#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,re,sys,math,numpy,string,damask from scipy import ndimage from optparse import OptionParser, Option #-------------------------------------------------------------------------------------------------- class extendableOption(Option): #-------------------------------------------------------------------------------------------------- # used for definition of new option parser action 'extend', which enables to take multiple option arguments # taken from online tutorial http://docs.python.org/library/optparse.html ACTIONS = Option.ACTIONS + ("extend",) STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",) TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",) ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",) def take_action(self, action, dest, opt, value, values, parser): if action == "extend": lvalue = value.split(",") values.ensure_value(dest, []).extend(lvalue) else: Option.take_action(self, action, dest, opt, value, values, parser) def periodic_3Dpad(array, rimdim=(1,1,1)): rimdim = numpy.array(rimdim,'i') size = numpy.array(array.shape,'i') padded = numpy.empty(size+2*rimdim,array.dtype) padded[rimdim[0]:rimdim[0]+size[0], rimdim[1]:rimdim[1]+size[1], rimdim[2]:rimdim[2]+size[2]] = array p = numpy.zeros(3,'i') for side in xrange(3): for p[(side+2)%3] in xrange(padded.shape[(side+2)%3]): for p[(side+1)%3] in xrange(padded.shape[(side+1)%3]): for p[side%3] in xrange(rimdim[side%3]): spot = (p-rimdim)%size padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]] for p[side%3] in xrange(rimdim[side%3]+size[side%3],size[side%3]+2*rimdim[side%3]): spot = (p-rimdim)%size padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]] return padded #-------------------------------------------------------------------------------------------------- # MAIN #-------------------------------------------------------------------------------------------------- identifiers = { 'grid': ['a','b','c'], 'size': ['x','y','z'], 'origin': ['x','y','z'], } mappings = { 'grid': lambda x: int(x), 'size': lambda x: float(x), 'origin': lambda x: float(x), 'homogenization': lambda x: int(x), 'microstructures': lambda x: int(x), } features = [ {'aliens': 1, 'names': ['boundary(biplane)'],}, {'aliens': 2, 'names': ['tripleline'],}, {'aliens': 3, 'names': ['quadruplepoint'],} ] neighborhoods = { 'neumann':numpy.array([ [-1, 0, 0], [ 1, 0, 0], [ 0,-1, 0], [ 0, 1, 0], [ 0, 0,-1], [ 0, 0, 1], ]), 'moore':numpy.array([ [-1,-1,-1], [ 0,-1,-1], [ 1,-1,-1], [-1, 0,-1], [ 0, 0,-1], [ 1, 0,-1], [-1, 1,-1], [ 0, 1,-1], [ 1, 1,-1], [-1,-1, 0], [ 0,-1, 0], [ 1,-1, 0], [-1, 0, 0], # [ 1, 0, 0], [-1, 1, 0], [ 0, 1, 0], [ 1, 1, 0], [-1,-1, 1], [ 0,-1, 1], [ 1,-1, 1], [-1, 0, 1], [ 0, 0, 1], [ 1, 0, 1], [-1, 1, 1], [ 0, 1, 1], [ 1, 1, 1], ]) } parser = OptionParser(option_class=extendableOption, usage='%prog options [file[s]]', description = """ Produce geom files containing Euclidean distance to grain structural features: boundaries, triple lines, and quadruple points. """ + string.replace('$Id$','\n','\\n') ) parser.add_option('-t','--type', dest='type', action='extend', type='string', \ help='feature type (%s)'%(', '.join(map(lambda x:', '.join(x['names']),features)))) parser.add_option('-n','--neighborhood', dest='neigborhood', action='store', type='string', \ help='type of neighborhood (%s) [neumann]'%(', '.join(neighborhoods.keys()))) parser.add_option('-2', '--twodimensional', dest='twoD', action='store_true', \ help='output geom file with two-dimensional data arrangement [%default]') parser.set_defaults(type = []) parser.set_defaults(neighborhood = 'neumann') parser.set_defaults(twoD = False) (options,filenames) = parser.parse_args() options.neighborhood = options.neighborhood.lower() if options.neighborhood not in neighborhoods: parser.error('unknown neighborhood %s!'