!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine for phenomenological crystal plasticity formulation using a powerlaw !! fitting !-------------------------------------------------------------------------------------------------- module plastic_phenopowerlaw use prec, only: & pReal,& pInt implicit none private integer(pInt), dimension(:), allocatable, public, protected :: & plastic_phenopowerlaw_sizePostResults !< cumulative size of post results integer(pInt), dimension(:,:), allocatable, target, public :: & plastic_phenopowerlaw_sizePostResult !< size of each post result output character(len=64), dimension(:,:), allocatable, target, public :: & plastic_phenopowerlaw_output !< name of each post result output integer(pInt), dimension(:), allocatable, target, public :: & plastic_phenopowerlaw_Noutput !< number of outputs per instance of this constitution integer(pInt), dimension(:), allocatable, private :: & totalNslip, & !< no. of slip system used in simulation totalNtwin !< no. of twin system used in simulation real(pReal), dimension(:,:,:), allocatable, private :: & interaction_SlipSlip, & !< interaction factors slip - slip (input parameter) interaction_SlipTwin, & !< interaction factors slip - twin (input parameter) interaction_TwinSlip, & !< interaction factors twin - slip (input parameter) interaction_TwinTwin !< interaction factors twin - twin (input parameter) enum, bind(c) enumerator :: undefined_ID, & resistance_slip_ID, & accumulatedshear_slip_ID, & shearrate_slip_ID, & resolvedstress_slip_ID, & totalshear_ID, & resistance_twin_ID, & accumulatedshear_twin_ID, & shearrate_twin_ID, & resolvedstress_twin_ID, & totalvolfrac_twin_ID end enum integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: & plastic_phenopowerlaw_outputID !< ID of each post result output type, private :: tParameters !< container type for internal constitutive parameters real(pReal) :: & gdot0_slip, & !< reference shear strain rate for slip gdot0_twin, & !< reference shear strain rate for twin n_slip, & !< stress exponent for slip n_twin, & !< stress exponent for twin spr, & !< push-up factor for slip saturation due to twinning twinB, & twinC, & twinD, & twinE, & h0_SlipSlip, & !< reference hardening slip - slip h0_TwinSlip, & !< reference hardening twin - slip h0_TwinTwin, & !< reference hardening twin - twin a_slip, & aTolResistance = 1.0_pReal, & ! default absolute tolerance 1 Pa aTolShear = 1.0e-6_pReal, & ! default absolute tolerance 1e-6 aTolTwinfrac = 1.0e-6_pReal ! default absolute tolerance 1e-6 integer(pInt), dimension(:), allocatable :: & Nslip, & !< active number of slip systems per family Ntwin !< active number of twin systems per family real(pReal), dimension(:), allocatable :: & tau0_slip, & !< initial critical shear stress for slip tau0_twin, & !< initial critical shear stress for twin tausat_slip, & !< maximum critical shear stress for slip nonSchmidCoeff, & H_int, & !< per family hardening activity (optional) interaction_SlipSlip, & !< slip resistance from slip activity interaction_SlipTwin, & !< slip resistance from twin activity interaction_TwinSlip, & !< twin resistance from slip activity interaction_TwinTwin !< twin resistance from twin activity end type type(tParameters), dimension(:), allocatable, private :: param !< containers of constitutive parameters (len Ninstance) type, private :: tPhenopowerlawState real(pReal), pointer, dimension(:,:) :: & s_slip, & s_twin, & accshear_slip, & accshear_twin real(pReal), pointer, dimension(:) :: & sumGamma, & sumF end type type(tPhenopowerlawState), allocatable, dimension(:), private :: & dotState, & state public :: & plastic_phenopowerlaw_init, & plastic_phenopowerlaw_LpAndItsTangent, & plastic_phenopowerlaw_dotState, & plastic_phenopowerlaw_postResults contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- subroutine plastic_phenopowerlaw_init(fileUnit) #if defined(__GFORTRAN__) || __INTEL_COMPILER >= 1800 use, intrinsic :: iso_fortran_env, only: & compiler_version, & compiler_options #endif use prec, only: & dEq0 use debug, only: & debug_level, & debug_constitutive,& debug_levelBasic use math, only: & math_Mandel3333to66, & math_Voigt66to3333, & math_expand use IO, only: & IO_read, & IO_lc, & IO_getTag, & IO_isBlank, & IO_stringPos, & IO_stringValue, & IO_floatValue, & IO_intValue, & IO_warning, & IO_error, & IO_timeStamp, & IO_EOF use material, only: & phase_plasticity, & phase_plasticityInstance, & phase_Noutput, & PLASTICITY_PHENOPOWERLAW_label, & PLASTICITY_PHENOPOWERLAW_ID, & material_phase, & plasticState, & MATERIAL_partPhase use lattice use numerics,only: & numerics_integrator implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), allocatable, dimension(:) :: chunkPos integer(pInt) :: & maxNinstance, & instance,phase,j,k, f,o, & Nchunks_SlipSlip = 0_pInt, Nchunks_SlipTwin = 0_pInt, & Nchunks_TwinSlip = 0_pInt, Nchunks_TwinTwin = 0_pInt, & Nchunks_SlipFamilies = 0_pInt, Nchunks_TwinFamilies = 0_pInt, & Nchunks_TransFamilies = 0_pInt, Nchunks_nonSchmid = 0_pInt, & NipcMyPhase, & offset_slip, index_myFamily, index_otherFamily, & mySize=0_pInt,sizeState,sizeDotState, sizeDeltaState, & startIndex, endIndex character(len=65536) :: & tag = '', & line = '', & extmsg = '' character(len=64) :: & outputtag = '' real(pReal), dimension(:), allocatable :: tempPerSlip write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_PHENOPOWERLAW_label//' init -+>>>' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" maxNinstance = int(count(phase_plasticity == PLASTICITY_PHENOPOWERLAW_ID),pInt) if (maxNinstance == 0_pInt) return if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) & write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance allocate(plastic_phenopowerlaw_sizePostResults(maxNinstance), source=0_pInt) allocate(plastic_phenopowerlaw_sizePostResult(maxval(phase_Noutput),maxNinstance), & source=0_pInt) allocate(plastic_phenopowerlaw_output(maxval(phase_Noutput),maxNinstance)) plastic_phenopowerlaw_output = '' allocate(plastic_phenopowerlaw_outputID(maxval(phase_Noutput),maxNinstance),source=undefined_ID) allocate(plastic_phenopowerlaw_Noutput(maxNinstance), source=0_pInt) allocate(totalNslip(maxNinstance), source=0_pInt) allocate(totalNtwin(maxNinstance), source=0_pInt) allocate(param(maxNinstance)) ! one container of parameters per instance rewind(fileUnit) phase = 0_pInt do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partPhase) ! wind forward to line = IO_read(fileUnit) enddo parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part line = IO_read(fileUnit) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(fileUnit, .true.) ! reset IO_read exit endif if (IO_getTag(line,'[',']') /= '') then ! next phase phase = phase + 1_pInt ! advance phase section counter if (phase_plasticity(phase) == PLASTICITY_PHENOPOWERLAW_ID) then instance = phase_plasticityInstance(phase) ! which instance of my plasticity is present phase Nchunks_SlipFamilies = count(lattice_NslipSystem(:,phase) > 0_pInt) ! maximum number of slip families according to lattice type of current phase Nchunks_TwinFamilies = count(lattice_NtwinSystem(:,phase) > 0_pInt) ! maximum number of twin families according to lattice type of current phase Nchunks_SlipSlip = maxval(lattice_interactionSlipSlip(:,:,phase)) Nchunks_SlipTwin = maxval(lattice_interactionSlipTwin(:,:,phase)) Nchunks_TwinSlip = maxval(lattice_interactionTwinSlip(:,:,phase)) Nchunks_TwinTwin = maxval(lattice_interactionTwinTwin(:,:,phase)) Nchunks_nonSchmid = lattice_NnonSchmid(phase) if(allocated(tempPerSlip)) deallocate(tempPerSlip) !allocate(param(instance)%H_int,source=tempPerSlip) gfortran 5 does not support this allocate(param(instance)%H_int(Nchunks_SlipFamilies),source=0.0_pReal) allocate(param(instance)%interaction_SlipSlip(Nchunks_SlipSlip),source=0.0_pReal) allocate(param(instance)%interaction_SlipTwin(Nchunks_SlipTwin),source=0.0_pReal) allocate(param(instance)%interaction_TwinSlip(Nchunks_TwinSlip),source=0.0_pReal) allocate(param(instance)%interaction_TwinTwin(Nchunks_TwinTwin),source=0.0_pReal) allocate(param(instance)%nonSchmidCoeff(Nchunks_nonSchmid),source=0.0_pReal) allocate(tempPerSlip(Nchunks_SlipFamilies)) endif cycle ! skip to next line endif if (phase > 0_pInt ) then; if (phase_plasticity(phase) == PLASTICITY_PHENOPOWERLAW_ID) then ! one of my phases. Do not short-circuit here (.and. between if-statements), it's not safe in Fortran chunkPos = IO_stringPos(line) tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key select case(tag) case ('(output)') outputtag = IO_lc(IO_stringValue(line,chunkPos,2_pInt)) plastic_phenopowerlaw_Noutput(instance) = plastic_phenopowerlaw_Noutput(instance) + 1_pInt ! assume valid output plastic_phenopowerlaw_output(plastic_phenopowerlaw_Noutput(instance),instance) = outputtag ! assume valid output select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt))) case ('resistance_slip') plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = resistance_slip_ID case ('accumulatedshear_slip','accumulated_shear_slip') plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = accumulatedshear_slip_ID case ('shearrate_slip') plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = shearrate_slip_ID case ('resolvedstress_slip') plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = resolvedstress_slip_ID case ('totalshear') plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = totalshear_ID case ('resistance_twin') plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = resistance_twin_ID case ('accumulatedshear_twin','accumulated_shear_twin') plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = accumulatedshear_twin_ID case ('shearrate_twin') plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = shearrate_twin_ID case ('resolvedstress_twin') plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = resolvedstress_twin_ID case ('totalvolfrac_twin') plastic_phenopowerlaw_outputID(plastic_phenopowerlaw_Noutput(instance),instance) = totalvolfrac_twin_ID case default plastic_phenopowerlaw_Noutput(instance) = plastic_phenopowerlaw_Noutput(instance) - 1_pInt ! correct for invalid end select !