!* $Id$ !***************************************************** !* Module: HOMOGENIZATION_ISOSTRAIN * !***************************************************** !* contains: * !***************************************************** ! [isostrain] ! type isostrain ! Ngrains 6 ! (output) Ngrains MODULE homogenization_isostrain !*** Include other modules *** use prec, only: pReal,pInt implicit none character (len=*), parameter :: homogenization_isostrain_label = 'isostrain' integer(pInt), dimension(:), allocatable :: homogenization_isostrain_sizeState, & homogenization_isostrain_Ngrains integer(pInt), dimension(:), allocatable :: homogenization_isostrain_sizePostResults integer(pInt), dimension(:,:), allocatable,target :: homogenization_isostrain_sizePostResult character(len=64), dimension(:,:), allocatable,target :: homogenization_isostrain_output ! name of each post result output CONTAINS !**************************************** !* - homogenization_isostrain_init !* - homogenization_isostrain_stateInit !* - homogenization_isostrain_deformationPartititon !* - homogenization_isostrain_stateUpdate !* - homogenization_isostrain_averageStressAndItsTangent !* - homogenization_isostrain_postResults !**************************************** !************************************** !* Module initialization * !************************************** subroutine homogenization_isostrain_init(& file & ! file pointer to material configuration ) use prec, only: pInt, pReal use math, only: math_Mandel3333to66, math_Voigt66to3333 use IO use material integer(pInt), intent(in) :: file integer(pInt), parameter :: maxNchunks = 2 integer(pInt), dimension(1+2*maxNchunks) :: positions integer(pInt) section, maxNinstance, i,j,k,l, output, mySize character(len=64) tag character(len=1024) line write(6,*) write(6,'(a21,a20,a12)') '<<<+- homogenization',homogenization_isostrain_label,' init -+>>>' write(6,*) '$Id$' write(6,*) maxNinstance = count(homogenization_type == homogenization_isostrain_label) if (maxNinstance == 0) return allocate(homogenization_isostrain_sizeState(maxNinstance)) ; homogenization_isostrain_sizeState = 0_pInt allocate(homogenization_isostrain_sizePostResults(maxNinstance)); homogenization_isostrain_sizePostResults = 0_pInt allocate(homogenization_isostrain_sizePostResult(maxval(homogenization_Noutput), & maxNinstance)); homogenization_isostrain_sizePostResult = 0_pInt allocate(homogenization_isostrain_Ngrains(maxNinstance)); homogenization_isostrain_Ngrains = 0_pInt allocate(homogenization_isostrain_output(maxval(homogenization_Noutput), & maxNinstance)) ; homogenization_isostrain_output = '' rewind(file) line = '' section = 0 do while (IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization) ! wind forward to read(file,'(a1024)',END=100) line enddo do ! read thru sections of phase part read(file,'(a1024)',END=100) line if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') exit ! stop at next part if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1 output = 0 ! reset output counter endif if (section > 0 .and. homogenization_type(section) == homogenization_isostrain_label) then ! one of my sections i = homogenization_typeInstance(section) ! which instance of my type is present homogenization positions = IO_stringPos(line,maxNchunks) tag = IO_lc(IO_stringValue(line,positions,1)) ! extract key select case(tag) case ('(output)') output = output + 1 homogenization_isostrain_output(output,i) = IO_lc(IO_stringValue(line,positions,2)) case ('ngrains') homogenization_isostrain_Ngrains(i) = IO_intValue(line,positions,2) end select endif enddo 100 do i = 1,maxNinstance ! sanity checks enddo do i = 1,maxNinstance homogenization_isostrain_sizeState(i) = 0_pInt do j = 1,maxval(homogenization_Noutput) select case(homogenization_isostrain_output(j,i)) case('ngrains') mySize = 1 case default mySize = 0 end select if (mySize > 0_pInt) then ! any meaningful output found homogenization_isostrain_sizePostResult(j,i) = mySize homogenization_isostrain_sizePostResults(i) = & homogenization_isostrain_sizePostResults(i) + mySize endif enddo enddo return endsubroutine !********************************************************************* !* initial homogenization state * !********************************************************************* function homogenization_isostrain_stateInit(myInstance) use prec, only: pReal,pInt implicit none !* Definition of variables integer(pInt), intent(in) :: myInstance real(pReal), dimension(homogenization_isostrain_sizeState(myInstance)) :: & homogenization_isostrain_stateInit ! modified <<>> homogenization_isostrain_stateInit = 0.0_pReal return endfunction !******************************************************************** ! partition material point def grad onto constituents !******************************************************************** subroutine homogenization_isostrain_partitionDeformation(& F, & ! partioned def grad per grain ! F0, & ! initial partioned def grad per grain avgF, & ! my average def grad state, & ! my state ip, & ! my integration point el & ! my element ) use prec, only: pReal,pInt,p_vec use mesh, only: mesh_element,mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains,homogenization_Ngrains implicit none !