#!/usr/bin/env python3 # -*- coding: UTF-8 no BOM -*- import os,sys import math # noqa import numpy as np from optparse import OptionParser, OptionGroup import damask def periodicAverage(coords, limits): """Centroid in periodic domain, see https://en.wikipedia.org/wiki/Center_of_mass#Systems_with_periodic_boundary_conditions""" theta = 2.0*np.pi * (coords - limits[0])/(limits[1] - limits[0]) theta_avg = np.pi + np.arctan2(-np.sin(theta).mean(axis=0), -np.cos(theta).mean(axis=0)) return limits[0] + theta_avg * (limits[1] - limits[0])/2.0/np.pi scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptID = ' '.join([scriptName,damask.version]) # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [ASCIItable(s)]', description = """ Apply a user-specified function to condense into a single row all those rows for which columns 'label' have identical values. Output table will contain as many rows as there are different (unique) values in the grouping column(s). Periodic domain averaging of coordinate values is supported. Examples: For grain averaged values, replace all rows of particular 'texture' with a single row containing their average. {name} --label texture --function np.average data.txt """.format(name = scriptName), version = scriptID) parser.add_option('-l','--label', dest = 'label', action = 'extend', metavar = '<string LIST>', help = 'column label(s) for grouping rows') parser.add_option('-f','--function', dest = 'function', type = 'string', metavar = 'string', help = 'mapping function [%default]') parser.add_option('-a','--all', dest = 'all', action = 'store_true', help = 'apply mapping function also to grouping column(s)') group = OptionGroup(parser, "periodic averaging", "") group.add_option ('-p','--periodic', dest = 'periodic', action = 'extend', metavar = '<string LIST>', help = 'coordinate label(s) to average across periodic domain') group.add_option ('--limits', dest = 'boundary', type = 'float', metavar = 'float float', nargs = 2, help = 'min and max of periodic domain %default') parser.add_option_group(group) parser.set_defaults(function = 'np.average', all = False, label = [], boundary = [0.0, 1.0]) (options,filenames) = parser.parse_args() funcModule,funcName = options.function.split('.') try: mapFunction = getattr(locals().get(funcModule) or globals().get(funcModule) or __import__(funcModule), funcName) except: mapFunction = None if options.label is []: parser.error('no grouping column specified.') if not hasattr(mapFunction,'__call__'): parser.error('function "{}" is not callable.'.format(options.function)) # --- loop over input files ------------------------------------------------------------------------- if filenames == []: filenames = [None] for name in filenames: try: table = damask.ASCIItable(name = name, buffered = False) except: continue damask.util.report(scriptName,name) # ------------------------------------------ sanity checks --------------------------------------- remarks = [] errors = [] table.head_read() grpColumns = table.label_index(options.label)[::-1] grpColumns = grpColumns[np.where(grpColumns>=0)] if len(grpColumns) == 0: errors.append('no valid grouping column present.') if remarks != []: damask.util.croak(remarks) if errors != []: damask.util.croak(errors) table.close(dismiss=True) continue # ------------------------------------------ assemble info --------------------------------------- table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.head_write() # ------------------------------------------ process data -------------------------------- table.data_readArray() indexrange = table.label_indexrange(options.periodic) if options.periodic is not None else [] rows,cols = table.data.shape table.data = table.data[np.lexsort(table.data[:,grpColumns].T)] # sort data by grpColumn(s) values,index = np.unique(table.data[:,grpColumns], axis=0, return_index=True) # unique grpColumn values and their positions index = sorted(np.append(index,rows)) # add termination position grpTable = np.empty((len(values), cols)) # initialize output for i in range(len(values)): # iterate over groups (unique values in grpColumn) grpTable[i] = np.apply_along_axis(mapFunction,0,table.data[index[i]:index[i+1]]) # apply (general) mapping function grpTable[i,indexrange] = \ periodicAverage(table.data[index[i]:index[i+1],indexrange],options.boundary) # apply periodicAverage mapping function if not options.all: grpTable[i,grpColumns] = table.data[index[i],grpColumns] # restore grouping column value table.data = grpTable # ------------------------------------------ output result ------------------------------- table.data_writeArray() table.close() # close ASCII table