-------------------------------------------------------------------------------------------------- ! parameters depending on number of slip families case ('nslip') if (chunkPos(1) < Nchunks_SlipFamilies + 1_pInt) call IO_warning(50_pInt,ext_msg=extmsg) if (chunkPos(1) > Nchunks_SlipFamilies + 1_pInt) call IO_error(150_pInt,ext_msg=extmsg) Nchunks_SlipFamilies = chunkPos(1) - 1_pInt ! user specified number of (possibly) active slip families (e.g. 6 0 6 --> 3) allocate(param(instance)%Nslip(Nchunks_SlipFamilies),source=-1_pInt) do j = 1_pInt, Nchunks_SlipFamilies param(instance)%Nslip(j) = min(IO_intValue(line,chunkPos,1_pInt+j), & lattice_NslipSystem(j,phase)) ! limit active slip systems per family to min of available and requested enddo totalNslip(instance) = sum(param(instance)%Nslip) ! how many slip systems altogether case ('tausat_slip','tau0_slip','h_int') tempPerSlip = 0.0_pReal do j = 1_pInt, Nchunks_SlipFamilies if (param(instance)%Nslip(j) > 0_pInt) & tempPerSlip(j) = IO_floatValue(line,chunkPos,1_pInt+j) enddo select case(tag) ! here, all arrays are allocated automatically case ('tausat_slip') param(instance)%tausat_slip = tempPerSlip case ('tau0_slip') param(instance)%tau0_slip = tempPerSlip case ('h_int') param(instance)%H_int = tempPerSlip end select !-------------------------------------------------------------------------------------------------- ! parameters depending on number of twin families case ('ntwin') if (chunkPos(1) < Nchunks_TwinFamilies + 1_pInt) call IO_warning(51_pInt,ext_msg=extmsg) if (chunkPos(1) > Nchunks_TwinFamilies + 1_pInt) call IO_error(150_pInt,ext_msg=extmsg) Nchunks_TwinFamilies = chunkPos(1) - 1_pInt allocate(param(instance)%Ntwin(Nchunks_TwinFamilies),source=-1_pInt) do j = 1_pInt, Nchunks_TwinFamilies param(instance)%Ntwin(j) = min(IO_intValue(line,chunkPos,1_pInt+j), & lattice_NtwinSystem(j,phase)) ! limit active twin systems per family to min of available and requested enddo totalNtwin(instance) = sum(param(instance)%Ntwin) ! how many twin systems altogether case ('tau0_twin') allocate(param(instance)%tau0_twin(Nchunks_TwinFamilies),source=0.0_pReal) do j = 1_pInt, Nchunks_TwinFamilies if (param(instance)%Ntwin(j) > 0_pInt) & param(instance)%tau0_twin(j) = IO_floatValue(line,chunkPos,1_pInt+j) enddo !-------------------------------------------------------------------------------------------------- ! parameters depending on number of interactions case ('interaction_slipslip') if (chunkPos(1) < 1_pInt + Nchunks_SlipSlip) call IO_warning(52_pInt,ext_msg=extmsg) do j = 1_pInt, Nchunks_SlipSlip param(instance)%interaction_SlipSlip(j) = IO_floatValue(line,chunkPos,1_pInt+j) enddo case ('interaction_sliptwin') if (chunkPos(1) < 1_pInt + Nchunks_SlipTwin) call IO_warning(52_pInt,ext_msg=extmsg) do j = 1_pInt, Nchunks_SlipTwin param(instance)%interaction_SlipTwin(j) = IO_floatValue(line,chunkPos,1_pInt+j) enddo case ('interaction_twinslip') if (chunkPos(1) < 1_pInt + Nchunks_TwinSlip) call IO_warning(52_pInt,ext_msg=extmsg) do j = 1_pInt, Nchunks_TwinSlip param(instance)%interaction_TwinSlip(j) = IO_floatValue(line,chunkPos,1_pInt+j) enddo case ('interaction_twintwin') if (chunkPos(1) < 1_pInt + Nchunks_TwinTwin) call IO_warning(52_pInt,ext_msg=extmsg) do j = 1_pInt, Nchunks_TwinTwin param(instance)%interaction_TwinTwin(j) = IO_floatValue(line,chunkPos,1_pInt+j) enddo case ('nonschmid_coefficients') if (chunkPos(1) < 1_pInt + Nchunks_nonSchmid) call IO_warning(52_pInt,ext_msg=extmsg) do j = 1_pInt,Nchunks_nonSchmid param(instance)%nonSchmidCoeff(j) = IO_floatValue(line,chunkPos,1_pInt+j) enddo !-------------------------------------------------------------------------------------------------- ! parameters independent of number of slip/twin systems case ('gdot0_slip') param(instance)%gdot0_slip = IO_floatValue(line,chunkPos,2_pInt) case ('n_slip') param(instance)%n_slip = IO_floatValue(line,chunkPos,2_pInt) case ('a_slip', 'w0_slip') param(instance)%a_slip = IO_floatValue(line,chunkPos,2_pInt) case ('gdot0_twin') param(instance)%gdot0_twin = IO_floatValue(line,chunkPos,2_pInt) case ('n_twin') param(instance)%n_twin = IO_floatValue(line,chunkPos,2_pInt) case ('s_pr') param(instance)%spr = IO_floatValue(line,chunkPos,2_pInt) case ('twin_b') param(instance)%twinB = IO_floatValue(line,chunkPos,2_pInt) case ('twin_c') param(instance)%twinC = IO_floatValue(line,chunkPos,2_pInt) case ('twin_d') param(instance)%twinD = IO_floatValue(line,chunkPos,2_pInt) case ('twin_e') param(instance)%twinE = IO_floatValue(line,chunkPos,2_pInt) case ('h0_slipslip') param(instance)%h0_SlipSlip = IO_floatValue(line,chunkPos,2_pInt) case ('h0_twinslip') param(instance)%h0_TwinSlip = IO_floatValue(line,chunkPos,2_pInt) case ('h0_twintwin') param(instance)%h0_TwinTwin = IO_floatValue(line,chunkPos,2_pInt) case ('atol_resistance') param(instance)%aTolResistance = IO_floatValue(line,chunkPos,2_pInt) case ('atol_shear') param(instance)%aTolShear = IO_floatValue(line,chunkPos,2_pInt) case ('atol_twinfrac') param(instance)%aTolTwinfrac = IO_floatValue(line,chunkPos,2_pInt) case default end select endif; endif enddo parsingFile sanityChecks: do phase = 1_pInt, size(phase_plasticity) myPhase: if (phase_plasticity(phase) == PLASTICITY_phenopowerlaw_ID) then instance = phase_plasticityInstance(phase) totalNslip(instance) = sum(param(instance)%Nslip) ! how many slip systems altogether. ToDo: ok for unallocated Nslip totalNtwin(instance) = sum(param(instance)%Ntwin) ! how many twin systems altogether. ToDo: ok for unallocated Ntwin slipActive: if (allocated(param(instance)%Nslip)) then if (any(param(instance)%tau0_slip < 0.0_pReal .and. & param(instance)%Nslip(:) > 