!-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH !> @brief homogenization manager, organizing deformation partitioning and stress homogenization !-------------------------------------------------------------------------------------------------- module homogenization use prec use IO use config use debug use math use material use numerics use constitutive use crystallite use FEsolving use discretization use thermal_isothermal use thermal_adiabatic use thermal_conduction use damage_none use damage_local use damage_nonlocal use results implicit none private !-------------------------------------------------------------------------------------------------- ! General variables for the homogenization at a material point real(pReal), dimension(:,:,:,:), allocatable, public :: & materialpoint_F0, & !< def grad of IP at start of FE increment materialpoint_F, & !< def grad of IP to be reached at end of FE increment materialpoint_P !< first P--K stress of IP real(pReal), dimension(:,:,:,:,:,:), allocatable, public :: & materialpoint_dPdF !< tangent of first P--K stress at IP real(pReal), dimension(:,:,:,:), allocatable :: & materialpoint_subF0, & !< def grad of IP at beginning of homogenization increment materialpoint_subF !< def grad of IP to be reached at end of homog inc real(pReal), dimension(:,:), allocatable :: & materialpoint_subFrac, & materialpoint_subStep, & materialpoint_subdt logical, dimension(:,:), allocatable :: & materialpoint_requested, & materialpoint_converged logical, dimension(:,:,:), allocatable :: & materialpoint_doneAndHappy interface module subroutine mech_none_init end subroutine mech_none_init module subroutine mech_isostrain_init end subroutine mech_isostrain_init module subroutine mech_RGC_init end subroutine mech_RGC_init module subroutine mech_isostrain_partitionDeformation(F,avgF) real(pReal), dimension (:,:,:), intent(out) :: F !< partitioned deformation gradient real(pReal), dimension (3,3), intent(in) :: avgF !< average deformation gradient at material point end subroutine mech_isostrain_partitionDeformation module subroutine mech_RGC_partitionDeformation(F,avgF,instance,of) real(pReal), dimension (:,:,:), intent(out) :: F !< partitioned deformation gradient real(pReal), dimension (3,3), intent(in) :: avgF !< average deformation gradient at material point integer, intent(in) :: & instance, & of end subroutine mech_RGC_partitionDeformation module subroutine mech_isostrain_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,instance) real(pReal), dimension (3,3), intent(out) :: avgP !< average stress at material point real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF !< average stiffness at material point real(pReal), dimension (:,:,:), intent(in) :: P !< partitioned stresses real(pReal), dimension (:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses integer, intent(in) :: instance end subroutine mech_isostrain_averageStressAndItsTangent module subroutine mech_RGC_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,instance) real(pReal), dimension (3,3), intent(out) :: avgP !< average stress at material point real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF !< average stiffness at material point real(pReal), dimension (:,:,:), intent(in) :: P !< partitioned stresses real(pReal), dimension (:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses integer, intent(in) :: instance end subroutine mech_RGC_averageStressAndItsTangent module function mech_RGC_updateState(P,F,F0,avgF,dt,dPdF,ip,el) logical, dimension(2) :: mech_RGC_updateState real(pReal), dimension(:,:,:), intent(in) :: & P,& !< partitioned stresses F,& !< partitioned deformation gradients F0 !< partitioned initial deformation gradients real(pReal), dimension(:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses real(pReal), dimension(3,3), intent(in) :: avgF !< average F real(pReal), intent(in) :: dt !< time increment integer, intent(in) :: & ip, & !< integration point number el !< element number end function mech_RGC_updateState module subroutine mech_RGC_results(instance,group) integer, intent(in) :: instance !< homogenization instance character(len=*), intent(in) :: group !< group name in HDF5 file end subroutine mech_RGC_results end interface public :: & homogenization_init, & materialpoint_stressAndItsTangent, & homogenization_results contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !-------------------------------------------------------------------------------------------------- subroutine homogenization_init if (any(homogenization_type == HOMOGENIZATION_NONE_ID)) call mech_none_init if (any(homogenization_type == HOMOGENIZATION_ISOSTRAIN_ID)) call mech_isostrain_init if (any(homogenization_type == HOMOGENIZATION_RGC_ID)) call mech_RGC_init if (any(thermal_type == THERMAL_isothermal_ID)) call thermal_isothermal_init if (any(thermal_type == THERMAL_adiabatic_ID)) call thermal_adiabatic_init if (any(thermal_type == THERMAL_conduction_ID)) call thermal_conduction_init if (any(damage_type == DAMAGE_none_ID)) call damage_none_init if (any(damage_type == DAMAGE_local_ID)) call damage_local_init if (any(damage_type == DAMAGE_nonlocal_ID)) call damage_nonlocal_init call config_deallocate('material.config/homogenization') !-------------------------------------------------------------------------------------------------- ! allocate and initialize global variables allocate(materialpoint_dPdF(3,3,3,3,discretization_nIP,discretization_nElem), source=0.0_pReal) allocate(materialpoint_F0(3,3,discretization_nIP,discretization_nElem), source=0.0_pReal) materialpoint_F0 = spread(spread(math_I3,3,discretization_nIP),4,discretization_nElem) ! initialize to identity allocate(materialpoint_F(3,3,discretization_nIP,discretization_nElem), source=0.0_pReal) materialpoint_F = materialpoint_F0 ! initialize to identity allocate(materialpoint_subF0(3,3,discretization_nIP,discretization_nElem), source=0.0_pReal) allocate(materialpoint_subF(3,3,discretization_nIP,discretization_nElem), source=0.0_pReal) allocate(materialpoint_P(3,3,discretization_nIP,discretization_nElem), source=0.0_pReal) allocate(materialpoint_subFrac(discretization_nIP,discretization_nElem), source=0.0_pReal) allocate(materialpoint_subStep(discretization_nIP,discretization_nElem), source=0.0_pReal) allocate(materialpoint_subdt(discretization_nIP,discretization_nElem), source=0.0_pReal) allocate(materialpoint_requested(discretization_nIP,discretization_nElem), source=.false.) allocate(materialpoint_converged(discretization_nIP,discretization_nElem), source=.true.) allocate(materialpoint_doneAndHappy(2,discretization_nIP,discretization_nElem), source=.true.) write(6,'(/,a)') ' <<<+- homogenization init -+>>>'; flush(6) if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0) then write(6,'(a32,1x,7(i8,1x))') 'materialpoint_dPdF: ', shape(materialpoint_dPdF) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_F0: ', shape(materialpoint_F0) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_F: ', shape(materialpoint_F) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subF0: ', shape(materialpoint_subF0) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subF: ', shape(materialpoint_subF) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_P: ', shape(materialpoint_P) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subFrac: ', shape(materialpoint_subFrac) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subStep: ', shape(materialpoint_subStep) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subdt: ', shape(materialpoint_subdt) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_requested: ', shape(materialpoint_requested) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_converged: ', shape(materialpoint_converged) write(6,'(a32,1x,7(i8,1x),/)') 'materialpoint_doneAndHappy: ', shape(materialpoint_doneAndHappy) endif flush(6) if (debug_g < 1 .or. debug_g > homogenization_Ngrains(material_homogenizationAt(debug_e))) & call IO_error(602,ext_msg='constituent', el=debug_e, g=debug_g) end subroutine homogenization_init !-------------------------------------------------------------------------------------------------- !> @brief parallelized calculation of stress and corresponding tangent at material points !-------------------------------------------------------------------------------------------------- subroutine materialpoint_stressAndItsTangent(updateJaco,dt) real(pReal), intent(in) :: dt !< time increment logical, intent(in) :: updateJaco !< initiating Jacobian update integer :: & NiterationHomog, & NiterationMPstate, & g, & !< grain number i, & !< integration point number e, & !