%options.neighborhood) feature_list = [] for i,feature in enumerate(features): for name in feature['names']: for myType in options.type: if name.startswith(myType): feature_list.append(i) # remember valid features break #--- setup file handles --------------------------------------------------------------------------- files = [] if filenames == []: files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr, }) else: for name in filenames: if os.path.exists(name): files.append({'name':name, 'input':open(name), 'output':[open(string.split(''.join((features[feature]['names'])),sep='(')[0]+'_'+name,'w') for feature in feature_list], 'croak':sys.stdout, }) #--- loop over input files ------------------------------------------------------------------------ for file in files: if file['name'] != 'STDIN': file['croak'].write(file['name']+'\n') firstline = file['input'].readline() m = re.search('(\d+)\s*head', firstline.lower()) if m: headerlines = int(m.group(1)) headers = [file['input'].readline() for i in range(headerlines)] else: headerlines = 1 headers = firstline content = file['input'].readlines() file['input'].close() #--- interprete header ---------------------------------------------------------------------------- info = { 'grid': numpy.zeros(3,'i'), 'size': numpy.zeros(3,'d'), 'origin': numpy.zeros(3,'d'), 'microstructures': 0, 'homogenization': 0 } newInfo = { 'microstructures': 0, } new_header = [] for header in headers: headitems = map(str.lower,header.split()) if headitems[0] == 'resolution': headitems[0] = 'grid' if headitems[0] == 'dimension': headitems[0] = 'size' if headitems[0] in mappings.keys(): if headitems[0] in identifiers.keys(): for i in xrange(len(identifiers[headitems[0]])): info[headitems[0]][i] = \ mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1]) else: info[headitems[0]] = mappings[headitems[0]](headitems[1]) else: new_header.append(header) file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \ 'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \ 'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + \ 'homogenization: %i\n'%info['homogenization'] + \ 'microstructures: %i\n'%info['microstructures']) if numpy.any(info['grid'] < 1): file['croak'].write('invalid grid a b c.\n') sys.exit() if numpy.any(info['size'] <= 0.0): file['croak'].write('invalid size x y z.\n') sys.exit() new_header.append('$Id$\n') new_header.append("grid\ta %i\tb %i\tc %i\n"%(info['grid'][0],info['grid'][1],info['grid'][2],)) new_header.append("size\tx %f\ty %f\tz %f\n"%(info['size'][0],info['size'][1],info['size'][2],)) new_header.append("origin\tx %f\ty %f\tz %f\n"%(info['origin'][0],info['origin'][1],info['origin'][2],)) new_header.append("homogenization\t%i\n"%info['homogenization']) #--- process input -------------------------------------------------------------------------------- structure = numpy.zeros(info['grid'],'i') i = 0 for line in content: for item in map(int,line.split()): structure[i%info['grid'][0], (i/info['grid'][0])%info['grid'][1], i/info['grid'][0] /info['grid'][1]] = item i += 1 neighborhood = neighborhoods[options.neighborhood] convoluted = numpy.empty([len(neighborhood)]+list(info['grid']+2),'i') microstructure = periodic_3Dpad(structure) for i,p in enumerate(neighborhood): stencil = numpy.zeros((3,3,3),'i') stencil[1,1,1] = -1 stencil[p[0]+1, p[1]+1, p[2]+1] = 1 convoluted[i,:,:,:] = ndimage.convolve(microstructure,stencil) distance = numpy.ones((len(feature_list),info['grid'][0],info['grid'][1],info['grid'][2]),'d') convoluted = numpy.sort(convoluted,axis=0) uniques = numpy.zeros(info['grid']) check = numpy.empty(info['grid']) check[:,:,:] = numpy.nan for i in xrange(len(neighborhood)): uniques += numpy.where(convoluted[i,1:-1,1:-1,1:-1] == check,0,1) check = convoluted[i,1:-1,1:-1,1:-1] for i,feature_id in enumerate(feature_list): distance[i,:,:,:] = numpy.where(uniques > features[feature_id]['aliens'],0.0,1.0) for i in xrange(len(feature_list)): distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*\ [max(info['size']/info['grid'])]*3 for i,feature in enumerate(feature_list): newInfo['microstructures'] = int(math.ceil(distance[i,:,:,:].max())) formatwidth = int(math.floor(math.log10(distance[i,:,:,:].max())+1)) #--- assemble header and report changes ----------------------------------------------------------- output = '%i\theader\n'%(len(new_header)+1)+''.join(new_header) output += "microstructures\t%i\n"%newInfo['microstructures'] file['croak'].write('\n'+features[i]['names'][0]+'\n') if (newInfo['microstructures'] != info['microstructures']): file['croak'].write('--> microstructures: %i\n'%newInfo['microstructures']) #--- write new data ------------------------------------------------------------------------------- for z in xrange(info['grid'][2]): for y in xrange(info['grid'][1]): output += {True:' ',False:'\n'}[options.twoD].join(map(lambda x: \ ('%%%ii'%formatwidth)%(round(x)), distance[i,:,y,z])) + '\n' file['output'][i].write(output) if file['name'] != 'STDIN': file['output'][i].close() #--- output finalization -------------------------------------------------------------------------- if file['name'] != 'STDIN': file['input'].close()