0)) & call IO_error(211_pInt,el=instance,ext_msg='tau0_slip ('//PLASTICITY_PHENOPOWERLAW_label//')') if (param(instance)%gdot0_slip <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='gdot0_slip ('//PLASTICITY_PHENOPOWERLAW_label//')') if (param(instance)%n_slip <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='n_slip ('//PLASTICITY_PHENOPOWERLAW_label//')') if (any(param(instance)%tausat_slip <= 0.0_pReal .and. & param(instance)%Nslip(:) > 0)) & call IO_error(211_pInt,el=instance,ext_msg='tausat_slip ('//PLASTICITY_PHENOPOWERLAW_label//')') if (any(dEq0(param(instance)%a_slip) .and. param(instance)%Nslip(:) > 0)) & call IO_error(211_pInt,el=instance,ext_msg='a_slip ('//PLASTICITY_PHENOPOWERLAW_label//')') endif slipActive twinActive: if (allocated(param(instance)%Ntwin)) then ! if (any(param(instance)%tau0_twin < 0.0_pReal .and. & ! param(instance)%Ntwin(:) > 0)) & ! call IO_error(211_pInt,el=instance,ext_msg='tau0_twin ('//PLASTICITY_PHENOPOWERLAW_label//')') ! if ( param(instance)%gdot0_twin <= 0.0_pReal .and. & ! any(param(instance)%Ntwin(:) > 0)) & ! call IO_error(211_pInt,el=instance,ext_msg='gdot0_twin ('//PLASTICITY_PHENOPOWERLAW_label//')') ! if ( param(instance)%n_twin <= 0.0_pReal .and. & ! any(param(instance)%Ntwin(:) > 0)) & ! call IO_error(211_pInt,el=instance,ext_msg='n_twin ('//PLASTICITY_PHENOPOWERLAW_label//')') endif twinActive if (param(instance)%aTolResistance <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='aTolResistance ('//PLASTICITY_PHENOPOWERLAW_label//')') if (param(instance)%aTolShear <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='aTolShear ('//PLASTICITY_PHENOPOWERLAW_label//')') if (param(instance)%aTolTwinfrac <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='aTolTwinfrac ('//PLASTICITY_PHENOPOWERLAW_label//')') endif myPhase enddo sanityChecks !-------------------------------------------------------------------------------------------------- ! allocation of variables whose size depends on the total number of active slip systems allocate(interaction_SlipSlip(maxval(totalNslip),maxval(totalNslip),maxNinstance), source=0.0_pReal) allocate(interaction_SlipTwin(maxval(totalNslip),maxval(totalNtwin),maxNinstance), source=0.0_pReal) allocate(interaction_TwinSlip(maxval(totalNtwin),maxval(totalNslip),maxNinstance), source=0.0_pReal) allocate(interaction_TwinTwin(maxval(totalNtwin),maxval(totalNtwin),maxNinstance), source=0.0_pReal) allocate(state(maxNinstance)) allocate(dotState(maxNinstance)) initializeInstances: do phase = 1_pInt, size(phase_plasticity) ! loop through all phases in material.config myPhase2: if (phase_plasticity(phase) == PLASTICITY_phenopowerlaw_ID) then ! only consider my phase NipcMyPhase = count(material_phase == phase) ! number of IPCs containing my phase instance = phase_plasticityInstance(phase) ! which instance of my phase !-------------------------------------------------------------------------------------------------- ! Determine size of postResults array outputsLoop: do o = 1_pInt,plastic_phenopowerlaw_Noutput(instance) select case(plastic_phenopowerlaw_outputID(o,instance)) case(resistance_slip_ID, & shearrate_slip_ID, & accumulatedshear_slip_ID, & resolvedstress_slip_ID & ) mySize = totalNslip(instance) case(resistance_twin_ID, & shearrate_twin_ID, & accumulatedshear_twin_ID, & resolvedstress_twin_ID & ) mySize = totalNtwin(instance) case(totalshear_ID, & totalvolfrac_twin_ID & ) mySize = 1_pInt case default end select outputFound: if (mySize > 0_pInt) then plastic_phenopowerlaw_sizePostResult(o,instance) = mySize plastic_phenopowerlaw_sizePostResults(instance) = plastic_phenopowerlaw_sizePostResults(instance) + mySize endif outputFound enddo outputsLoop !-------------------------------------------------------------------------------------------------- ! allocate state arrays sizeState = totalNslip(instance) & ! s_slip + totalNtwin(instance) & ! s_twin + 2_pInt & ! sum(gamma) + sum(f) + totalNslip(instance) & ! accshear_slip + totalNtwin(instance) ! accshear_twin sizeDotState = sizeState sizeDeltaState = 0_pInt plasticState(phase)%sizeState = sizeState plasticState(phase)%sizeDotState = sizeDotState plasticState(phase)%sizeDeltaState = sizeDeltaState plasticState(phase)%sizePostResults = plastic_phenopowerlaw_sizePostResults(instance) plasticState(phase)%nSlip =totalNslip(instance) plasticState(phase)%nTwin =totalNtwin(instance) plasticState(phase)%nTrans=0_pInt allocate(plasticState(phase)%aTolState ( sizeState), source=0.0_pReal) allocate(plasticState(phase)%state0 ( sizeState,NipcMyPhase), source=0.0_pReal) allocate(plasticState(phase)%partionedState0 ( sizeState,NipcMyPhase), source=0.0_pReal) allocate(plasticState(phase)%subState0 ( sizeState,NipcMyPhase), source=0.0_pReal) allocate(plasticState(phase)%state ( sizeState,NipcMyPhase), source=0.0_pReal) allocate(plasticState(phase)%dotState (sizeDotState,NipcMyPhase), source=0.0_pReal) allocate(plasticState(phase)%deltaState (sizeDeltaState,NipcMyPhase), source=0.0_pReal) if (any(numerics_integrator == 1_pInt)) then allocate(plasticState(phase)%previousDotState (sizeDotState,NipcMyPhase),source=0.0_pReal) allocate(plasticState(phase)%previousDotState2(sizeDotState,NipcMyPhase),source=0.0_pReal) endif if (any(numerics_integrator == 4_pInt)) & allocate(plasticState(phase)%RK4dotState (sizeDotState,NipcMyPhase), source=0.0_pReal) if (any(numerics_integrator == 5_pInt)) & allocate(plasticState(phase)%RKCK45dotState (6,sizeDotState,NipcMyPhase), source=0.0_pReal) offset_slip = plasticState(phase)%nSlip+plasticState(phase)%nTwin+2_pInt plasticState(phase)%slipRate => & plasticState(phase)%dotState(offset_slip+1:offset_slip+plasticState(phase)%nSlip,1:NipcMyPhase) plasticState(phase)%accumulatedSlip => & plasticState(phase)%state(offset_slip+1:offset_slip+plasticState(phase)%nSlip,1:NipcMyPhase) !