#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,re,sys,string import numpy as np from optparse import OptionParser import damask scriptID = string.replace('$Id$','\n','\\n') scriptName = os.path.splitext(scriptID.split()[1])[0] # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Add cumulative (sum of first to current row) values for given label(s). """, version = scriptID) parser.add_option('-l','--label', dest='label', action = 'extend', metavar = '', help = 'columns to cumulate') parser.set_defaults(label = [], ) (options,filenames) = parser.parse_args() if len(options.label) == 0: parser.error('no data column(s) specified.') # --- loop over input files ------------------------------------------------------------------------- if filenames == []: filenames = [None] for name in filenames: try: table = damask.ASCIItable(name = name, buffered = False) except: continue table.report_name(scriptName,name) # ------------------------------------------ read header ------------------------------------------ table.head_read() # ------------------------------------------ sanity checks ---------------------------------------- errors = [] remarks = [] columns = [] dims = [] for what in options.label: dim = table.label_dimension(what) if dim < 0: remarks.append('column {} not found...'.format(what)) else: dims.append(dim) columns.append(table.label_index(what)) table.labels_append('cum({})'.format(what) if dim == 1 else ['{}_cum({})'.format(i+1,what) for i in xrange(dim)] ) # extend ASCII header with new labels if remarks != []: table.croak(remarks) if errors != []: table.croak(errors) table.close(dismiss = True) continue # ------------------------------------------ assemble header --------------------------------------- table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.head_write() # ------------------------------------------ process data ------------------------------------------ table.data_readArray() mask = [] for col,dim in zip(columns,dims): mask += range(col,col+dim) # isolate data columns to cumulate cumulated = np.zeros((len(table.data),len(mask))) # prepare output field for i,values in enumerate(table.data[:,mask]): cumulated[i,:] = cumulated[max(0,i-1),:] + values # cumulate values table.data = np.hstack((table.data,cumulated)) # ------------------------------------------ output result ----------------------------------------- table.data_writeArray() # ------------------------------------------ output finalization ----------------------------------- table.close() # close ASCII tables