< element number mySource, & myNgrains #ifdef DEBUG if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0) then write(6,'(/a,i5,1x,i2)') '<< HOMOG >> Material Point start at el ip ', debug_e, debug_i write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F0', & transpose(materialpoint_F0(1:3,1:3,debug_i,debug_e)) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F', & transpose(materialpoint_F(1:3,1:3,debug_i,debug_e)) endif #endif !-------------------------------------------------------------------------------------------------- ! initialize restoration points of ... do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(material_homogenizationAt(e)) do i = FEsolving_execIP(1),FEsolving_execIP(2); do g = 1,myNgrains plasticState (material_phaseAt(g,e))%partionedState0(:,material_phasememberAt(g,i,e)) = & plasticState (material_phaseAt(g,e))%state0( :,material_phasememberAt(g,i,e)) do mySource = 1, phase_Nsources(material_phaseAt(g,e)) sourceState(material_phaseAt(g,e))%p(mySource)%partionedState0(:,material_phasememberAt(g,i,e)) = & sourceState(material_phaseAt(g,e))%p(mySource)%state0( :,material_phasememberAt(g,i,e)) enddo crystallite_partionedFp0(1:3,1:3,g,i,e) = crystallite_Fp0(1:3,1:3,g,i,e) crystallite_partionedLp0(1:3,1:3,g,i,e) = crystallite_Lp0(1:3,1:3,g,i,e) crystallite_partionedFi0(1:3,1:3,g,i,e) = crystallite_Fi0(1:3,1:3,g,i,e) crystallite_partionedLi0(1:3,1:3,g,i,e) = crystallite_Li0(1:3,1:3,g,i,e) crystallite_partionedF0(1:3,1:3,g,i,e) = crystallite_F0(1:3,1:3,g,i,e) crystallite_partionedS0(1:3,1:3,g,i,e) = crystallite_S0(1:3,1:3,g,i,e) enddo materialpoint_subF0(1:3,1:3,i,e) = materialpoint_F0(1:3,1:3,i,e) materialpoint_subFrac(i,e) = 0.0_pReal materialpoint_subStep(i,e) = 1.0_pReal/subStepSizeHomog ! <> materialpoint_converged(i,e) = .false. ! pretend failed step of twice the required size materialpoint_requested(i,e) = .true. ! everybody requires calculation if (homogState(material_homogenizationAt(e))%sizeState > 0) & homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = & homogState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e)) ! ...internal homogenization state if (thermalState(material_homogenizationAt(e))%sizeState > 0) & thermalState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = & thermalState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e)) ! ...internal thermal state if (damageState(material_homogenizationAt(e))%sizeState > 0) & damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = & damageState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e)) ! ...internal damage state enddo enddo NiterationHomog = 0 cutBackLooping: do while (.not. terminallyIll .and. & any(materialpoint_subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMinHomog)) !$OMP PARALLEL DO PRIVATE(myNgrains) elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(material_homogenizationAt(e)) IpLooping1: do i = FEsolving_execIP(1),FEsolving_execIP(2) converged: if (materialpoint_converged(i,e)) then #ifdef DEBUG if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0 & .and. ((e == debug_e .and. i == debug_i) & .or. .not. iand(debug_level(debug_homogenization),debug_levelSelective) /= 0)) then write(6,'(a,1x,f12.8,1x,a,1x,f12.8,1x,a,i8,1x,i2/)') '<< HOMOG >> winding forward from', & materialpoint_subFrac(i,e), 'to current materialpoint_subFrac', & materialpoint_subFrac(i,e)+materialpoint_subStep(i,e),'in materialpoint_stressAndItsTangent at el ip',e,i endif #endif !--------------------------------------------------------------------------------------------------- ! calculate new subStep and new subFrac materialpoint_subFrac(i,e) = materialpoint_subFrac(i,e) + materialpoint_subStep(i,e) materialpoint_subStep(i,e) = min(1.0_pReal-materialpoint_subFrac(i,e), & stepIncreaseHomog*materialpoint_subStep(i,e)) ! introduce flexibility for step increase/acceleration steppingNeeded: if (materialpoint_subStep(i,e) > subStepMinHomog) then ! wind forward grain starting point of... crystallite_partionedF0 (1:3,1:3,1:myNgrains,i,e) = & crystallite_partionedF(1:3,1:3,1:myNgrains,i,e) crystallite_partionedFp0 (1:3,1:3,1:myNgrains,i,e) = & crystallite_Fp (1:3,1:3,1:myNgrains,i,e) crystallite_partionedLp0 (1:3,1:3,1:myNgrains,i,e) = & crystallite_Lp (1:3,1:3,1:myNgrains,i,e) crystallite_partionedFi0 (1:3,1:3,1:myNgrains,i,e) = & crystallite_Fi (1:3,1:3,1:myNgrains,i,e) crystallite_partionedLi0 (1:3,1:3,1:myNgrains,i,e) = & crystallite_Li (1:3,1:3,1:myNgrains,i,e) crystallite_partionedS0 (1:3,1:3,1:myNgrains,i,e) = & crystallite_S (1:3,1:3,1:myNgrains,i,e) do g = 