-------------------------------------------------------------------------------------------------- ! calculate hardening matrices and extend intitial values (per family -> per system) mySlipFamilies: do f = 1_pInt,size(param(instance)%Nslip,1) ! >>> interaction slip -- X index_myFamily = sum(param(instance)%Nslip(1:f-1_pInt)) mySlipSystems: do j = 1_pInt,param(instance)%Nslip(f) otherSlipFamilies: do o = 1_pInt,size(param(instance)%Nslip,1) index_otherFamily = sum(param(instance)%Nslip(1:o-1_pInt)) otherSlipSystems: do k = 1_pInt,param(instance)%Nslip(o) interaction_SlipSlip(index_myFamily+j,index_otherFamily+k,instance) = & param(instance)%interaction_SlipSlip(lattice_interactionSlipSlip( & sum(lattice_NslipSystem(1:f-1,phase))+j, & sum(lattice_NslipSystem(1:o-1,phase))+k, & phase)) enddo otherSlipSystems; enddo otherSlipFamilies twinFamilies: do o = 1_pInt,size(param(instance)%Ntwin,1) index_otherFamily = sum(param(instance)%Ntwin(1:o-1_pInt)) twinSystems: do k = 1_pInt,param(instance)%Ntwin(o) interaction_SlipTwin(index_myFamily+j,index_otherFamily+k,instance) = & param(instance)%interaction_SlipTwin(lattice_interactionSlipTwin( & sum(lattice_NslipSystem(1:f-1_pInt,phase))+j, & sum(lattice_NtwinSystem(1:o-1_pInt,phase))+k, & phase)) enddo twinSystems; enddo twinFamilies enddo mySlipSystems enddo mySlipFamilies myTwinFamilies: do f = 1_pInt,size(param(instance)%Ntwin,1) ! >>> interaction twin -- X index_myFamily = sum(param(instance)%Ntwin(1:f-1_pInt)) myTwinSystems: do j = 1_pInt,param(instance)%Ntwin(f) slipFamilies: do o = 1_pInt,size(param(instance)%Nslip,1) index_otherFamily = sum(param(instance)%Nslip(1:o-1_pInt)) slipSystems: do k = 1_pInt,param(instance)%Nslip(o) interaction_TwinSlip(index_myFamily+j,index_otherFamily+k,instance) = & param(instance)%interaction_TwinSlip(lattice_interactionTwinSlip( & sum(lattice_NtwinSystem(1:f-1_pInt,phase))+j, & sum(lattice_NslipSystem(1:o-1_pInt,phase))+k, & phase)) enddo slipSystems; enddo slipFamilies otherTwinFamilies: do o = 1_pInt,size(param(instance)%Ntwin,1) index_otherFamily = sum(param(instance)%Ntwin(1:o-1_pInt)) otherTwinSystems: do k = 1_pInt,param(instance)%Ntwin(o) interaction_TwinTwin(index_myFamily+j,index_otherFamily+k,instance) = & param(instance)%interaction_TwinTwin(lattice_interactionTwinTwin( & sum(lattice_NtwinSystem(1:f-1_pInt,phase))+j, & sum(lattice_NtwinSystem(1:o-1_pInt,phase))+k, & phase)) enddo otherTwinSystems; enddo otherTwinFamilies enddo myTwinSystems enddo myTwinFamilies !-------------------------------------------------------------------------------------------------- ! locally defined state aliases and initialization of state0 and aTolState startIndex = 1_pInt endIndex = totalNslip(instance) state (instance)%s_slip=>plasticState(phase)%state (startIndex:endIndex,:) dotState(instance)%s_slip=>plasticState(phase)%dotState(startIndex:endIndex,:) plasticState(phase)%state0(startIndex:endIndex,:) = & spread(math_expand(param(instance)%tau0_slip, param(instance)%Nslip), 2, NipcMyPhase) plasticState(phase)%aTolState(startIndex:endIndex) = param(instance)%aTolResistance startIndex = endIndex + 1_pInt endIndex = endIndex + totalNtwin(instance) state (instance)%s_twin=>plasticState(phase)%state (startIndex:endIndex,:) dotState(instance)%s_twin=>plasticState(phase)%dotState(startIndex:endIndex,:) plasticState(phase)%state0(startIndex:endIndex,:) = & spread(math_expand(param(instance)%tau0_twin, param(instance)%Ntwin), 2, NipcMyPhase) plasticState(phase)%aTolState(startIndex:endIndex) = param(instance)%aTolResistance startIndex = endIndex + 1_pInt endIndex = endIndex + 1_pInt state (instance)%sumGamma=>plasticState(phase)%state (startIndex,:) dotState(instance)%sumGamma=>plasticState(phase)%dotState(startIndex,:) plasticState(phase)%aTolState(startIndex:endIndex) = param(instance)%aTolShear startIndex = endIndex + 1_pInt endIndex = endIndex + 1_pInt state (instance)%sumF=>plasticState(phase)%state (startIndex,:) dotState(instance)%sumF=>plasticState(phase)%dotState(startIndex,:) plasticState(phase)%aTolState(startIndex:endIndex) = param(instance)%aTolTwinFrac startIndex = endIndex + 1_pInt endIndex = endIndex + totalNslip(instance) state (instance)%accshear_slip=>plasticState(phase)%state (startIndex:endIndex,:) dotState(instance)%accshear_slip=>plasticState(phase)%dotState(startIndex:endIndex,:) plasticState(phase)%aTolState(startIndex:endIndex) = param(instance)%aTolShear ! global alias plasticState(phase)%slipRate =>plasticState(phase)%dotState(startIndex:endIndex,:) plasticState(phase)%accumulatedSlip =>plasticState(phase)%state(startIndex:endIndex,:) startIndex = endIndex + 1_pInt endIndex = endIndex + totalNtwin(instance) state (instance)%accshear_twin=>plasticState(phase)%state (startIndex:endIndex,:) dotState(instance)%accshear_twin=>plasticState(phase)%dotState(startIndex:endIndex,:) plasticState(phase)%aTolState(startIndex:endIndex) = param(instance)%aTolShear endif myPhase2 enddo initializeInstances end subroutine plastic_phenopowerlaw_init !