* Definition of variables real(pReal), dimension (3,3,homogenization_maxNgrains), intent(out) :: F real(pReal), dimension (3,3,homogenization_maxNgrains), intent(in) :: F0 real(pReal), dimension (3,3), intent(in) :: avgF type(p_vec), intent(in) :: state integer(pInt), intent(in) :: ip,el integer(pInt) homID, i ! homID = homogenization_typeInstance(mesh_element(3,el)) forall (i = 1:homogenization_Ngrains(mesh_element(3,el))) & F(:,:,i) = avgF return endsubroutine !******************************************************************** ! update the internal state of the homogenization scheme ! and tell whether "done" and "happy" with result !******************************************************************** function homogenization_isostrain_updateState(& state, & ! my state ! P, & ! array of current grain stresses dPdF, & ! array of current grain stiffnesses ip, & ! my integration point el & ! my element ) use prec, only: pReal,pInt,p_vec use mesh, only: mesh_element,mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains implicit none !* Definition of variables type(p_vec), intent(inout) :: state real(pReal), dimension (3,3,homogenization_maxNgrains), intent(in) :: P real(pReal), dimension (3,3,3,3,homogenization_maxNgrains), intent(in) :: dPdF integer(pInt), intent(in) :: ip,el ! integer(pInt) homID logical, dimension(2) :: homogenization_isostrain_updateState ! homID = homogenization_typeInstance(mesh_element(3,el)) homogenization_isostrain_updateState = .true. ! homogenization at material point converged (done and happy) return endfunction !******************************************************************** ! derive average stress and stiffness from constituent quantities !******************************************************************** subroutine homogenization_isostrain_averageStressAndItsTangent(& avgP, & ! average stress at material point dAvgPdAvgF, & ! average stiffness at material point ! P, & ! array of current grain stresses dPdF, & ! array of current grain stiffnesses ip, & ! my integration point el & ! my element ) use prec, only: pReal,pInt,p_vec use mesh, only: mesh_element,mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains, homogenization_Ngrains implicit none !* Definition of variables real(pReal), dimension (3,3), intent(out) :: avgP real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF real(pReal), dimension (3,3,homogenization_maxNgrains), intent(in) :: P real(pReal), dimension (3,3,3,3,homogenization_maxNgrains), intent(in) :: dPdF integer(pInt), intent(in) :: ip,el logical homogenization_isostrain_stateUpdate integer(pInt) homID, i, Ngrains ! homID = homogenization_typeInstance(mesh_element(3,el)) Ngrains = homogenization_Ngrains(mesh_element(3,el)) avgP = sum(P,3)/dble(Ngrains) dAvgPdAvgF = sum(dPdF,5)/dble(Ngrains) return endsubroutine !******************************************************************** ! derive average stress and stiffness from constituent quantities !******************************************************************** function homogenization_isostrain_averageTemperature(& Temperature, & ! temperature ip, & ! my integration point el & ! my element ) use prec, only: pReal,pInt,p_vec use mesh, only: mesh_element,mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains, homogenization_Ngrains implicit none !* Definition of variables real(pReal), dimension (homogenization_maxNgrains), intent(in) :: Temperature integer(pInt), intent(in) :: ip,el real(pReal) homogenization_isostrain_averageTemperature integer(pInt) homID, i, Ngrains ! homID = homogenization_typeInstance(mesh_element(3,el)) Ngrains = homogenization_Ngrains(mesh_element(3,el)) homogenization_isostrain_averageTemperature = sum(Temperature(1:Ngrains))/dble(Ngrains) return endfunction !******************************************************************** ! return array of homogenization results for post file inclusion !******************************************************************** pure function homogenization_isostrain_postResults(& state, & ! my state ip, & ! my integration point el & ! my element ) use prec, only: pReal,pInt,p_vec use mesh, only: mesh_element use material, only: homogenization_typeInstance,homogenization_Noutput implicit none !* Definition of variables type(p_vec), intent(in) :: state integer(pInt), intent(in) :: ip,el integer(pInt) homID,o,c real(pReal), dimension(homogenization_isostrain_sizePostResults(homogenization_typeInstance(mesh_element(3,el)))) :: & homogenization_isostrain_postResults homID = homogenization_typeInstance(mesh_element(3,el)) c = 0_pInt homogenization_isostrain_postResults = 0.0_pReal do o = 1,homogenization_Noutput(mesh_element(3,el)) select case(homogenization_isostrain_output(o,homID)) case ('ngrains') homogenization_isostrain_postResults(c+1) = homogenization_isostrain_Ngrains(homID) c = c + 1 end select enddo return endfunction END MODULE