#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,re,sys,string import numpy as np from optparse import OptionParser import damask scriptID = string.replace('$Id$','\n','\\n') scriptName = os.path.splitext(scriptID.split()[1])[0] # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Replace all rows for which column 'label' has identical values by a single row containing their average. Output table will contain as many rows as there are different (unique) values in the grouping column. Examples: For grain averaged values, replace all rows of particular 'texture' with a single row containing their average. """, version = scriptID) parser.add_option('-l','--label', dest = 'label', type = 'string', metavar = 'string', help = 'column label for grouping rows') (options,filenames) = parser.parse_args() if options.label == None: parser.error('no grouping column specified.') # --- loop over input files ------------------------------------------------------------------------- if filenames == []: filenames = [None] for name in filenames: try: table = damask.ASCIItable(name = name, outname = options.label+'_averaged_'+name if name else name, buffered = False) except: continue table.report_name(scriptName,name) # ------------------------------------------ sanity checks --------------------------------------- table.head_read() if table.label_dimension(options.label) != 1: table.croak('column {} is not of scalar dimension.'.format(options.label)) table.close(dismiss = True) # close ASCIItable and remove empty file continue # ------------------------------------------ assemble info --------------------------------------- table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.head_write() # ------------------------------------------ process data -------------------------------- table.data_readArray() rows,cols = table.data.shape table.data = table.data[np.lexsort([table.data[:,table.label_index(options.label)]])] values,index = np.unique(table.data[:,table.label_index(options.label)], return_index = True) index = np.append(index,rows) avgTable = np.empty((len(values), cols)) for j in xrange(cols) : for i in xrange(len(values)) : avgTable[i,j] = np.average(table.data[index[i]:index[i+1],j]) table.data = avgTable # ------------------------------------------ output result ------------------------------- table.data_writeArray() table.close() # close ASCII table