-------------------------------------------------------------------------------------------------- !> @brief calculates plastic velocity gradient and its tangent !-------------------------------------------------------------------------------------------------- subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el) use prec, only: & dNeq0 use math, only: & math_Plain3333to99, & math_Mandel6to33 use lattice, only: & lattice_Sslip, & lattice_Sslip_v, & lattice_Stwin, & lattice_Stwin_v, & lattice_maxNslipFamily, & lattice_maxNtwinFamily, & lattice_NslipSystem, & lattice_NtwinSystem, & lattice_NnonSchmid use material, only: & phaseAt, phasememberAt, & phase_plasticityInstance implicit none real(pReal), dimension(3,3), intent(out) :: & Lp !< plastic velocity gradient real(pReal), dimension(9,9), intent(out) :: & dLp_dTstar99 !< derivative of Lp with respect to 2nd Piola Kirchhoff stress integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation integer(pInt) :: & instance, & index_myFamily, & f,i,j,k,l,m,n, & of, & ph real(pReal) :: & tau_slip_pos,tau_slip_neg, & gdot_slip_pos,gdot_slip_neg, & dgdot_dtauslip_pos,dgdot_dtauslip_neg, & gdot_twin,dgdot_dtautwin,tau_twin real(pReal), dimension(3,3,3,3) :: & dLp_dTstar3333 !< derivative of Lp with respect to Tstar as 4th order tensor real(pReal), dimension(3,3,2) :: & nonSchmid_tensor of = phasememberAt(ipc,ip,el) ph = phaseAt(ipc,ip,el) instance = phase_plasticityInstance(ph) Lp = 0.0_pReal dLp_dTstar3333 = 0.0_pReal dLp_dTstar99 = 0.0_pReal !-------------------------------------------------------------------------------------------------- ! Slip part j = 0_pInt slipFamilies: do f = 1_pInt,size(param(instance)%Nslip,1) index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family slipSystems: do i = 1_pInt,param(instance)%Nslip(f) j = j+1_pInt ! Calculation of Lp tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph)) tau_slip_neg = tau_slip_pos nonSchmid_tensor(1:3,1:3,1) = lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph) nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,1) do k = 1,lattice_NnonSchmid(ph) tau_slip_pos = tau_slip_pos + param(instance)%nonSchmidCoeff(k)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,ph)) tau_slip_neg = tau_slip_neg + param(instance)%nonSchmidCoeff(k)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph)) nonSchmid_tensor(1:3,1:3,1) = nonSchmid_tensor(1:3,1:3,1) + param(instance)%nonSchmidCoeff(k)*& lattice_Sslip(1:3,1:3,2*k,index_myFamily+i,ph) nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,2) + param(instance)%nonSchmidCoeff(k)*& lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+i,ph) enddo gdot_slip_pos = 0.5_pReal*param(instance)%gdot0_slip* & ((abs(tau_slip_pos)/(state(instance)%s_slip(j,of))) & **param(instance)%n_slip)*sign(1.0_pReal,tau_slip_pos) gdot_slip_neg = 0.5_pReal*param(instance)%gdot0_slip* & ((abs(tau_slip_neg)/(state(instance)%s_slip(j,of))) & **param(instance)%n_slip)*sign(1.0_pReal,tau_slip_neg) Lp = Lp + (1.0_pReal-state(instance)%sumF(of))*& ! 1-F (gdot_slip_pos+gdot_slip_neg)*lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph) ! Calculation of the tangent of Lp if (dNeq0(gdot_slip_pos)) then dgdot_dtauslip_pos = gdot_slip_pos*param(instance)%n_slip/tau_slip_pos forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + & dgdot_dtauslip_pos*lattice_Sslip(k,l,1,index_myFamily+i,ph)* & nonSchmid_tensor(m,n,1) endif if (dNeq0(gdot_slip_neg)) then dgdot_dtauslip_neg = gdot_slip_neg*param(instance)%n_slip/tau_slip_neg forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + & dgdot_dtauslip_neg*lattice_Sslip(k,l,1,index_myFamily+i,ph)* & nonSchmid_tensor(m,n,2) endif enddo slipSystems enddo slipFamilies !-------------------------------------------------------------------------------------------------- ! Twinning part j = 0_pInt twinFamilies: do f = 1_pInt,size(param(instance)%Ntwin,1) index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family twinSystems: do i = 1_pInt,param(instance)%Ntwin(f) j = j+1_pInt ! Calculation of Lp tau_twin = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,ph)) gdot_twin = (1.0_pReal-state(instance)%sumF(of))*& ! 1-F param(instance)%gdot0_twin*& (abs(tau_twin)/state(instance)%s_twin(j,of))**& param(instance)%n_twin*max(0.0_pReal,sign(1.0_pReal,tau_twin)) Lp = Lp + gdot_twin*lattice_Stwin(1:3,1:3,index_myFamily+i,ph) ! Calculation of the tangent of Lp if (dNeq0(gdot_twin)) then dgdot_dtautwin = gdot_twin*param(instance)%n_twin/tau_twin forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + & dgdot_dtautwin*lattice_Stwin(k,l,index_myFamily+i,ph)* & lattice_Stwin(m,n,index_myFamily+i,ph) endif enddo twinSystems enddo twinFamilies dLp_dTstar99 = math_Plain3333to99(dLp_dTstar3333) end subroutine plastic_phenopowerlaw_LpAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief calculates the rate of change of microstructure !