1,myNgrains plasticState (material_phaseAt(g,e))%partionedState0(:,material_phasememberAt(g,i,e)) = & plasticState (material_phaseAt(g,e))%state (:,material_phasememberAt(g,i,e)) do mySource = 1, phase_Nsources(material_phaseAt(g,e)) sourceState(material_phaseAt(g,e))%p(mySource)%partionedState0(:,material_phasememberAt(g,i,e)) = & sourceState(material_phaseAt(g,e))%p(mySource)%state (:,material_phasememberAt(g,i,e)) enddo enddo if(homogState(material_homogenizationAt(e))%sizeState > 0) & homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = & homogState(material_homogenizationAt(e))%State (:,material_homogenizationMemberAt(i,e)) if(thermalState(material_homogenizationAt(e))%sizeState > 0) & thermalState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = & thermalState(material_homogenizationAt(e))%State (:,material_homogenizationMemberAt(i,e)) if(damageState(material_homogenizationAt(e))%sizeState > 0) & damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = & damageState(material_homogenizationAt(e))%State (:,material_homogenizationMemberAt(i,e)) materialpoint_subF0(1:3,1:3,i,e) = materialpoint_subF(1:3,1:3,i,e) endif steppingNeeded else converged if ( (myNgrains == 1 .and. materialpoint_subStep(i,e) <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite subStepSizeHomog * materialpoint_subStep(i,e) <= subStepMinHomog ) then ! would require too small subStep ! cutback makes no sense !$OMP FLUSH(terminallyIll) if (.not. terminallyIll) then ! so first signals terminally ill... !$OMP CRITICAL (write2out) write(6,*) 'Integration point ', i,' at element ', e, ' terminally ill' !$OMP END CRITICAL (write2out) endif !$OMP CRITICAL (setTerminallyIll) terminallyIll = .true. ! ...and kills all others !$OMP END CRITICAL (setTerminallyIll) else ! cutback makes sense materialpoint_subStep(i,e) = subStepSizeHomog * materialpoint_subStep(i,e) ! crystallite had severe trouble, so do a significant cutback #ifdef DEBUG if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0 & .and. ((e == debug_e .and. i == debug_i) & .or. .not. iand(debug_level(debug_homogenization), debug_levelSelective) /= 0)) then write(6,'(a,1x,f12.8,a,i8,1x,i2/)') & '<< HOMOG >> cutback step in materialpoint_stressAndItsTangent with new materialpoint_subStep:',& materialpoint_subStep(i,e),' at el ip',e,i endif #endif !-------------------------------------------------------------------------------------------------- ! restore... if (materialpoint_subStep(i,e) < 1.0_pReal) then ! protect against fake cutback from \Delta t = 2 to 1. Maybe that "trick" is not necessary anymore at all? I.e. start with \Delta t = 1 crystallite_Lp(1:3,1:3,1:myNgrains,i,e) = & crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) crystallite_Li(1:3,1:3,1:myNgrains,i,e) = & crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e) endif ! maybe protecting everything from overwriting (not only L) makes even more sense crystallite_Fp(1:3,1:3,1:myNgrains,i,e) = & crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) crystallite_Fi(1:3,1:3,1:myNgrains,i,e) = & crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e) crystallite_S(1:3,1:3,1:myNgrains,i,e) = & crystallite_partionedS0(1:3,1:3,1:myNgrains,i,e) do g = 1, myNgrains plasticState (material_phaseAt(g,e))%state( :,material_phasememberAt(g,i,e)) = & plasticState (material_phaseAt(g,e))%partionedState0(:,material_phasememberAt(g,i,e)) do mySource = 1, phase_Nsources(material_phaseAt(g,e)) sourceState(material_phaseAt(g,e))%p(mySource)%state( :,material_phasememberAt(g,i,e)) = & sourceState(material_phaseAt(g,e))%p(mySource)%partionedState0(:,material_phasememberAt(g,i,e)) enddo enddo if(homogState(material_homogenizationAt(e))%sizeState > 0) & homogState(material_homogenizationAt(e))%State( :,material_homogenizationMemberAt(i,e)) = & homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) if(thermalState(material_homogenizationAt(e))%sizeState > 0) & thermalState(material_homogenizationAt(e))%State( :,material_homogenizationMemberAt(i,e)) = & thermalState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) if(damageState(material_homogenizationAt(e))%sizeState > 0) & damageState(material_homogenizationAt(e))%State( :,material_homogenizationMemberAt(i,e)) = & damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) endif endif converged if (materialpoint_subStep(i,e) > subStepMinHomog) then materialpoint_requested(i,e) = .true. materialpoint_subF(1:3,1:3,i,e) = materialpoint_subF0(1:3,1:3,i,e) & + materialpoint_subStep(i,e) * (materialpoint_F(1:3,1:3,i,e) & - materialpoint_F0(1:3,1:3,i,e)) materialpoint_subdt(i,e) = materialpoint_subStep(i,e) * dt materialpoint_doneAndHappy(1:2,i,e) = [.false.,.true.] endif enddo IpLooping1 enddo elementLooping1 !