homogenization index for configuration [%default]') parser.add_option('--phase', dest='phase', type='int', nargs = 2, metavar = 'int int', help='phase indices for configuration %default') parser.add_option('--crystallite', dest='crystallite', type='int', metavar = 'int', help='crystallite index for configuration [%default]') parser.add_option('--compress', dest='compress', action='store_true', help='lump identical microstructure and texture information [%default]') parser.add_option('-p', '--precision', dest='precision', choices=['0','1','2','3'], metavar = 'int', help = 'euler angles decimal places for output format and compressing {0,1,2,3} [2]') parser.set_defaults(column = 7) parser.set_defaults(threshold = 1.0) parser.set_defaults(homogenization = 1) parser.set_defaults(phase = [1,2]) parser.set_defaults(crystallite = 1) parser.set_defaults(config = False) parser.set_defaults(compress = False) parser.set_defaults(precision = '2') (options,filenames) = parser.parse_args() if filenames == []: filenames = [None] for name in filenames: try: table = damask.ASCIItable(name = name, outname = os.path.splitext(name)[-2]+'.geom' if name else name, buffered = False, labeled = False) except: continue damask.util.report(scriptName,name) info = { 'grid': np.zeros(3,'i'), 'size': np.zeros(3,'d'), 'origin': np.zeros(3,'d'), 'microstructures': 0, 'homogenization': options.homogenization } coords = [{},{},{}] pos = {'min':[ float("inf"), float("inf"), float("inf")], 'max':[-float("inf"),-float("inf"),-float("inf")]} phase = [] eulerangles = [] outputAlive = True # ------------------------------------------ process data ------------------------------------------ while outputAlive and table.data_read(): if table.data != []: currPos = table.data[3:6] for i in range(3): coords[i][currPos[i]] = True currPos = map(float,currPos) for i in range(3): pos['min'][i] = min(pos['min'][i],currPos[i]) pos['max'][i] = max(pos['max'][i],currPos[i]) eulerangles.append(map(math.degrees,map(float,table.data[:3]))) phase.append(options.phase[int(float(table.data[options.column-1]) > options.threshold)]) # --------------- determine size and grid --------------------------------------------------------- info['grid'] = np.array(map(len,coords),'i') info['size'] = info['grid']/np.maximum(np.ones(3,'d'),info['grid']-1.0)* \ np.array([pos['max'][0]-pos['min'][0], pos['max'][1]-pos['min'][1], pos['max'][2]-pos['min'][2]],'d') eulerangles = np.array(eulerangles,dtype='f').reshape(info['grid'].prod(),3) phase = np.array(phase,dtype='i').reshape(info['grid'].prod()) limits = [360,180,360] if any([np.any(eulerangles[:,i]>=limits[i]) for i in [0,1,2]]): damask.util.croak.write('Error: euler angles out of bound. Ang file might contain unidexed poins.\n') for i,angle in enumerate(['phi1','PHI','phi2']): for n in np.nditer(np.where(eulerangles[:,i]>=limits[i]),['zerosize_ok']): damask.util.croak.write('%s in line %i (%4.2f %4.2f %4.2f)\n' %(angle,n,eulerangles[n,0],eulerangles[n,1],eulerangles[n,2])) continue eulerangles=np.around(eulerangles,int(options.precision)) # round to desired precision # ensure, that rounded euler angles are not out of bounds (modulo by limits) for i,angle in enumerate(['phi1','PHI','phi2']): eulerangles[:,i]%=limits[i] # scale angles by desired precision and convert to int. create unique integer key from three euler angles by # concatenating the string representation with leading zeros and store as integer and search unique euler angle keys. # Texture IDs are the indices of the first occurrence, the inverse is used to construct the microstructure # create a microstructure (texture/phase pair) for each point using unique texture IDs. # Use longInt (64bit, i8) because the keys might be long if options.compress: formatString='{0:0>'+str(int(options.precision)+3)+'}' euleranglesRadInt = (eulerangles*10**int(options.precision)).astype('int') eulerKeys = np.array([int(''.join(map(formatString.format,euleranglesRadInt[i,:]))) \ for i in range(info['grid'].prod())]) devNull, texture, eulerKeys_idx = np.unique(eulerKeys, return_index = True, return_inverse=True) msFull = np.array([[eulerKeys_idx[i],phase[i]] for i in range(info['grid'].prod())],'i8') devNull,msUnique,matPoints = np.unique(msFull.view('c16'),True,True) matPoints+=1 microstructure = np.array([msFull[i] for i in msUnique]) # pick only unique microstructures else: texture = np.arange(info['grid'].prod()) microstructure = np.hstack( zip(texture,phase) ).reshape(info['grid'].prod(),2) # create texture/phase pairs formatOut = 1+int(math.log10(len(texture))) config_header = [] formatwidth = 1+int(math.log10(len(microstructure))) config_header += [''] for i in range(len(microstructure)): config_header += ['[Grain%s]'%str(i+1).zfill(formatwidth), 'crystallite\t%i'%options.crystallite, '(constituent)\tphase %i\ttexture %i\tfraction 1.0'%(microstructure[i,1],microstructure[i,0]+1) ] config_header += [''] eulerFormatOut='%%%i.%if'%(int(options.precision)+4,int(options.precision)) outStringAngles='(gauss) phi1 '+eulerFormatOut+' Phi '+eulerFormatOut+' phi2 '+eulerFormatOut+' scatter 0.0 fraction 1.0' for i in range(len(texture)): config_header += ['[Texture%s]'%str(i+1).zfill(formatOut), outStringAngles%tuple(eulerangles[texture[i],...]) ] table.labels_clear() table.info_clear() info['microstructures'] = len(microstructure) #--- report --------------------------------------------------------------------------------------- damask.util.croak('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + 'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + 'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + 'homogenization: %i\n'%info['homogenization'] + 'microstructures: %i\n\n'%info['microstructures']) if np.any(info['grid'] < 1): damask.util.croak('invalid grid a b c.\n') continue if np.any(info['size'] <= 0.0): damask.util.croak('invalid size x y z.\n') continue #--- write data ----------------------------------------------------------------------------------- table.info_append([' '.join([scriptID] + sys.argv[1:]), "grid\ta %i\tb %i\tc %i"%(info['grid'][0],info['grid'][1],info['grid'][2],), "size\tx %f\ty %f\tz %f"%(info['size'][0],info['size'][1],info['size'][2],), "origin\tx %f\ty %f\tz %f"%(info['origin'][0],info['origin'][1],info['origin'][2],), "microstructures\t%i"%info['microstructures'], "homogenization\t%i"%info['homogenization'], config_header ]) table.head_write() if options.compress: table.data = matPoints.reshape(info['grid'][1]*info['grid'][2],info['grid'][0]) table.data_writeArray('%%%ii'%(formatwidth),delimiter=' ') else: table.data = ["1 to %i\n"%(info['microstructures'])] # ------------------------------------------ output finalization ----------------------------------- table.close()