-------------------------------------------------------------------------------------------------- subroutine plastic_phenopowerlaw_dotState(Tstar_v,ipc,ip,el) use lattice, only: & lattice_Sslip_v, & lattice_Stwin_v, & lattice_maxNslipFamily, & lattice_maxNtwinFamily, & lattice_NslipSystem, & lattice_NtwinSystem, & lattice_shearTwin, & lattice_NnonSchmid use material, only: & material_phase, & phaseAt, phasememberAt, & plasticState, & phase_plasticityInstance implicit none real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element !< microstructure state integer(pInt) :: & instance,ph, & f,i,j,k, & index_myFamily, & of real(pReal) :: & c_SlipSlip,c_TwinSlip,c_TwinTwin, & ssat_offset, & tau_slip_pos,tau_slip_neg,tau_twin real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_slip,left_SlipSlip,left_SlipTwin,right_SlipSlip,right_TwinSlip real(pReal), dimension(totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_twin,left_TwinSlip,left_TwinTwin,right_SlipTwin,right_TwinTwin of = phasememberAt(ipc,ip,el) ph = phaseAt(ipc,ip,el) instance = phase_plasticityInstance(ph) plasticState(ph)%dotState(:,of) = 0.0_pReal !-------------------------------------------------------------------------------------------------- ! system-independent (nonlinear) prefactors to M_Xx (X influenced by x) matrices c_SlipSlip = param(instance)%h0_slipslip*& (1.0_pReal + param(instance)%twinC*state(instance)%sumF(of)**& param(instance)%twinB) c_TwinSlip = param(instance)%h0_TwinSlip*& state(instance)%sumGamma(of)**param(instance)%twinE c_TwinTwin = param(instance)%h0_TwinTwin*& state(instance)%sumF(of)**param(instance)%twinD !-------------------------------------------------------------------------------------------------- ! calculate left and right vectors and calculate dot gammas ssat_offset = param(instance)%spr*sqrt(state(instance)%sumF(of)) j = 0_pInt slipFamilies1: do f =1_pInt,size(param(instance)%Nslip,1) index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family slipSystems1: do i = 1_pInt,param(instance)%Nslip(f) j = j+1_pInt left_SlipSlip(j) = 1.0_pReal + param(instance)%H_int(f) ! modified no system-dependent left part left_SlipTwin(j) = 1.0_pReal ! no system-dependent left part right_SlipSlip(j) = abs(1.0_pReal-state(instance)%s_slip(j,of) / & (param(instance)%tausat_slip(f)+ssat_offset)) & **param(instance)%a_slip& *sign(1.0_pReal,1.0_pReal-state(instance)%s_slip(j,of) / & (param(instance)%tausat_slip(f)+ssat_offset)) right_TwinSlip(j) = 1.0_pReal ! no system-dependent part !-------------------------------------------------------------------------------------------------- ! Calculation of dot gamma tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph)) tau_slip_neg = tau_slip_pos nonSchmidSystems: do k = 1,lattice_NnonSchmid(ph) tau_slip_pos = tau_slip_pos + param(instance)%nonSchmidCoeff(k)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k, index_myFamily+i,ph)) tau_slip_neg = tau_slip_neg +param(instance)%nonSchmidCoeff(k)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph)) enddo nonSchmidSystems gdot_slip(j) = param(instance)%gdot0_slip*0.5_pReal* & ((abs(tau_slip_pos)/(state(instance)%s_slip(j,of)))**param(instance)%n_slip & *sign(1.0_pReal,tau_slip_pos) & +(abs(tau_slip_neg)/(state(instance)%s_slip(j,of)))**param(instance)%n_slip & *sign(1.0_pReal,tau_slip_neg)) enddo slipSystems1 enddo slipFamilies1 j = 0_pInt twinFamilies1: do f = 1_pInt,size(param(instance)%Ntwin,1) index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family twinSystems1: do i = 1_pInt,param(instance)%Ntwin(f) j = j+1_pInt left_TwinSlip(j) = 1.0_pReal ! no system-dependent left part left_TwinTwin(j) = 1.0_pReal ! no system-dependent left part right_SlipTwin(j) = 1.0_pReal ! no system-dependent right part right_TwinTwin(j) = 1.0_pReal ! no system-dependent right part !-------------------------------------------------------------------------------------------------- ! Calculation of dot vol frac tau_twin = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,ph)) gdot_twin(j) = (1.0_pReal-state(instance)%sumF(of))*& ! 1-F param(instance)%gdot0_twin*& (abs(tau_twin)/state(instance)%s_twin(j,of))**& param(instance)%n_twin*max(0.0_pReal,sign(1.0_pReal,tau_twin)) enddo twinSystems1 enddo twinFamilies1 !-------------------------------------------------------------------------------------------------- ! calculate the overall hardening based on above j = 0_pInt slipFamilies2: do f = 1_pInt,size(param(instance)%Nslip,1) slipSystems2: do i = 1_pInt,param(instance)%Nslip(f) j = j+1_pInt dotState(instance)%s_slip(j,of) = & ! evolution of slip resistance j c_SlipSlip * left_SlipSlip(j) * & dot_product(interaction_SlipSlip(j,1:totalNslip(instance),instance), & right_SlipSlip*abs(gdot_slip)) + & ! dot gamma_slip modulated by right-side slip factor dot_product(interaction_SlipTwin(j,1:totalNtwin(instance),instance), & right_SlipTwin*gdot_twin) ! dot gamma_twin modulated by right-side twin factor dotState(instance)%sumGamma(of) = dotState(instance)%sumGamma(of) + & abs(gdot_slip(j)) dotState(instance)%accshear_slip(j,of) = abs(gdot_slip(j)) enddo slipSystems2 enddo slipFamilies2 j = 0_pInt twinFamilies2: do f = 1_pInt,size(param(instance)%Ntwin,1) index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family twinSystems2: do i = 1_pInt,param(instance)%Ntwin(f) j = j+1_pInt dotState(instance)%s_twin(j,of) = & ! evolution of twin resistance j c_TwinSlip * left_TwinSlip(j) * & dot_product(interaction_TwinSlip(j,1:totalNslip(instance),instance), & right_TwinSlip*abs(gdot_slip)) + & ! dot gamma_slip modulated by right-side slip factor c_TwinTwin * left_TwinTwin(j) * & dot_product(interaction_TwinTwin(j,1:totalNtwin(instance),instance), & right_TwinTwin*gdot_twin) ! dot gamma_twin modulated by right-side twin factor if (state(instance)%sumF(of) < 0.98_pReal) & ! ensure twin volume fractions stays below 1.0 dotState(instance)%sumF(of) = dotState(instance)%sumF(of) + & gdot_twin(j)/lattice_shearTwin(index_myFamily+i,ph) dotState(instance)%accshear_twin(j,of) = abs(gdot_twin(j)) enddo twinSystems2 enddo twinFamilies2 end subroutine plastic_phenopowerlaw_dotState !-------------------------------------------------------------------------------------------------- !> @brief return array of constitutive results !-------------------------------------------------------------------------------------------------- function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el) use material, only: & material_phase, & plasticState, & phaseAt, phasememberAt, & phase_plasticityInstance use lattice, only: & lattice_Sslip_v, & lattice_Stwin_v, & lattice_maxNslipFamily, & lattice_maxNtwinFamily, & lattice_NslipSystem, & lattice_NtwinSystem, & lattice_NnonSchmid implicit none real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element !< microstructure state real(pReal), dimension(plastic_phenopowerlaw_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & plastic_phenopowerlaw_postResults integer(pInt) :: & instance,ph, of, & nSlip,nTwin, & o,f,i,c,j,k, & index_myFamily real(pReal) :: & tau_slip_pos,tau_slip_neg,tau of = phasememberAt(ipc,ip,el) ph = phaseAt(ipc,ip,el) instance = phase_plasticityInstance(ph) nSlip= totalNslip(instance) nTwin= totalNtwin(instance) plastic_phenopowerlaw_postResults = 0.0_pReal c = 0_pInt outputsLoop: do o = 1_pInt,plastic_phenopowerlaw_Noutput(instance) select case(plastic_phenopowerlaw_outputID(o,instance)) case (resistance_slip_ID) plastic_phenopowerlaw_postResults(c+1_pInt:c+nSlip) = state(instance)%s_slip(1:nSlip,of) c = c + nSlip case (accumulatedshear_slip_ID) plastic_phenopowerlaw_postResults(c+1_pInt:c+nSlip) = state(instance)%accshear_slip(1:nSlip,of) c = c + nSlip case (shearrate_slip_ID) j = 0_pInt slipFamilies1: do f = 1_pInt,size(param(instance)%Nslip,1) index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family slipSystems1: do i = 1_pInt,param(instance)%Nslip(f) j = j + 1_pInt tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph)) tau_slip_neg = tau_slip_pos do k = 1,lattice_NnonSchmid(ph) tau_slip_pos = tau_slip_pos +param(instance)%nonSchmidCoeff(k)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,ph)) tau_slip_neg = tau_slip_neg +param(instance)%nonSchmidCoeff(k)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph)) enddo plastic_phenopowerlaw_postResults(c+j) = param(instance)%gdot0_slip*0.5_pReal* & ((abs(tau_slip_pos)/state(instance)%s_slip(j,of))**param(instance)%n_slip & *sign(1.0_pReal,tau_slip_pos) & +(abs(tau_slip_neg)/(state(instance)%s_slip(j,of)))**param(instance)%n_slip & *sign(1.0_pReal,tau_slip_neg)) enddo slipSystems1 enddo slipFamilies1 c = c + nSlip case (resolvedstress_slip_ID) j = 0_pInt slipFamilies2: do f = 1_pInt,size(param(instance)%Nslip,1) index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family slipSystems2: do i = 1_pInt,param(instance)%Nslip(f) j = j + 1_pInt plastic_phenopowerlaw_postResults(c+j) = & dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph)) enddo slipSystems2 enddo slipFamilies2 c = c + nSlip case (totalshear_ID) plastic_phenopowerlaw_postResults(c+1_pInt) = & state(instance)%sumGamma(of) c = c + 1_pInt case (resistance_twin_ID) plastic_phenopowerlaw_postResults(c+1_pInt:c+nTwin) = & state(instance)%s_twin(1:nTwin,of) c = c + nTwin case (accumulatedshear_twin_ID) plastic_phenopowerlaw_postResults(c+1_pInt:c+nTwin) = & state(instance)%accshear_twin(1:nTwin,of) c = c + nTwin case (shearrate_twin_ID) j = 0_pInt twinFamilies1: do f = 1_pInt,size(param(instance)%Ntwin,1) index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family twinSystems1: do i = 1_pInt,param(instance)%Ntwin(f) j = j + 1_pInt tau = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,ph)) plastic_phenopowerlaw_postResults(c+j) = (1.0_pReal-state(instance)%sumF(of))*& ! 1-F param(instance)%gdot0_twin*& (abs(tau)/state(instance)%s_twin(j,of))**& param(instance)%n_twin*max(0.0_pReal,sign(1.0_pReal,tau)) enddo twinSystems1 enddo twinFamilies1 c = c + nTwin case (resolvedstress_twin_ID) j = 0_pInt twinFamilies2: do f = 1_pInt,size(param(instance)%Ntwin,1) index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family twinSystems2: do i = 1_pInt,param(instance)%Ntwin(f) j = j + 1_pInt plastic_phenopowerlaw_postResults(c+j) = & dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,ph)) enddo twinSystems2 enddo twinFamilies2 c = c + nTwin case (totalvolfrac_twin_ID) plastic_phenopowerlaw_postResults(c+1_pInt) = state(instance)%sumF(of) c = c + 1_pInt end select enddo outputsLoop end function plastic_phenopowerlaw_postResults end module plastic_phenopowerlaw