$OMP END PARALLEL DO NiterationMPstate = 0 convergenceLooping: do while (.not. terminallyIll .and. & any( materialpoint_requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) & .and. .not. materialpoint_doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) & ) .and. & NiterationMPstate < nMPstate) NiterationMPstate = NiterationMPstate + 1 !-------------------------------------------------------------------------------------------------- ! deformation partitioning ! based on materialpoint_subF0,.._subF,crystallite_partionedF0, and homogenization_state, ! results in crystallite_partionedF !$OMP PARALLEL DO PRIVATE(myNgrains) elementLooping2: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(material_homogenizationAt(e)) IpLooping2: do i = FEsolving_execIP(1),FEsolving_execIP(2) if ( materialpoint_requested(i,e) .and. & ! process requested but... .not. materialpoint_doneAndHappy(1,i,e)) then ! ...not yet done material points call partitionDeformation(i,e) ! partition deformation onto constituents crystallite_dt(1:myNgrains,i,e) = materialpoint_subdt(i,e) ! propagate materialpoint dt to grains crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents else crystallite_requested(1:myNgrains,i,e) = .false. ! calculation for constituents not required anymore endif enddo IpLooping2 enddo elementLooping2 !$OMP END PARALLEL DO !-------------------------------------------------------------------------------------------------- ! crystallite integration ! based on crystallite_partionedF0,.._partionedF ! incrementing by crystallite_dt materialpoint_converged = crystallite_stress() !ToDo: MD not sure if that is the best logic !-------------------------------------------------------------------------------------------------- ! state update !$OMP PARALLEL DO elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2) IpLooping3: do i = FEsolving_execIP(1),FEsolving_execIP(2) if ( materialpoint_requested(i,e) .and. & .not. materialpoint_doneAndHappy(1,i,e)) then if (.not. materialpoint_converged(i,e)) then materialpoint_doneAndHappy(1:2,i,e) = [.true.,.false.] else materialpoint_doneAndHappy(1:2,i,e) = updateState(i,e) materialpoint_converged(i,e) = all(materialpoint_doneAndHappy(1:2,i,e)) ! converged if done and happy endif endif enddo IpLooping3 enddo elementLooping3 !$OMP END PARALLEL DO enddo convergenceLooping NiterationHomog = NiterationHomog + 1 enddo cutBackLooping if(updateJaco) call crystallite_stressTangent if (.not. terminallyIll ) then call crystallite_orientations() ! calculate crystal orientations !$OMP PARALLEL DO elementLooping4: do e = FEsolving_execElem(1),FEsolving_execElem(2) IpLooping4: do i = FEsolving_execIP(1),FEsolving_execIP(2) call averageStressAndItsTangent(i,e) enddo IpLooping4 enddo elementLooping4 !$OMP END PARALLEL DO else write(6,'(/,a,/)') '<< HOMOG >> Material Point terminally ill' endif end subroutine materialpoint_stressAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief partition material point def grad onto constituents !-------------------------------------------------------------------------------------------------- subroutine partitionDeformation(ip,el) integer, intent(in) :: & ip, & !< integration point el !< element number chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el))) case (HOMOGENIZATION_NONE_ID) chosenHomogenization crystallite_partionedF(1:3,1:3,1,ip,el) = materialpoint_subF(1:3,1:3,ip,el) case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization call mech_isostrain_partitionDeformation(& crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & materialpoint_subF(1:3,1:3,ip,el)) case (HOMOGENIZATION_RGC_ID) chosenHomogenization call mech_RGC_partitionDeformation(& crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & materialpoint_subF(1:3,1:3,ip,el),& ip, & el) end select chosenHomogenization end subroutine partitionDeformation !-------------------------------------------------------------------------------------------------- !> @brief update the internal state of the homogenization scheme and tell whether "done" and !