submodule(phase:mechanical) elastic enum, bind(c); enumerator :: & ELASTICITY_UNDEFINED_ID, & ELASTICITY_HOOKE_ID, & STIFFNESS_DEGRADATION_UNDEFINED_ID, & STIFFNESS_DEGRADATION_DAMAGE_ID end enum integer, dimension(:), allocatable :: & phase_NstiffnessDegradations integer(kind(ELASTICITY_UNDEFINED_ID)), dimension(:), allocatable :: & phase_elasticity !< elasticity of each phase integer(kind(STIFFNESS_DEGRADATION_UNDEFINED_ID)), dimension(:,:), allocatable :: & phase_stiffnessDegradation !< active stiffness degradation mechanisms of each phase contains module subroutine elastic_init(phases) class(tNode), pointer :: & phases integer :: & ph, & stiffDegradationCtr class(tNode), pointer :: & phase, & mech, & elastic, & stiffDegradation print'(/,a)', ' <<<+- phase:mechanical:elastic init -+>>>' allocate(phase_elasticity(phases%length), source = ELASTICITY_undefined_ID) allocate(phase_NstiffnessDegradations(phases%length),source=0) do ph = 1, phases%length phase => phases%get(ph) mech => phase%get('mechanical') elastic => mech%get('elastic') if(elastic%get_asString('type') == 'hooke') then phase_elasticity(ph) = ELASTICITY_HOOKE_ID else call IO_error(200,ext_msg=elastic%get_asString('type')) endif stiffDegradation => mech%get('stiffness_degradation',defaultVal=emptyList) ! check for stiffness degradation mechanisms phase_NstiffnessDegradations(ph) = stiffDegradation%length enddo allocate(phase_stiffnessDegradation(maxval(phase_NstiffnessDegradations),phases%length), & source=STIFFNESS_DEGRADATION_undefined_ID) if(maxVal(phase_NstiffnessDegradations)/=0) then do ph = 1, phases%length phase => phases%get(ph) mech => phase%get('mechanical') stiffDegradation => mech%get('stiffness_degradation',defaultVal=emptyList) do stiffDegradationCtr = 1, stiffDegradation%length if(stiffDegradation%get_asString(stiffDegradationCtr) == 'damage') & phase_stiffnessDegradation(stiffDegradationCtr,ph) = STIFFNESS_DEGRADATION_damage_ID enddo enddo endif end subroutine elastic_init !-------------------------------------------------------------------------------------------------- !> @brief returns the 2nd Piola-Kirchhoff stress tensor and its tangent with respect to !> the elastic and intermediate deformation gradients using Hooke's law !-------------------------------------------------------------------------------------------------- module subroutine phase_hooke_SandItsTangents(S, dS_dFe, dS_dFi, & Fe, Fi, ph, me) integer, intent(in) :: & ph, & me real(pReal), intent(in), dimension(3,3) :: & Fe, & !< elastic deformation gradient Fi !< intermediate deformation gradient real(pReal), intent(out), dimension(3,3) :: & S !< 2nd Piola-Kirchhoff stress tensor in lattice configuration real(pReal), intent(out), dimension(3,3,3,3) :: & dS_dFe, & !< derivative of 2nd P-K stress with respect to elastic deformation gradient dS_dFi !< derivative of 2nd P-K stress with respect to intermediate deformation gradient real(pReal), dimension(3,3) :: E real(pReal), dimension(3,3,3,3) :: C integer :: & d, & !< counter in degradation loop i, j C = math_66toSym3333(phase_homogenizedC(ph,me)) DegradationLoop: do d = 1, phase_NstiffnessDegradations(ph) degradationType: select case(phase_stiffnessDegradation(d,ph)) case (STIFFNESS_DEGRADATION_damage_ID) degradationType C = C * damage_phi(ph,me)**2 end select degradationType enddo DegradationLoop E = 0.5_pReal*(matmul(transpose(Fe),Fe)-math_I3) !< Green-Lagrange strain in unloaded configuration S = math_mul3333xx33(C,matmul(matmul(transpose(Fi),E),Fi)) !< 2PK stress in lattice configuration in work conjugate with GL strain pulled back to lattice configuration do i =1, 3;do j=1,3 dS_dFe(i,j,1:3,1:3) = matmul(Fe,matmul(matmul(Fi,C(i,j,1:3,1:3)),transpose(Fi))) !< dS_ij/dFe_kl = C_ijmn * Fi_lm * Fi_on * Fe_ko dS_dFi(i,j,1:3,1:3) = 2.0_pReal*matmul(matmul(E,Fi),C(i,j,1:3,1:3)) !< dS_ij/dFi_kl = C_ijln * E_km * Fe_mn enddo; enddo end subroutine phase_hooke_SandItsTangents end submodule elastic