! ################################################################### ! Copyright (c) 2013-2015, Marc De Graef/Carnegie Mellon University ! Modified 2017-2019, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH ! All rights reserved. ! ! Redistribution and use in source and binary forms, with or without modification, are ! permitted provided that the following conditions are met: ! ! - Redistributions of source code must retain the above copyright notice, this list ! of conditions and the following disclaimer. ! - Redistributions in binary form must reproduce the above copyright notice, this ! list of conditions and the following disclaimer in the documentation and/or ! other materials provided with the distribution. ! - Neither the names of Marc De Graef, Carnegie Mellon University nor the names ! of its contributors may be used to endorse or promote products derived from ! this software without specific prior written permission. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE ! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE ! USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! ################################################################### !-------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @brief Mapping homochoric <-> cubochoric ! !> @details !> D. Rosca, A. Morawiec, and M. De Graef. “A new method of constructing a grid !> in the space of 3D rotations and its applications to texture analysis”. !> Modeling and Simulations in Materials Science and Engineering 22, 075013 (2014). !-------------------------------------------------------------------------- module Lambert use prec, only: & pReal use math, only: & PI use future implicit none private real(pReal), parameter, private :: & SPI = sqrt(PI), & PREF = sqrt(6.0_pReal/PI), & A = PI**(5.0_pReal/6.0_pReal)/6.0_pReal**(1.0_pReal/6.0_pReal), & AP = PI**(2.0_pReal/3.0_pReal), & SC = A/AP, & BETA = A/2.0_pReal, & R1 = (3.0_pReal*PI/4.0_pReal)**(1.0_pReal/3.0_pReal), & R2 = sqrt(2.0_pReal), & PI12 = PI/12.0_pReal, & PREK = R1 * 2.0_pReal**(1.0_pReal/4.0_pReal)/BETA public :: & LambertCubeToBall, & LambertBallToCube private :: & GetPyramidOrder contains !-------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @brief map from 3D cubic grid to 3D ball !-------------------------------------------------------------------------- function LambertCubeToBall(cube) result(ball) use, intrinsic :: IEEE_ARITHMETIC use prec, only: & dEq0 implicit none real(pReal), intent(in), dimension(3) :: cube real(pReal), dimension(3) :: ball, LamXYZ, XYZ real(pReal), dimension(2) :: T real(pReal) :: c, s, q real(pReal), parameter :: eps = 1.0e-8_pReal integer, dimension(3) :: p integer, dimension(2) :: order if (maxval(abs(cube)) > AP/2.0+eps) then ball = IEEE_value(cube,IEEE_positive_inf) return end if ! transform to the sphere grid via the curved square, and intercept the zero point center: if (all(dEq0(cube))) then ball = 0.0_pReal else center ! get pyramide and scale by grid parameter ratio p = GetPyramidOrder(cube) XYZ = cube(p) * sc ! intercept all the points along the z-axis special: if (all(dEq0(XYZ(1:2)))) then LamXYZ = [ 0.0_pReal, 0.0_pReal, pref * XYZ(3) ] else special order = merge( [2,1], [1,2], abs(XYZ(2)) <= abs(XYZ(1))) ! order of absolute values of XYZ q = PI12 * XYZ(order(1))/XYZ(order(2)) ! smaller by larger c = cos(q) s = sin(q) q = prek * XYZ(order(2))/ sqrt(R2-c) T = [ (R2*c - 1.0), R2 * s] * q ! transform to sphere grid (inverse Lambert) ! [note that there is no need to worry about dividing by zero, since XYZ(3) can not become zero] c = sum(T**2) s = Pi * c/(24.0*XYZ(3)**2) c = sPi * c / sqrt(24.0_pReal) / XYZ(3) q = sqrt( 1.0 - s ) LamXYZ = [ T(order(2)) * q, T(order(1)) * q, pref * XYZ(3) - c ] endif special ! reverse the coordinates back to the regular order according to the original pyramid number ball = LamXYZ(p) endif center end function LambertCubeToBall !-------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @brief map from 3D ball to 3D cubic grid !-------------------------------------------------------------------------- pure function LambertBallToCube(xyz) result(cube) use, intrinsic :: IEEE_ARITHMETIC, only:& IEEE_positive_inf, & IEEE_value use prec, only: & dEq0 use math, only: & math_clip implicit none real(pReal), intent(in), dimension(3) :: xyz real(pReal), dimension(3) :: cube, xyz1, xyz3 real(pReal), dimension(2) :: Tinv, xyz2 real(pReal) :: rs, qxy, q2, sq2, q, tt integer, dimension(3) :: p rs = norm2(xyz) if (rs > R1) then cube = IEEE_value(cube,IEEE_positive_inf) return endif center: if (all(dEq0(xyz))) then cube = 0.0_pReal else center p = GetPyramidOrder(xyz) xyz3 = xyz(p) ! inverse M_3 xyz2 = xyz3(1:2) * sqrt( 2.0*rs/(rs+abs(xyz3(3))) ) ! inverse M_2 qxy = sum(xyz2**2) special: if (dEq0(qxy)) then Tinv = 0.0_pReal else special q2 = qxy + maxval(abs(xyz2))**2 sq2 = sqrt(q2) q = (beta/R2/R1) * sqrt(q2*qxy/(q2-maxval(abs(xyz2))*sq2)) tt = (minval(abs(xyz2))**2+maxval(abs(xyz2))*sq2)/R2/qxy Tinv = q * sign(1.0_pReal,xyz2) * merge([ 1.0_pReal, acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12], & [ acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12, 1.0_pReal], & abs(xyz2(2)) <= abs(xyz2(1))) endif special ! inverse M_1 xyz1 = [ Tinv(1), Tinv(2), sign(1.0_pReal,xyz3(3)) * rs / pref ] /sc ! reverst the coordinates back to the regular order according to the original pyramid number cube = xyz1(p) endif center end function LambertBallToCube !-------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @brief determine to which pyramid a point in a cubic grid belongs !-------------------------------------------------------------------------- pure function GetPyramidOrder(xyz) implicit none real(pReal),intent(in),dimension(3) :: xyz integer, dimension(3) :: GetPyramidOrder if (((abs(xyz(1)) <= xyz(3)).and.(abs(xyz(2)) <= xyz(3))) .or. & ((abs(xyz(1)) <= -xyz(3)).and.(abs(xyz(2)) <= -xyz(3)))) then GetPyramidOrder = [1,2,3] else if (((abs(xyz(3)) <= xyz(1)).and.(abs(xyz(2)) <= xyz(1))) .or. & ((abs(xyz(3)) <= -xyz(1)).and.(abs(xyz(2)) <= -xyz(1)))) then GetPyramidOrder = [2,3,1] else if (((abs(xyz(1)) <= xyz(2)).and.(abs(xyz(3)) <= xyz(2))) .or. & ((abs(xyz(1)) <= -xyz(2)).and.(abs(xyz(3)) <= -xyz(2)))) then GetPyramidOrder = [3,1,2] else GetPyramidOrder = -1 ! should be impossible, but might simplify debugging end if end function GetPyramidOrder end module Lambert