#!/usr/bin/env python3 import os import sys from io import StringIO from optparse import OptionParser import numpy as np from scipy import ndimage import damask scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptID = ' '.join([scriptName,damask.version]) getInterfaceEnergy = lambda A,B: np.float32((A*B != 0)*(A != B)*1.0) # 1.0 if A & B are distinct & nonzero, 0.0 otherwise struc = ndimage.generate_binary_structure(3,1) # 3D von Neumann neighborhood #-------------------------------------------------------------------------------------------------- # MAIN #-------------------------------------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog option(s) [geomfile(s)]', description = """ Smoothen interface roughness by simulated curvature flow. This is achieved by the diffusion of each initially sharply bounded grain volume within the periodic domain up to a given distance 'd' voxels. The final geometry is assembled by selecting at each voxel that grain index for which the concentration remains largest. """, version = scriptID) parser.add_option('-d', '--distance', dest = 'd', type = 'float', metavar = 'float', help = 'diffusion distance in voxels [%default]') parser.add_option('-N', '--iterations', dest = 'N', type = 'int', metavar = 'int', help = 'curvature flow iterations [%default]') parser.add_option('-i', '--immutable', action = 'extend', dest = 'immutable', metavar = '', help = 'list of immutable microstructure indices') parser.add_option('--ndimage', dest = 'ndimage', action='store_true', help = 'use ndimage.gaussian_filter in lieu of explicit FFT') parser.set_defaults(d = 1, N = 1, immutable = [], ndimage = False, ) (options, filenames) = parser.parse_args() options.immutable = list(map(int,options.immutable)) if filenames == []: filenames = [None] for name in filenames: damask.util.report(scriptName,name) geom = damask.Geom.from_file(StringIO(''.join(sys.stdin.read())) if name is None else name) grid_original = geom.get_grid() damask.util.croak(geom) microstructure = np.tile(geom.microstructure,np.where(grid_original == 1, 2,1)) # make one copy along dimensions with grid == 1 grid = np.array(microstructure.shape) # --- initialize support data --------------------------------------------------------------------- # store a copy the initial microstructure to find locations of immutable indices microstructure_original = np.copy(microstructure) if not options.ndimage: X,Y,Z = np.mgrid[0:grid[0],0:grid[1],0:grid[2]] # Calculates gaussian weights for simulating 3d diffusion gauss = np.exp(-(X*X + Y*Y + Z*Z)/(2.0*options.d*options.d),dtype=np.float32) \ /np.power(2.0*np.pi*options.d*options.d,(3.0 - np.count_nonzero(grid_original == 1))/2.,dtype=np.float32) gauss[:,:,:grid[2]//2:-1] = gauss[:,:,1:(grid[2]+1)//2] # trying to cope with uneven (odd) grid size gauss[:,:grid[1]//2:-1,:] = gauss[:,1:(grid[1]+1)//2,:] gauss[:grid[0]//2:-1,:,:] = gauss[1:(grid[0]+1)//2,:,:] gauss = np.fft.rfftn(gauss).astype(np.complex64) for smoothIter in range(options.N): interfaceEnergy = np.zeros(microstructure.shape,dtype=np.float32) for i in (-1,0,1): for j in (-1,0,1): for k in (-1,0,1): # assign interfacial energy to all voxels that have a differing neighbor (in Moore neighborhood) interfaceEnergy = np.maximum(interfaceEnergy, getInterfaceEnergy(microstructure,np.roll(np.roll(np.roll( microstructure,i,axis=0), j,axis=1), k,axis=2))) # periodically extend interfacial energy array by half a grid size in positive and negative directions periodic_interfaceEnergy = np.tile(interfaceEnergy,(3,3,3))[grid[0]//2:-grid[0]//2, grid[1]//2:-grid[1]//2, grid[2]//2:-grid[2]//2] # transform bulk volume (i.e. where interfacial energy remained zero), store index of closest boundary voxel index = ndimage.morphology.distance_transform_edt(periodic_interfaceEnergy == 0., return_distances = False, return_indices = True) # want array index of nearest voxel on periodically extended boundary periodic_bulkEnergy = periodic_interfaceEnergy[index[0], index[1], index[2]].reshape(2*grid) # fill bulk with energy of nearest interface if options.ndimage: periodic_diffusedEnergy = ndimage.gaussian_filter( np.where(ndimage.morphology.binary_dilation(periodic_interfaceEnergy > 0., structure = struc, iterations = int(round(options.d*2.))-1, # fat boundary ), periodic_bulkEnergy, # ...and zero everywhere else 0.), sigma = options.d) else: diffusedEnergy = np.fft.irfftn(np.fft.rfftn( np.where( ndimage.morphology.binary_dilation(interfaceEnergy > 0., structure = struc, iterations = int(round(options.d*2.))-1),# fat boundary periodic_bulkEnergy[grid[0]//2:-grid[0]//2, # retain filled energy on fat boundary... grid[1]//2:-grid[1]//2, grid[2]//2:-grid[2]//2], # ...and zero everywhere else 0.)).astype(np.complex64) * gauss).astype(np.float32) periodic_diffusedEnergy = np.tile(diffusedEnergy,(3,3,3))[grid[0]//2:-grid[0]//2, grid[1]//2:-grid[1]//2, grid[2]//2:-grid[2]//2] # periodically extend the smoothed bulk energy # transform voxels close to interface region index = ndimage.morphology.distance_transform_edt(periodic_diffusedEnergy >= 0.95*np.amax(periodic_diffusedEnergy), return_distances = False, return_indices = True) # want index of closest bulk grain periodic_microstructure = np.tile(microstructure,(3,3,3))[grid[0]//2:-grid[0]//2, grid[1]//2:-grid[1]//2, grid[2]//2:-grid[2]//2] # periodically extend the microstructure microstructure = periodic_microstructure[index[0], index[1], index[2]].reshape(2*grid)[grid[0]//2:-grid[0]//2, grid[1]//2:-grid[1]//2, grid[2]//2:-grid[2]//2] # extent grains into interface region # replace immutable microstructures with closest mutable ones index = ndimage.morphology.distance_transform_edt(np.in1d(microstructure,options.immutable).reshape(grid), return_distances = False, return_indices = True) microstructure = microstructure[index[0], index[1], index[2]] immutable = np.zeros(microstructure.shape, dtype=np.bool) # find locations where immutable microstructures have been in original structure for micro in options.immutable: immutable += microstructure_original == micro # undo any changes involving immutable microstructures microstructure = np.where(immutable, microstructure_original,microstructure) geom=geom.duplicate(microstructure[0:grid_original[0],0:grid_original[1],0:grid_original[2]]) geom.add_comments(scriptID + ' ' + ' '.join(sys.argv[1:])) geom.to_file(sys.stdout if name is None else name,pack=False)