> "happy" with result !-------------------------------------------------------------------------------------------------- function updateState(ip,el) integer, intent(in) :: & ip, & !< integration point el !< element number logical, dimension(2) :: updateState updateState = .true. chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el))) case (HOMOGENIZATION_RGC_ID) chosenHomogenization updateState = & updateState .and. & mech_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & crystallite_partionedF0(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el),& materialpoint_subF(1:3,1:3,ip,el),& materialpoint_subdt(ip,el), & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & ip, & el) end select chosenHomogenization chosenThermal: select case (thermal_type(material_homogenizationAt(el))) case (THERMAL_adiabatic_ID) chosenThermal updateState = & updateState .and. & thermal_adiabatic_updateState(materialpoint_subdt(ip,el), & ip, & el) end select chosenThermal chosenDamage: select case (damage_type(material_homogenizationAt(el))) case (DAMAGE_local_ID) chosenDamage updateState = & updateState .and. & damage_local_updateState(materialpoint_subdt(ip,el), & ip, & el) end select chosenDamage end function updateState !-------------------------------------------------------------------------------------------------- !> @brief derive average stress and stiffness from constituent quantities !-------------------------------------------------------------------------------------------------- subroutine averageStressAndItsTangent(ip,el) integer, intent(in) :: & ip, & !< integration point el !< element number chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el))) case (HOMOGENIZATION_NONE_ID) chosenHomogenization materialpoint_P(1:3,1:3,ip,el) = crystallite_P(1:3,1:3,1,ip,el) materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el) = crystallite_dPdF(1:3,1:3,1:3,1:3,1,ip,el) case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization call mech_isostrain_averageStressAndItsTangent(& materialpoint_P(1:3,1:3,ip,el), & materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),& crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & homogenization_typeInstance(material_homogenizationAt(el))) case (HOMOGENIZATION_RGC_ID) chosenHomogenization call mech_RGC_averageStressAndItsTangent(& materialpoint_P(1:3,1:3,ip,el), & materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),& crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & homogenization_typeInstance(material_homogenizationAt(el))) end select chosenHomogenization end subroutine averageStressAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief writes homogenization results to HDF5 output file !-------------------------------------------------------------------------------------------------- subroutine homogenization_results use material, only: & material_homogenization_type => homogenization_type integer :: p character(len=pStringLen) :: group_base,group !real(pReal), dimension(:,:,:), allocatable :: temp do p=1,size(config_name_homogenization) group_base = 'current/materialpoint/'//trim(config_name_homogenization(p)) call results_closeGroup(results_addGroup(group_base)) group = trim(group_base)//'/generic' call results_closeGroup(results_addGroup(group)) !temp = reshape(materialpoint_F,[3,3,discretization_nIP*discretization_nElem]) !call results_writeDataset(group,temp,'F',& ! 'deformation gradient','1') !temp = reshape(materialpoint_P,[3,3,discretization_nIP*discretization_nElem]) !call results_writeDataset(group,temp,'P',& ! '1st Piola-Kirchoff stress','Pa') group = trim(group_base)//'/mech' call results_closeGroup(results_addGroup(group)) select case(material_homogenization_type(p)) case(HOMOGENIZATION_rgc_ID) call mech_RGC_results(homogenization_typeInstance(p),group) end select group = trim(group_base)//'/damage' call results_closeGroup(results_addGroup(group)) select case(damage_type(p)) case(DAMAGE_LOCAL_ID) call damage_local_results(p,group) case(DAMAGE_NONLOCAL_ID) call damage_nonlocal_results(p,group) end select group = trim(group_base)//'/thermal' call results_closeGroup(results_addGroup(group)) select case(thermal_type(p)) case(THERMAL_ADIABATIC_ID) call thermal_adiabatic_results(p,group) case(THERMAL_CONDUCTION_ID) call thermal_conduction_results(p,group) end select enddo end subroutine homogenization_results end module homogenization